
The American Journal of Engineering and Technology 52 https://www.theamericanjournals.com/index.php/tajet

 TYPE Original Research

PAGE NO. 52-59

DOI 10.37547/tajet/Volume05Issue12-13

OPEN ACCESS

SUBMITED 17 October 2023

ACCEPTED 24 November 2023

PUBLISHED 27 December 2023

VOLUME Vol.05 Issue 12 2023

CITATION
Jyoti Kunal Shah. (2023). Ethical Considerations of LLM-Driven Quantum
Code Generation for Optimization Tasks. The American Journal of
Engineering and Technology, 5(12), 52–59.
https://doi.org/10.37547/tajet/Volume05Issue12-13

COPYRIGHT

© 2023 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Ethical Considerations of

LLM-Driven Quantum

Code Generation for

Optimization Tasks

 Jyoti Kunal Shah
Independent Researcher, USA

Abstract: The convergence of large language models
(LLMs) and quantum computing has the potential to
revolutionize software development for quantum
optimization tasks. AI-assisted code generation,
powered by models like OpenAI Codex, can accelerate
the design of quantum algorithms by automating
routine coding tasks and democratizing access to
quantum programming. However, this innovation
introduces a web of ethical, legal, and technical
challenges. This paper investigates the implications of
using LLMs to generate quantum code, focusing on
intellectual property (IP) concerns, the risk of
unintended outcomes, legal ambiguity, and dual-use
scenarios. We propose an ethical architecture for
responsible AI-assisted development, incorporating
human-in-the-loop systems, license-compliance
mechanisms, and auditing tools. Case studies illustrate
potential failures in code correctness, security, and
attribution. We conclude with recommendations for
explainable AI systems, curated datasets, and
governance models that ensure innovation without
sacrificing safety or compliance. By addressing these
concerns proactively, the community can guide LLM-
powered quantum development toward a responsible
future.

KEYWORDS

Quantum Code Generation, Large Language

Models (LLMs), Quantum Computing,

Optimization, AI Ethics, Intellectual Property,

Code Safety, Human-in-the-Loop, Software

Licensing, Explainable AI

1. INTRODUCTION

Large Language Models (LLMs) such as OpenAI’s Codex
and Meta’s Code Llama are increasingly being integrated
into software development pipelines. Tools like GitHub

https://doi.org/10.37547/tajet/Volume05Issue12-13
https://doi.org/10.37547/tajet/Volume05Issue12-13
https://doi.org/10.37547/tajet/Volume05Issue12-13
https://orcid.org/0009-0000-5346-339X

The American Journal of Engineering and Technology 53 https://www.theamericanjournals.com/index.php/tajet

Copilot demonstrate their potential as AI-powered
assistants capable of writing code from natural-language
prompts [1]. In the context of quantum computing—
particularly for optimization tasks like combinatorial
problem solving—the potential impact of LLMs is
profound. Quantum programming is notoriously
complex, and a significant barrier to entry exists due to
the specialized mathematical and algorithmic
knowledge required [2]. By providing developers with
generative assistance, LLMs can reduce this barrier,
making quantum computing more accessible.

This paper explores the complex intersection of LLM-
driven code generation and quantum computing. We
address three key ethical challenges: (1) Intellectual
property and licensing risks, (2) unintended
consequences in high-stakes quantum applications, and
(3) gaps in regulatory and legal frameworks. We
augment the discussion with an expanded architecture
for responsible LLM use in quantum development,
illustrative examples, and recommendations for future
research.

II. Background

A. LLMs for Code Generation

LLMs are trained on massive corpora of public code,
documentation, and developer discussions. Codex, for
example, was trained on over 50 million public GitHub
repositories [1]. These models excel at pattern
recognition and sequence completion, making them
suitable for tasks such as autocompletion, function
generation, and even unit test creation [4]. Their
adoption is accelerating, with companies reporting that
LLMs contribute significantly to productivity, particularly
in tasks involving boilerplate or API-specific coding.

Yet, concerns remain about hallucinated code, insecure
practices, and licensing violations. Studies in classical
domains have shown that AI-generated code often
inherits flawed patterns from its training data [5]. These
risks are compounded in quantum domains, where
accuracy and clarity are paramount.

B. Quantum Optimization and Programming
Complexity

Quantum computing leverages principles like
superposition and entanglement to process
information. Optimization problems—especially those
that are NP-hard—are ideal candidates for quantum
speedups [6]. Algorithms like QAOA, Grover’s search,
and quantum annealing are central to solving such
problems. However, quantum programming requires
domain knowledge not just of algorithms, but also of
qubit topologies, decoherence limits, and device-
specific constraints [7].

Languages and frameworks such as Qiskit (IBM), Cirq
(Google), and Pennylane (Xanadu) provide abstractions
for programming quantum devices. Despite this, the
learning curve remains steep. LLMs trained on quantum-
specific code could assist by generating initialization
templates, cost Hamiltonians, or variational loops.

However, quantum repositories are small compared to
classical codebases, creating data sparsity. This
increases the likelihood that an LLM will output
memorized rather than generalized solutions, leading to
potential copyright breaches and scientific
reproducibility issues [8].

III. Ethical Challenges

A. Intellectual Property and Licensing

One of the most controversial aspects of AI-generated
code is the ambiguity around intellectual property. Most
LLMs are trained on permissively licensed code but also
ingest GPL or AGPL-licensed material, which carry
“copyleft” obligations [9]. If an LLM reproduces a GPL-
protected algorithm verbatim, it may force the user to
license the entire project under GPL—a serious risk for
proprietary firms.

Legal precedents are still evolving. U.S. Copyright Office
guidelines from 2023 reiterated that only human-
authored works are copyrightable [10]. Furthermore,
courts have struggled with the idea of whether LLM
outputs are derivative works, transformative fair use, or
mere recombination. In one study, over 35% of AI-
generated code samples were found to match known
open-source code snippets under restrictive licenses
[11].

Quantum software frameworks like Qiskit are licensed
under Apache 2.0, which is permissive. However, LLMs
may have been trained on mixed-license examples from
academic repositories or textbooks. Without
transparent provenance, users have no way of knowing
whether suggested code adheres to legal norms.

Mitigation strategies include:

• Enabling duplication filters in tools like Copilot
[12]

• Post-generation license scanning using tools like
FOSSA or ScanCode [13]

• Annotating AI-generated code sections to
create audit trails

• Adopting fine-tuned LLMs trained only on
permissive datasets (e.g., MIT or Apache
codebases)

B. Unintended Consequences in Quantum Applications

The American Journal of Engineering and Technology 54 https://www.theamericanjournals.com/index.php/tajet

1. Faulty Output and Hidden Errors

Quantum algorithms are sensitive to parameters such as
circuit depth, number of shots, and initialization. An AI
assistant might return a valid QAOA implementation
with poorly chosen parameters, leading to suboptimal
results. For instance, a company using AI-generated
code for logistics optimization could experience financial
losses if the model misrepresents cost functions or
graph topology.

Unlike classical software, quantum algorithms are
harder to test due to probabilistic outcomes and lack of
oracles for many optimization problems [14]. Errors may
go undetected unless rigorous simulations or cross-
validations are conducted. This amplifies the risks
associated with code hallucination or inadequate
context handling by LLMs.

2. Security and Privacy Vulnerabilities

Security concerns in quantum code may seem niche, but
they become relevant when quantum-classical hybrid
systems process sensitive data. Consider an AI
suggesting logging internal quantum states for
debugging purposes; such logs could inadvertently
expose proprietary or personal data [15].

Quantum cryptography is another domain of concern.
As LLMs gain access to implementations of Shor’s
algorithm or quantum key distribution protocols, there
is a risk of misuse. If an LLM-generated script is deployed
in a real-world cryptographic context without rigorous
vetting, it could break security assumptions.

3. Bias and Ethical Fairness

LLMs may suggest optimization strategies that reinforce
algorithmic bias. For example, when generating code for
staffing optimization using QAOA, the objective function
may ignore fairness constraints unless explicitly stated.
This could lead to inequitable outcomes (e.g., scheduling
that disproportionately burdens specific demographic
groups) [16].

As AI agents become more integrated into decision-
making, developers must bear responsibility for ethical
alignment. Quantum code generation models, like their
classical counterparts, must be paired with clear ethical
guidelines and bias auditing mechanisms.

4. Dual-Use and Weaponization

The democratization of quantum code creation raises
concerns about dual-use. Governments and ethical AI
boards must weigh the trade-offs between accessibility
and control.

Developers and LLM providers should consider
embedding filters that detect and flag queries with
potential dual-use implications, such as requests for
quantum cryptanalysis or large-scale simulation of
sensitive processes.

IV. Proposed Architecture for Ethical Quantum Code
Generation

As LLMs become integrated into quantum software
engineering workflows, a well-structured architecture is
essential to manage their power responsibly. We
propose a modular, extensible architecture that ensures
code generation is not only effective but also aligned
with ethical, legal, and safety expectations.

A. Overview

Figure 1. Proposed Architecture for Ethical Quantum Code Generation.

The American Journal of Engineering and Technology 55 https://www.theamericanjournals.com/index.php/tajet

This layered framework integrates human-in-the-loop
collaboration, LLM-powered code synthesis, auditing
mechanisms, and license-compliance checks to ensure
legally and ethically responsible quantum software
development. The architecture consists of seven
interdependent layers, each designed to reinforce
specific values such as transparency, compliance,
explainability, and human accountability. The full stack
comprises:

1. Prompt Interface Layer

2. LLM Model Execution Engine

3. Output Validation and Static Analysis

4. Ethical Filter and Policy Enforcement Module

5. Audit Logging and Provenance Tracking System

6. Human-in-the-Loop Review Workflow

7. Quantum Backend Integration and Simulation
Environment

This system supports quantum software development in
environments such as IDEs (VS Code, Jupyter) and CI/CD
pipelines.

B. Layer 1: Prompt Interface Layer

This layer enables developers to interact with the LLM
through structured or unstructured prompts. It accepts
inputs such as:

• Natural language queries (“Implement QAOA
for Max-Cut”)

• Code comments

• Function signatures

• Problem definitions (e.g., weighted graphs,
Hamiltonians)

Contextual extraction capabilities (e.g., parsing imports,
surrounding lines, metadata) are crucial for
disambiguation. Advanced versions may support
prompt chaining, where follow-up queries refine output
quality [1].

Ethical Design Feature: The interface warns developers
if ambiguous or overly broad prompts may lead to
hallucinated or unverifiable code.

C. Layer 2: LLM Model Execution Engine

At the core is the LLM code assistant, which can be a
general-purpose model (e.g., Codex) or a domain-
specialized model fine-tuned on quantum repositories.

Key submodules:

• Quantum-aware routing: Detects when
prompts require domain expertise and reroutes
to specialized models trained on Qiskit, Cirq, etc.

• Prompt-context fusion: Encodes file structure,
function definitions, and prior prompts to
provide continuity.

• Checkpoint caching: Retains model state to
allow multi-turn interactive completion without
losing context.

Ethical Design Feature: Embeds confidence scoring and
uncertainty estimates in output metadata, alerting
users to low-confidence completions [2].

D. Layer 3: Output Validation and Static Analysis

All AI-generated code is passed through a
comprehensive validation stage before being shown to
the user.

Modules include:

• Quantum Static Analyzer: Checks for quantum
circuit validity (e.g., initialized qubits,
measurement usage, noise model
compatibility).

• Classical Linting & Formatting: Verifies syntax,
PEP8 compliance, and classical logic
consistency.

• Security Analysis: Detects logging of sensitive
quantum/classical states or insecure practices
(e.g., default seeds, non-parameterized gates).

• License Fingerprinting: Intellectual property
concerns continue to escalate in the generative
AI space, especially regarding code produced by
LLMs trained on public repositories. These tools
often generate content that mirrors existing
software, raising complex ownership issues,
particularly when the training data includes
code under restrictive licenses [3].

Ethical Design Feature: Suggestions containing high
structural similarity to GPL/AGPL repositories are
flagged or suppressed to prevent license contamination
[4].

E. Layer 4: Ethical Filter and Policy Enforcement

This is the heart of the architecture’s ethical compliance
logic. It operates on pre- and post-output conditions:

Pre-Output Filters:

The American Journal of Engineering and Technology 56 https://www.theamericanjournals.com/index.php/tajet

• Prompt Blocklist: Prevents generation in
response to known high-risk queries (e.g., “write
Shor’s algorithm to break RSA”).

• Usage Context Check: Ensures usage within
permitted domains (e.g., research vs.
production).

Post-Output Filters:

• Dual-use Detector: Flags generated code likely
applicable to sensitive areas like cryptanalysis or
surveillance [5].

• Attribution and Disclosure Module: Appends
disclaimers where suggestions are derived from
public data (based on hash proximity
thresholds).

Policy Configurability: Allows organizations to enforce
custom guardrails (e.g., “no AI generation for kernel
modules” or “require human review for quantum
circuits over 20 qubits”).

F. Layer 5: Audit Logging and Provenance Tracking

Compliance and explainability demand traceability. This
layer ensures full lifecycle documentation for each
generation event.

Components:

• Prompt & Output Archiving: Stores prompts,
model version, and completions with
timestamps.

• Decision Logs: Records developer actions (e.g.,
accept, modify, reject output).

• Source Attribution Ledger: Tracks potential
code origins, license metadata, and similarity
scores [6].

These logs support:

• Internal audits

• Regulatory compliance (e.g., GDPR “right to
explanation”)

• Reproducibility for research or legal discovery

Ethical Design Feature: Enables auto-generation of
Software Bill of Materials (SBOM) marking LLM-
generated sections with provenance annotations [7].

G. Layer 6: Human-in-the-Loop Review Workflow

All outputs undergo review by human developers before
integration. This is a mandatory checkpoint, not
optional.

Key features:

• Side-by-Side Review Panel: Compares AI-
generated output with baseline alternatives or
known implementations.

• Feedback Capture: Developers can rate or flag
output, building a repository of supervised
feedback for model retraining.

• Gatekeeping Controls: Review must be
completed before deployment to staging or
production environments.

Ethical Design Feature: Requires reviewer to certify
(checkbox or digital signature) that the suggestion
meets company-specific ethical and legal standards.

H. Layer 7: Quantum Backend Integration and
Simulation Environment

Final code is tested in a quantum execution
environment, such as:

• Qiskit Aer for circuit simulation

• Google Cirq with Sycamore hardware backend

• Hybrid quantum-classical loop evaluators (e.g.,
using classical post-processing with VQE/QAOA)

Benchmark Suite: Includes standard combinatorial
problems (Max-Cut, TSP, Portfolio Optimization) to test
solution quality. Outputs are evaluated based on:

• Solution accuracy

• Resource efficiency (e.g., number of qubits,
depth)

• Scalability across hardware configurations

Ethical Design Feature: Models must demonstrate
quantum advantage justification—i.e., produce
superior results compared to classical baselines—before
deployment in real-world use cases [8].

I. Modular Deployment Options

The architecture can be deployed:

• As a standalone VS Code plugin

• Within a company’s CI/CD pipeline (e.g., GitHub
Actions)

• As a cloud-based LLM service with APIs and
audit export support

Security-conscious deployments may isolate model
access or integrate differential privacy measures.

V. Case Study: AI-Generated QAOA for Vehicle Routing
V. Case Study: AI-Generated QAOA for Vehicle Routing

To illustrate the real-world implications of LLM-driven

The American Journal of Engineering and Technology 57 https://www.theamericanjournals.com/index.php/tajet

quantum code generation, consider a detailed case
study involving a logistics firm adopting quantum
computing for delivery optimization. The company
aimed to solve the Capacitated Vehicle Routing
Problem (CVRP), a combinatorial optimization problem,
using Quantum Approximate Optimization Algorithm
(QAOA) via IBM's Qiskit framework.

A. Scenario Overview

The firm deployed an LLM-powered assistant trained on
quantum programming repositories to accelerate
solution development. The developer submitted the
prompt:

“Write a QAOA implementation in Qiskit to optimize
vehicle routing over 20 cities with depot constraints.”

The assistant generated a complete Python script,
including:

• Graph encoding of cities and routes using
NetworkX

• Cost Hamiltonian representing travel distances
and vehicle capacities

• Parametrized QAOA circuit with default p=1
depth

• Classical optimizer using COBYLA

• Visualization code for route assignment

At first, the model’s output appeared functionally
correct and greatly reduced development time.
However, subsequent reviews revealed multiple ethical
and operational failures.

B. Intellectual Property Violation

A line-by-line audit using license compliance tools (e.g.,
FOSSology and ScanCode Toolkit [13]) revealed that the
cost Hamiltonian function closely mirrored a GPL-
licensed academic implementation published in 2021.
The original repository required derivative works to
adopt the same license. Since the company was
developing a proprietary solution, this introduced a legal
risk of license contamination, threatening potential
product commercialization.

Despite the LLM not explicitly copying verbatim code,
the structural similarity raised legal red flags. According
to Krug et al., such “function-level cloning” is common in
LLM-generated outputs when training on small datasets
like quantum repositories [11].

C. Technical Flaws in Quantum Circuit

The model-generated code used a shallow circuit depth
(p=1), suitable only for small problem instances. When

the problem was scaled to realistic logistics data with
over 20 delivery nodes and 5 vehicles, solution quality
degraded significantly. The output violated vehicle
capacity constraints in 18% of cases, resulting in
infeasible routing suggestions.

The issue arose because the model was unaware of
domain-specific hyperparameter tuning. Quantum
optimization literature suggests that increasing QAOA
depth (p ≥ 3) improves performance on dense graphs
but also demands hardware calibration [14]. Without
expert intervention, the AI failed to adjust circuit depth
or optimizer settings for scale.

D. Security and Privacy Oversights

The AI-generated script included a debugging function
that logged quantum register states and intermediate
probabilities. However, these logs inadvertently
exposed sensitive route patterns and delivery schedules.
When tested against internal privacy assessment
protocols, the logs violated the firm’s data retention and
anonymization policies.

Similar risks have been observed in hybrid quantum-
classical systems, where excessive logging can lead to
information leakage about proprietary models or
infrastructure [15].

E. Ethical Bias in Optimization Objectives

The AI assistant constructed an objective function
focused solely on minimizing total route distance. In
reality, the logistics firm operated under fairness
constraints, including:

• Equal workload distribution across delivery
agents

• Priority delivery to underserved or rural regions

• Time window constraints based on traffic flow
patterns

None of these constraints were captured by the AI-
generated Hamiltonian. The output thus biased results
toward urban areas with dense connectivity. If
deployed, this bias could have resulted in inequitable
service, violating internal DEI (Diversity, Equity, and
Inclusion) guidelines and potentially triggering
regulatory scrutiny under national anti-discrimination
logistics mandates [25].

As highlighted by Binns [16], LLMs inherently reflect
biases in their training data and optimization logic unless
fairness is explicitly encoded.

F. Organizational Response and Mitigation

Upon discovering the issues, the organization
implemented a multi-pronged mitigation strategy:

The American Journal of Engineering and Technology 58 https://www.theamericanjournals.com/index.php/tajet

1. IP Compliance: They used a license scanner to
rewrite sections suspected of GPL
contamination and replaced them with custom
implementations under Apache 2.0.

2. Human-in-the-Loop Auditing: All AI-generated
quantum scripts were reviewed by an in-house
quantum researcher before deployment. A
formal checklist was added to verify quantum-
specific hyperparameters, fairness in
optimization objectives, and alignment with
business goals.

3. Data Governance Enhancements: Debug logs
were anonymized, and telemetry was disabled
by default. The DevSecOps team integrated
automated checks to flag excessive quantum
circuit state dumps.

4. Fairness Layer in Objective Function: A penalty
function was added to the cost Hamiltonian to
balance delivery loads and prioritize service to
underserved areas. The AI assistant was
retrained using a curated dataset with encoded
fairness policies, as suggested by recent work on
value-sensitive design [27].

5. Policy Revision: The company instituted internal
guidelines that prohibited the direct
deployment of unreviewed LLM-generated code
in regulated domains (e.g., logistics, finance,
healthcare).

G. Lessons Learned

This case study illustrates that LLMs offer significant
productivity benefits, but only under robust human
oversight and governance structures. It also
demonstrates the necessity of integrating compliance
verification, fairness modeling, and domain knowledge
validation into the LLM-assisted quantum development
lifecycle.

The following actionable takeaways emerged:

• Quantum code must always be tested with
domain-specific benchmarks

• Explainability and provenance tracking are
essential for risk assessment

• AI models should be trained with ethical
constraints and domain-context examples

• Organizations should institutionalize code
review pipelines for LLM-generated suggestions

VI. Future Research Directions

A. Explainable Quantum AI

Recent efforts to benchmark and explain LLM-based
code generation emphasize the importance of causality-
aware evaluation methods to trace how specific
prompts lead to particular outputs, enhancing
transparency [19].

B. Curated Training Datasets

Efforts should be made to build domain-specific,
ethically sourced quantum datasets. Initiatives like the
QMLCode repository or Quantum Algorithm Zoo can
serve as training sets. Community contributions with
permissive licenses (e.g., CC BY) should be encouraged
[20].

C. Standards and Certification

IEEE, ISO, and other bodies should develop certifications
for AI-generated quantum code tools. Criteria may
include:

• Use of duplication filters

• Audit logging capabilities

• Compliance with data protection regulations
(e.g., GDPR, HIPAA)

An AI-generated quantum software certified as “Ethical
Grade A” could gain trust among enterprises and
regulators.

D. Dual-Layer AI Systems

Deploying two separate LLMs—one for generation and
one for validation—could reduce risks. For example,
Model A generates a QAOA implementation, while
Model B evaluates logical consistency, license
compatibility, and security vulnerabilities. This dual-
layer system mimics “code reviewer” dynamics and
reinforces ethical rigor.

E. Developer Training and Curriculum Integration

Ethics modules for AI-augmented quantum
programming should be embedded in university
curricula. Open-source courses with simulation
exercises (e.g., “spot the bug in AI-suggested code”) can
train developers to work critically with LLMs.

VII. CONCLUSION

The fusion of LLMs and quantum computing offers
remarkable possibilities but is fraught with ethical
pitfalls. From IP violations to security vulnerabilities and
fairness concerns, the implications of AI-generated
quantum code demand robust safeguards. We have
proposed a comprehensive framework to mitigate these
risks and outlined a modular architecture for ethical
code generation.

The American Journal of Engineering and Technology 59 https://www.theamericanjournals.com/index.php/tajet

The path forward involves collaboration between
quantum researchers, AI developers, ethicists, and
regulators. As quantum computing matures, embedding
responsible AI practices early will ensure that this
powerful technology serves humanity safely and
equitably.

REFERENCES

[1] D. R. Mello Jr., “Insights from the Pending Copilot
Class Action Lawsuit,” Bloomberg Law, Oct. 2023.
https://www.finnegan.com/en/insights/insights-from-
the-pending-copilot-class-action-lawsuit.html

[2] P. Mortimer, “GitHub Copilot: AI-Coding Assistant
Redefining IP Rights,” LogicalCube Blog, Sep. 2023.
https://www.logicalcube.com/github-copilot-ai-coding-
assistant-ip-rights/

[3] G. Appel, J. Neelbauer, and D. A. Schweidel,
“Generative AI Has an Intellectual Property Problem,”
Harvard Business Review, Apr. 7, 2023.

[4] J. Black, “5 Ways to Reduce GitHub Copilot Security
and Legal Risks,” FOSSA Blog, Oct. 2023.

https://www.fossa.com/blog/github-copilot-security-
and-legal-risks/

[5] Y. Fu et al., “Security Weaknesses of Copilot
Generated Code in GitHub,” arXiv preprint,
arXiv:2310.02059, Oct. 2023.

https://arxiv.org/abs/2310.02059

[6] S. Buchholz and B. Ammanath, “Quantum Computing
May Create Ethical Risks,” Deloitte Insights, March 2023.
https://www2.deloitte.com/insights/us/en/focus/tech-
trends/2023/quantum-computing-ethical-risks.html

[7] U.S. Copyright Office, “Policy Guidance on Works
Generated by Artificial Intelligence,” 2023.

https://www.copyright.gov/ai/ai-guidance.pdf

[8] T. L. Massie et al., “Code Reuse in Machine-Learned
Programming Tools,” ACM Trans. Softw. Eng., vol. 49,
no. 2, Apr. 2023.

https://dl.acm.org/doi/10.1145/3573123

[9] B. F. Mennen, “Software Licensing in the AI Era: What
LLMs Must Consider,” J. IP Law & Practice, vol. 18, 2023.
https://academic.oup.com/jiplp/article/18/1/1/703269
2

[10] A. Mitra and R. Sundaram, “Limitations of Training
LLMs on Public Repositories,” in Proc. AI Ethics Conf.,
2023.

https://www.aieconf.org/papers/2023/llm-training-
limitations/

[11] D. Krug et al., “License Mismatches in Code
Completion Models,” in Proc. ACM Conf. Fairness,
Accountability, and Transparency (FAccT), 2023.
https://dl.acm.org/doi/10.1145/3593013.3594059

[12] GitHub, “Copilot Filters and Indemnification Policy,”
GitHub Docs, 2023.

 https://docs.github.com/en/copilot/using-github-
copilot/copilot-safety-and-security

[13] ScanCode Toolkit, “License Detection for
Compliance,” OpenLogic, 2023. https://scancode-
toolkit.readthedocs.io/en/latest/license.html

[14] N. Killoran, “Benchmarking Quantum Optimization
Algorithms,” Quantum Research, 2022.

https://quantum-journal.org/papers/q-2022-07-25-
756/

[15] E. K. Das and L. Zhou, “Privacy Risks in Hybrid
Quantum Systems,” in Quantum DataConf, 2023.
https://quantumdataconf.org/2023/papers/privacy-
hybrid-systems/

[16] K. Binns, “Bias in Optimization Objectives: From
Classical to Quantum,” J. Algorithmic Ethics, vol. 5, 2023.
https://jaethics.org/articles/bias-quantum-
optimization-2023

[18] K. Bratus et al., “Code Provenance for Trustworthy
LLMs,” arXiv preprint, arXiv:2309.02191, 2023.
https://arxiv.org/abs/2309.02191

[19] Z. Ji, P. Ma, Z. Li, and S. Wang, “Benchmarking and
Explaining Large Language Model-Based Code
Generation: A Causality-Centric Approach,” arXiv
preprint, arXiv:2310.12903, Oct. 2023.

[20] R. Nathan and C. Bae, “Open Repositories for Ethical
Quantum AI Training,” Quantum Ethics J., vol. 1, 2023.
https://quantumethicsjournal.org/2023/open-data-ai/

[25] European Commission, “Transport and Anti-
Discrimination Logistics Guidelines,” Directorate-
General for Mobility and Transport, 2023.

 https://transport.ec.europa.eu/publications/transport-
anti-discrimination-guidelines-2023_en

[27] A. Klenk et al., “Value Sensitive Algorithm Design in

Quantum Systems,” Ethics in AI Journal, vol. 4, 2023.

https://ethicsinaijournal.org/articles/2023/quantum-

values/

https://www.logicalcube.com/github-copilot-ai-coding-assistant-ip-rights/
https://www.logicalcube.com/github-copilot-ai-coding-assistant-ip-rights/
https://arxiv.org/abs/2310.02059
https://docs.github.com/en/copilot/using-github-copilot/copilot-safety-and-security
https://docs.github.com/en/copilot/using-github-copilot/copilot-safety-and-security
https://scancode-toolkit.readthedocs.io/en/latest/license.html
https://scancode-toolkit.readthedocs.io/en/latest/license.html
https://arxiv.org/abs/2309.02191
https://transport.ec.europa.eu/publications/transport-anti-discrimination-guidelines-2023_en
https://transport.ec.europa.eu/publications/transport-anti-discrimination-guidelines-2023_en

