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Abstract: The convergence of large language models 
(LLMs) and quantum computing has the potential to 
revolutionize software development for quantum 
optimization tasks. AI-assisted code generation, 
powered by models like OpenAI Codex, can accelerate 
the design of quantum algorithms by automating 
routine coding tasks and democratizing access to 
quantum programming. However, this innovation 
introduces a web of ethical, legal, and technical 
challenges. This paper investigates the implications of 
using LLMs to generate quantum code, focusing on 
intellectual property (IP) concerns, the risk of 
unintended outcomes, legal ambiguity, and dual-use 
scenarios. We propose an ethical architecture for 
responsible AI-assisted development, incorporating 
human-in-the-loop systems, license-compliance 
mechanisms, and auditing tools. Case studies illustrate 
potential failures in code correctness, security, and 
attribution. We conclude with recommendations for 
explainable AI systems, curated datasets, and 
governance models that ensure innovation without 
sacrificing safety or compliance. By addressing these 
concerns proactively, the community can guide LLM-
powered quantum development toward a responsible 
future. 
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1. INTRODUCTION 

Large Language Models (LLMs) such as OpenAI’s Codex 
and Meta’s Code Llama are increasingly being integrated 
into software development pipelines. Tools like GitHub 
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Copilot demonstrate their potential as AI-powered 
assistants capable of writing code from natural-language 
prompts [1]. In the context of quantum computing—
particularly for optimization tasks like combinatorial 
problem solving—the potential impact of LLMs is 
profound. Quantum programming is notoriously 
complex, and a significant barrier to entry exists due to 
the specialized mathematical and algorithmic 
knowledge required [2]. By providing developers with 
generative assistance, LLMs can reduce this barrier, 
making quantum computing more accessible. 

This paper explores the complex intersection of LLM-
driven code generation and quantum computing. We 
address three key ethical challenges: (1) Intellectual 
property and licensing risks, (2) unintended 
consequences in high-stakes quantum applications, and 
(3) gaps in regulatory and legal frameworks. We 
augment the discussion with an expanded architecture 
for responsible LLM use in quantum development, 
illustrative examples, and recommendations for future 
research. 

II. Background 

A. LLMs for Code Generation 

LLMs are trained on massive corpora of public code, 
documentation, and developer discussions. Codex, for 
example, was trained on over 50 million public GitHub 
repositories [1]. These models excel at pattern 
recognition and sequence completion, making them 
suitable for tasks such as autocompletion, function 
generation, and even unit test creation [4]. Their 
adoption is accelerating, with companies reporting that 
LLMs contribute significantly to productivity, particularly 
in tasks involving boilerplate or API-specific coding. 

Yet, concerns remain about hallucinated code, insecure 
practices, and licensing violations. Studies in classical 
domains have shown that AI-generated code often 
inherits flawed patterns from its training data [5]. These 
risks are compounded in quantum domains, where 
accuracy and clarity are paramount. 

B. Quantum Optimization and Programming 
Complexity 

Quantum computing leverages principles like 
superposition and entanglement to process 
information. Optimization problems—especially those 
that are NP-hard—are ideal candidates for quantum 
speedups [6]. Algorithms like QAOA, Grover’s search, 
and quantum annealing are central to solving such 
problems. However, quantum programming requires 
domain knowledge not just of algorithms, but also of 
qubit topologies, decoherence limits, and device-
specific constraints [7]. 

Languages and frameworks such as Qiskit (IBM), Cirq 
(Google), and Pennylane (Xanadu) provide abstractions 
for programming quantum devices. Despite this, the 
learning curve remains steep. LLMs trained on quantum-
specific code could assist by generating initialization 
templates, cost Hamiltonians, or variational loops. 

However, quantum repositories are small compared to 
classical codebases, creating data sparsity. This 
increases the likelihood that an LLM will output 
memorized rather than generalized solutions, leading to 
potential copyright breaches and scientific 
reproducibility issues [8]. 

III. Ethical Challenges 

A. Intellectual Property and Licensing 

One of the most controversial aspects of AI-generated 
code is the ambiguity around intellectual property. Most 
LLMs are trained on permissively licensed code but also 
ingest GPL or AGPL-licensed material, which carry 
“copyleft” obligations [9]. If an LLM reproduces a GPL-
protected algorithm verbatim, it may force the user to 
license the entire project under GPL—a serious risk for 
proprietary firms. 

Legal precedents are still evolving. U.S. Copyright Office 
guidelines from 2023 reiterated that only human-
authored works are copyrightable [10]. Furthermore, 
courts have struggled with the idea of whether LLM 
outputs are derivative works, transformative fair use, or 
mere recombination. In one study, over 35% of AI-
generated code samples were found to match known 
open-source code snippets under restrictive licenses 
[11]. 

Quantum software frameworks like Qiskit are licensed 
under Apache 2.0, which is permissive. However, LLMs 
may have been trained on mixed-license examples from 
academic repositories or textbooks. Without 
transparent provenance, users have no way of knowing 
whether suggested code adheres to legal norms. 

Mitigation strategies include: 

• Enabling duplication filters in tools like Copilot 
[12] 

• Post-generation license scanning using tools like 
FOSSA or ScanCode [13] 

• Annotating AI-generated code sections to 
create audit trails 

• Adopting fine-tuned LLMs trained only on 
permissive datasets (e.g., MIT or Apache 
codebases) 

B. Unintended Consequences in Quantum Applications 
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1. Faulty Output and Hidden Errors 

Quantum algorithms are sensitive to parameters such as 
circuit depth, number of shots, and initialization. An AI 
assistant might return a valid QAOA implementation 
with poorly chosen parameters, leading to suboptimal 
results. For instance, a company using AI-generated 
code for logistics optimization could experience financial 
losses if the model misrepresents cost functions or 
graph topology. 

Unlike classical software, quantum algorithms are 
harder to test due to probabilistic outcomes and lack of 
oracles for many optimization problems [14]. Errors may 
go undetected unless rigorous simulations or cross-
validations are conducted. This amplifies the risks 
associated with code hallucination or inadequate 
context handling by LLMs. 

2. Security and Privacy Vulnerabilities 

Security concerns in quantum code may seem niche, but 
they become relevant when quantum-classical hybrid 
systems process sensitive data. Consider an AI 
suggesting logging internal quantum states for 
debugging purposes; such logs could inadvertently 
expose proprietary or personal data [15]. 

Quantum cryptography is another domain of concern. 
As LLMs gain access to implementations of Shor’s 
algorithm or quantum key distribution protocols, there 
is a risk of misuse. If an LLM-generated script is deployed 
in a real-world cryptographic context without rigorous 
vetting, it could break security assumptions. 

3. Bias and Ethical Fairness 

LLMs may suggest optimization strategies that reinforce 
algorithmic bias. For example, when generating code for 
staffing optimization using QAOA, the objective function 
may ignore fairness constraints unless explicitly stated. 
This could lead to inequitable outcomes (e.g., scheduling 
that disproportionately burdens specific demographic 
groups) [16]. 

As AI agents become more integrated into decision-
making, developers must bear responsibility for ethical 
alignment. Quantum code generation models, like their 
classical counterparts, must be paired with clear ethical 
guidelines and bias auditing mechanisms. 

4. Dual-Use and Weaponization 

The democratization of quantum code creation raises 
concerns about dual-use. Governments and ethical AI 
boards must weigh the trade-offs between accessibility 
and control. 

Developers and LLM providers should consider 
embedding filters that detect and flag queries with 
potential dual-use implications, such as requests for 
quantum cryptanalysis or large-scale simulation of 
sensitive processes. 

IV. Proposed Architecture for Ethical Quantum Code 
Generation 

As LLMs become integrated into quantum software 
engineering workflows, a well-structured architecture is 
essential to manage their power responsibly. We 
propose a modular, extensible architecture that ensures 
code generation is not only effective but also aligned 
with ethical, legal, and safety expectations. 

A. Overview 

 

Figure 1. Proposed Architecture for Ethical Quantum Code Generation. 
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This layered framework integrates human-in-the-loop 
collaboration, LLM-powered code synthesis, auditing 
mechanisms, and license-compliance checks to ensure 
legally and ethically responsible quantum software 
development. The architecture consists of seven 
interdependent layers, each designed to reinforce 
specific values such as transparency, compliance, 
explainability, and human accountability. The full stack 
comprises: 

1. Prompt Interface Layer 

2. LLM Model Execution Engine 

3. Output Validation and Static Analysis 

4. Ethical Filter and Policy Enforcement Module 

5. Audit Logging and Provenance Tracking System 

6. Human-in-the-Loop Review Workflow 

7. Quantum Backend Integration and Simulation 
Environment 

This system supports quantum software development in 
environments such as IDEs (VS Code, Jupyter) and CI/CD 
pipelines. 

B. Layer 1: Prompt Interface Layer 

This layer enables developers to interact with the LLM 
through structured or unstructured prompts. It accepts 
inputs such as: 

• Natural language queries (“Implement QAOA 
for Max-Cut”) 

• Code comments 

• Function signatures 

• Problem definitions (e.g., weighted graphs, 
Hamiltonians) 

Contextual extraction capabilities (e.g., parsing imports, 
surrounding lines, metadata) are crucial for 
disambiguation. Advanced versions may support 
prompt chaining, where follow-up queries refine output 
quality [1]. 

Ethical Design Feature: The interface warns developers 
if ambiguous or overly broad prompts may lead to 
hallucinated or unverifiable code. 

C. Layer 2: LLM Model Execution Engine 

At the core is the LLM code assistant, which can be a 
general-purpose model (e.g., Codex) or a domain-
specialized model fine-tuned on quantum repositories. 

Key submodules: 

• Quantum-aware routing: Detects when 
prompts require domain expertise and reroutes 
to specialized models trained on Qiskit, Cirq, etc. 

• Prompt-context fusion: Encodes file structure, 
function definitions, and prior prompts to 
provide continuity. 

• Checkpoint caching: Retains model state to 
allow multi-turn interactive completion without 
losing context. 

Ethical Design Feature: Embeds confidence scoring and 
uncertainty estimates in output metadata, alerting 
users to low-confidence completions [2]. 

D. Layer 3: Output Validation and Static Analysis 

All AI-generated code is passed through a 
comprehensive validation stage before being shown to 
the user. 

Modules include: 

• Quantum Static Analyzer: Checks for quantum 
circuit validity (e.g., initialized qubits, 
measurement usage, noise model 
compatibility). 

• Classical Linting & Formatting: Verifies syntax, 
PEP8 compliance, and classical logic 
consistency. 

• Security Analysis: Detects logging of sensitive 
quantum/classical states or insecure practices 
(e.g., default seeds, non-parameterized gates). 

• License Fingerprinting: Intellectual property 
concerns continue to escalate in the generative 
AI space, especially regarding code produced by 
LLMs trained on public repositories. These tools 
often generate content that mirrors existing 
software, raising complex ownership issues, 
particularly when the training data includes 
code under restrictive licenses [3]. 

Ethical Design Feature: Suggestions containing high 
structural similarity to GPL/AGPL repositories are 
flagged or suppressed to prevent license contamination 
[4]. 

E. Layer 4: Ethical Filter and Policy Enforcement 

This is the heart of the architecture’s ethical compliance 
logic. It operates on pre- and post-output conditions: 

Pre-Output Filters: 
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• Prompt Blocklist: Prevents generation in 
response to known high-risk queries (e.g., “write 
Shor’s algorithm to break RSA”). 

• Usage Context Check: Ensures usage within 
permitted domains (e.g., research vs. 
production). 

Post-Output Filters: 

• Dual-use Detector: Flags generated code likely 
applicable to sensitive areas like cryptanalysis or 
surveillance [5]. 

• Attribution and Disclosure Module: Appends 
disclaimers where suggestions are derived from 
public data (based on hash proximity 
thresholds). 

Policy Configurability: Allows organizations to enforce 
custom guardrails (e.g., “no AI generation for kernel 
modules” or “require human review for quantum 
circuits over 20 qubits”). 

F. Layer 5: Audit Logging and Provenance Tracking 

Compliance and explainability demand traceability. This 
layer ensures full lifecycle documentation for each 
generation event. 

Components: 

• Prompt & Output Archiving: Stores prompts, 
model version, and completions with 
timestamps. 

• Decision Logs: Records developer actions (e.g., 
accept, modify, reject output). 

• Source Attribution Ledger: Tracks potential 
code origins, license metadata, and similarity 
scores [6]. 

These logs support: 

• Internal audits 

• Regulatory compliance (e.g., GDPR “right to 
explanation”) 

• Reproducibility for research or legal discovery 

Ethical Design Feature: Enables auto-generation of 
Software Bill of Materials (SBOM) marking LLM-
generated sections with provenance annotations [7]. 

G. Layer 6: Human-in-the-Loop Review Workflow 

All outputs undergo review by human developers before 
integration. This is a mandatory checkpoint, not 
optional. 

Key features: 

• Side-by-Side Review Panel: Compares AI-
generated output with baseline alternatives or 
known implementations. 

• Feedback Capture: Developers can rate or flag 
output, building a repository of supervised 
feedback for model retraining. 

• Gatekeeping Controls: Review must be 
completed before deployment to staging or 
production environments. 

Ethical Design Feature: Requires reviewer to certify 
(checkbox or digital signature) that the suggestion 
meets company-specific ethical and legal standards. 

H. Layer 7: Quantum Backend Integration and 
Simulation Environment 

Final code is tested in a quantum execution 
environment, such as: 

• Qiskit Aer for circuit simulation 

• Google Cirq with Sycamore hardware backend 

• Hybrid quantum-classical loop evaluators (e.g., 
using classical post-processing with VQE/QAOA) 

Benchmark Suite: Includes standard combinatorial 
problems (Max-Cut, TSP, Portfolio Optimization) to test 
solution quality. Outputs are evaluated based on: 

• Solution accuracy 

• Resource efficiency (e.g., number of qubits, 
depth) 

• Scalability across hardware configurations 

Ethical Design Feature: Models must demonstrate 
quantum advantage justification—i.e., produce 
superior results compared to classical baselines—before 
deployment in real-world use cases [8]. 

I. Modular Deployment Options 

The architecture can be deployed: 

• As a standalone VS Code plugin 

• Within a company’s CI/CD pipeline (e.g., GitHub 
Actions) 

• As a cloud-based LLM service with APIs and 
audit export support 

Security-conscious deployments may isolate model 
access or integrate differential privacy measures. 

V. Case Study: AI-Generated QAOA for Vehicle Routing 
V. Case Study: AI-Generated QAOA for Vehicle Routing  

To illustrate the real-world implications of LLM-driven 
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quantum code generation, consider a detailed case 
study involving a logistics firm adopting quantum 
computing for delivery optimization. The company 
aimed to solve the Capacitated Vehicle Routing 
Problem (CVRP), a combinatorial optimization problem, 
using Quantum Approximate Optimization Algorithm 
(QAOA) via IBM's Qiskit framework. 

A. Scenario Overview 

The firm deployed an LLM-powered assistant trained on 
quantum programming repositories to accelerate 
solution development. The developer submitted the 
prompt: 

“Write a QAOA implementation in Qiskit to optimize 
vehicle routing over 20 cities with depot constraints.” 

The assistant generated a complete Python script, 
including: 

• Graph encoding of cities and routes using 
NetworkX 

• Cost Hamiltonian representing travel distances 
and vehicle capacities 

• Parametrized QAOA circuit with default p=1 
depth 

• Classical optimizer using COBYLA 

• Visualization code for route assignment 

At first, the model’s output appeared functionally 
correct and greatly reduced development time. 
However, subsequent reviews revealed multiple ethical 
and operational failures. 

B. Intellectual Property Violation 

A line-by-line audit using license compliance tools (e.g., 
FOSSology and ScanCode Toolkit [13]) revealed that the 
cost Hamiltonian function closely mirrored a GPL-
licensed academic implementation published in 2021. 
The original repository required derivative works to 
adopt the same license. Since the company was 
developing a proprietary solution, this introduced a legal 
risk of license contamination, threatening potential 
product commercialization. 

Despite the LLM not explicitly copying verbatim code, 
the structural similarity raised legal red flags. According 
to Krug et al., such “function-level cloning” is common in 
LLM-generated outputs when training on small datasets 
like quantum repositories [11]. 

C. Technical Flaws in Quantum Circuit 

The model-generated code used a shallow circuit depth 
(p=1), suitable only for small problem instances. When 

the problem was scaled to realistic logistics data with 
over 20 delivery nodes and 5 vehicles, solution quality 
degraded significantly. The output violated vehicle 
capacity constraints in 18% of cases, resulting in 
infeasible routing suggestions. 

The issue arose because the model was unaware of 
domain-specific hyperparameter tuning. Quantum 
optimization literature suggests that increasing QAOA 
depth (p ≥ 3) improves performance on dense graphs 
but also demands hardware calibration [14]. Without 
expert intervention, the AI failed to adjust circuit depth 
or optimizer settings for scale. 

D. Security and Privacy Oversights 

The AI-generated script included a debugging function 
that logged quantum register states and intermediate 
probabilities. However, these logs inadvertently 
exposed sensitive route patterns and delivery schedules. 
When tested against internal privacy assessment 
protocols, the logs violated the firm’s data retention and 
anonymization policies. 

Similar risks have been observed in hybrid quantum-
classical systems, where excessive logging can lead to 
information leakage about proprietary models or 
infrastructure [15]. 

E. Ethical Bias in Optimization Objectives 

The AI assistant constructed an objective function 
focused solely on minimizing total route distance. In 
reality, the logistics firm operated under fairness 
constraints, including: 

• Equal workload distribution across delivery 
agents 

• Priority delivery to underserved or rural regions 

• Time window constraints based on traffic flow 
patterns 

None of these constraints were captured by the AI-
generated Hamiltonian. The output thus biased results 
toward urban areas with dense connectivity. If 
deployed, this bias could have resulted in inequitable 
service, violating internal DEI (Diversity, Equity, and 
Inclusion) guidelines and potentially triggering 
regulatory scrutiny under national anti-discrimination 
logistics mandates [25]. 

As highlighted by Binns [16], LLMs inherently reflect 
biases in their training data and optimization logic unless 
fairness is explicitly encoded. 

F. Organizational Response and Mitigation 

Upon discovering the issues, the organization 
implemented a multi-pronged mitigation strategy: 
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1. IP Compliance: They used a license scanner to 
rewrite sections suspected of GPL 
contamination and replaced them with custom 
implementations under Apache 2.0. 

2. Human-in-the-Loop Auditing: All AI-generated 
quantum scripts were reviewed by an in-house 
quantum researcher before deployment. A 
formal checklist was added to verify quantum-
specific hyperparameters, fairness in 
optimization objectives, and alignment with 
business goals. 

3. Data Governance Enhancements: Debug logs 
were anonymized, and telemetry was disabled 
by default. The DevSecOps team integrated 
automated checks to flag excessive quantum 
circuit state dumps. 

4. Fairness Layer in Objective Function: A penalty 
function was added to the cost Hamiltonian to 
balance delivery loads and prioritize service to 
underserved areas. The AI assistant was 
retrained using a curated dataset with encoded 
fairness policies, as suggested by recent work on 
value-sensitive design [27]. 

5. Policy Revision: The company instituted internal 
guidelines that prohibited the direct 
deployment of unreviewed LLM-generated code 
in regulated domains (e.g., logistics, finance, 
healthcare). 

G. Lessons Learned 

This case study illustrates that LLMs offer significant 
productivity benefits, but only under robust human 
oversight and governance structures. It also 
demonstrates the necessity of integrating compliance 
verification, fairness modeling, and domain knowledge 
validation into the LLM-assisted quantum development 
lifecycle. 

The following actionable takeaways emerged: 

• Quantum code must always be tested with 
domain-specific benchmarks 

• Explainability and provenance tracking are 
essential for risk assessment 

• AI models should be trained with ethical 
constraints and domain-context examples 

• Organizations should institutionalize code 
review pipelines for LLM-generated suggestions 

VI. Future Research Directions 

A. Explainable Quantum AI 

Recent efforts to benchmark and explain LLM-based 
code generation emphasize the importance of causality-
aware evaluation methods to trace how specific 
prompts lead to particular outputs, enhancing 
transparency [19]. 

B. Curated Training Datasets 

Efforts should be made to build domain-specific, 
ethically sourced quantum datasets. Initiatives like the 
QMLCode repository or Quantum Algorithm Zoo can 
serve as training sets. Community contributions with 
permissive licenses (e.g., CC BY) should be encouraged 
[20]. 

C. Standards and Certification 

IEEE, ISO, and other bodies should develop certifications 
for AI-generated quantum code tools. Criteria may 
include: 

• Use of duplication filters 

• Audit logging capabilities 

• Compliance with data protection regulations 
(e.g., GDPR, HIPAA) 

An AI-generated quantum software certified as “Ethical 
Grade A” could gain trust among enterprises and 
regulators. 

D. Dual-Layer AI Systems 

Deploying two separate LLMs—one for generation and 
one for validation—could reduce risks. For example, 
Model A generates a QAOA implementation, while 
Model B evaluates logical consistency, license 
compatibility, and security vulnerabilities. This dual-
layer system mimics “code reviewer” dynamics and 
reinforces ethical rigor. 

E. Developer Training and Curriculum Integration 

Ethics modules for AI-augmented quantum 
programming should be embedded in university 
curricula. Open-source courses with simulation 
exercises (e.g., “spot the bug in AI-suggested code”) can 
train developers to work critically with LLMs. 

 

VII. CONCLUSION 

The fusion of LLMs and quantum computing offers 
remarkable possibilities but is fraught with ethical 
pitfalls. From IP violations to security vulnerabilities and 
fairness concerns, the implications of AI-generated 
quantum code demand robust safeguards. We have 
proposed a comprehensive framework to mitigate these 
risks and outlined a modular architecture for ethical 
code generation. 
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The path forward involves collaboration between 
quantum researchers, AI developers, ethicists, and 
regulators. As quantum computing matures, embedding 
responsible AI practices early will ensure that this 
powerful technology serves humanity safely and 
equitably. 
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