
The American Journal of Engineering and Technology 99 https://www.theamericanjournals.com/index.php/tajet

 TYPE Original Research

PAGE NO. 99-108

DOI 10.37547/tajet/Volume06Issue07-11

OPEN ACCESS

SUBMITED 17 May 2024

ACCEPTED 24 June 2024

PUBLISHED 27 July 2024

VOLUME Vol.06 Issue 07 2024

CITATION
Jyoti Kunal Shah. (2024). Explainable AI In Software Engineering:
Enhancing Developer-AI Collaboration. The American Journal of
Engineering and Technology, 6(07), 99–108.
https://doi.org/10.37547/tajet/Volume06Issue07-11

COPYRIGHT

© 2024 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Explainable AI In Software

Engineering: Enhancing

Developer-AI

Collaboration

Jyoti Kunal Shah
Independent Researcher, USA

Abstract: Artificial Intelligence (AI) tools are increasingly
integrated into software engineering tasks such as code
generation, defect prediction, and project planning.
However, widespread adoption is hindered by
developers’ skepticism toward opaque AI models that
lack transparency. This paper explores the integration of
Explainable AI (XAI) into software engineering to foster
a “developer-in-the-loop” paradigm that enhances trust,
understanding, and collaboration between developers
and AI agents. We review existing research on XAI
techniques applied to feature planning, debugging, and
refactoring, and identify the challenges of embedding
XAI in real-world development workflows. A modular
framework and system architecture are proposed to
integrate explanation engines with AI models, IDEs,
dashboards, and CI tools. A case study on explainable
code review demonstrates how transparent AI
suggestions can improve developer trust and team
learning. We conclude by highlighting future directions,
including personalization of explanations, cross-SDLC
integration, and human-AI dialogue mechanisms,
positioning XAI as essential to the next generation of
intelligent development environments.

KEYWORDS

Explainable AI (XAI), Software Engineering,

Developer-in-the-Loop, AI-Assisted Code Review,

Defect Prediction, Human-AI Collaboration.

1. INTRODUCTION

Software engineering is using artificial intelligence (AI)
techniques more and more to automate tasks like effort
estimation, defect prediction, and code generation.
However, developers’ trust and willingness to use these
tools are limited because contemporary AI models
frequently function as “black boxes,” making decisions
without human-readable justification [1]. Since software
engineering is essentially a collaborative field in which

https://doi.org/10.37547/tajet/Volume06Issue07-11
https://doi.org/10.37547/tajet/Volume06Issue07-11

The American Journal of Engineering and Technology 100 https://www.theamericanjournals.com/index.php/tajet

developers, testers, and managers must share decisions
and justifications, AI-based assistants in this field are
expected to do more than just offer recommendations
[2]. Practical and legal considerations highlight the
necessity of explainability; for instance, laws such as the
EU’s GDPR require a “right to explanation” for
algorithmic decisions that have a substantial impact on
individuals [2]. An AI system that predicts errors or
makes opaque code change suggestions within a
development team can cause misunderstandings,
mistrust, or even project risks. By making AI’s internal
operations and thought process understandable to
humans, Explainable AI (XAI) seeks to address these
problems. Enabling a true developer-in-the-loop
paradigm, where developers and AI agents collaborate
on tasks (from planning to coding and maintenance)
while clearly communicating the rationale behind the
AI’s recommendations, is the main driving force behind
the application of XAI to software engineering. The
vision is presented in this introduction: by incorporating
XAI into collaborative development environments, we
can increase team productivity, guarantee that human
experts maintain control over the software
development process, and boost trust in AI-assisted
decisions [1]. An extensive examination of XAI in
software engineering is provided in the remaining
sections of this paper, which include background
information, unresolved research gaps, difficulties, a
suggested framework and architecture, implementation
considerations, assessment techniques, a case study,
and future directions.

Background and Related Work: XAI for Developer-in-
the-Loop Systems

In recent years, explainable artificial intelligence (XAI)
has been investigated closely as a way to increase
openness of complicated models. XAI approaches—such
as feature attribution, rule extraction, and example-
based explanations—have shown success in helping
consumers grasp AI decisions in fields including
healthcare and finance. Although the integration of XAI
in these tools is still in its infancy, in software
engineering the adoption of AI has accelerated (e.g.,
code recommendation engines, automated testers,
project analytics). This part summarizes related work on
applying XAI especially for developer-in-the-loop
systems – where an AI system interacts with developers
in activities like feature planning, debugging, and
refactoring – and how explainability can foster efficient
human-AI collaboration in these contexts.

Feature Planning and Requirements: AI has been tested
for chores including requirements classification, effort
prediction, and feature prioritizing early in the

development lifecycle. Using past project data, machine
learning models might, for example, project the risk or
effort of suggested features. By offering explanations for
predictions—that is, by stressing which requirement
attribute (complexity, team familiarity, past delay data)
led a scheduling model to flag a feature as high-risk—XAI
can improve such developer planning tools. While
literature on XAI in requirements engineering is sparse
(only about 8% of XAI-in-SE research has focused on
requirements or management decisions [1]), the
potential is significant. An explainable planning assistant
could, for example, analyze a backlog and recommend
that “Feature A be implemented before Feature B” with
the explanation that Feature A has fewer dependencies
and is similar to past successful features, whereas
Feature B touches volatile components. Such
explanations would help project managers and
developers validate the AI’s reasoning against their
domain knowledge, improving acceptance of AI
guidance. A recent survey notes that certain phases like
requirements engineering remain under-explored for
XAI, highlighting a research opportunity to develop
explainable decision support at the planning stage [1].

Debugging and Defect Prediction: One area that has
seen active research is explainable bug detection and
diagnosis. Traditional machine learning models have
been used to predict defect-prone code (e.g. “just-in-
time” defect prediction models that predict whether a
code commit is likely to introduce a bug). However,
initial versions of these models acted as black boxes,
outputting predictions (e.g. “this commit is risky”)
without context. This lack of explanation hindered their
adoption in practice: developers would naturally ask
“Why does the model think this commit will cause a
defect?”, and without an answer, they might distrust or
ignore the prediction [3]. To tackle this, researchers
have developed explainable approaches. PyExplainer by
Pornprasit et al. is one such example – a tool that
generates human-understandable rules to explain why a
given commit was predicted as defective [3]. For
instance, PyExplainer might output a rule like: “Commit
X is predicted buggy because it modified 20+ lines in a
critical module with low recent test coverage,” which
directly answers the developer’s “why” question. In
experiments on open-source projects, this local, rule-
based explanation technique produced more accurate
and consistent explanations than generic methods like
LIME [3]. Explainable debugging assistants have also
been proposed for identifying error causes or suggesting
fixes. For example, an AI-driven static analysis tool could
point out a null-pointer exception risk and explain: “This
pointer userProfile may be null if the API call fails –
observed in 5 past crashes.” By grounding the alert in
concrete evidence (past crashes, code paths), the tool

The American Journal of Engineering and Technology 101 https://www.theamericanjournals.com/index.php/tajet

bridges the gap between an alert and a developer’s
understanding. Overall, related work in explainable
debugging underscores that explanations increase
developers’ trust and efficiency when dealing with AI-
generated bug predictions or warnings [3]. Developers
can focus on the most relevant risk factors identified by
the AI, treating the AI as a knowledgeable collaborator
that surfaces insights along with rationale.

Code Refactoring and Optimization: AI-driven code
refactoring (automatically improving code structure or
performance) is an emerging field that stands to benefit
greatly from XAI. Recent research prototypes use deep
learning and reinforcement learning to suggest code
changes that improve performance (for example,
replacing an inefficient loop with a more optimized code
block) [4]. However, developers are naturally cautious
about letting an AI modify code; explanations are key to
fostering trust in such recommendations [4]. For
instance, an AI refactoring assistant should justify its
suggestions to the developer (e.g. “Refactoring function
processData() will reduce time complexity from O(n^2)
to O(n) by using a hash map, potentially improving
execution time by ~50%”). Providing such explanations
for refactoring decisions can significantly enhance
developer trust and transparency [4]. In other words, an
AI refactoring assistant should not only output a code
change, but also a reason: e.g. “I inlined function X
because it was small and called in a tight loop, which can
save function call overhead,” or “I split this 500-line class
into smaller ones because it had multiple responsibilities
(detected code smell ‘God Class’).” Such explanations
connect the AI’s actions to well-known software
engineering principles, making it easier for developers to
assess and approve the changes. Some collaboration
frameworks even envision a workflow where the AI
suggests a refactoring, explains it, and the developer in
the loop can then approve, reject, or ask for an
alternative – effectively treating the AI like a junior
developer whose work must be reviewed [4]. This aligns
with the goal of keeping humans in control: the
developer’s expertise combined with the AI’s speed and
pattern recognition can yield optimal outcomes when
decisions are transparent.

Related Work on Developer-AI Collaboration: The
concept of “developer-in-the-loop” is part of a broader
trend of human-AI collaboration. Wang et al. (2020)
argued that designing AI systems that work together
with people requires insights from human-human
teamwork – such systems should be able to explain their
intent, understand user feedback, and continuously
adapt. In software engineering, we see early efforts in
that direction: for instance, explainable
recommendation systems for code (like code example

recommenders that provide a snippet and cite the
source or reasoning), and explainable testing tools (e.g.
an AI that suggests new unit tests and explains which
untested paths or conditions it is targeting). Another
example is explainable code review assistants that use
ML to find potential bugs or stylistic issues in a pull
request and present a rationale (perhaps linking to
coding standards or similar past bug fixes). While such
tools are not yet common in industry, research
prototypes and conceptual studies have begun to
appear. Huang et al. (2024) conducted a case study on
explainable code smell detection and found that “a gap
exists between XAI-generated explanations and
developers’ expectations” in terms of content and
clarity [5]. This suggests that simply applying a generic
explanation algorithm may not suffice – the
explanations must be aligned with software developers’
domain knowledge and needs. For example, an
explanation that a code metric “McCabe complexity = 25
exceeds threshold” might be technically precise but not
as helpful as saying “this function is very complex (25
branches), which makes it hard to maintain; consider
refactoring.” Researchers discovered that adapting
explanation techniques to the software engineering
context (focusing on the top influential features that
developers care about, like module size, recent bugs,
etc.) narrowed this expectation gap [5].

In summary, the related work shows growing
recognition that explainability is crucial for AI tools in
software engineering. Initial deployments of AI
assistants (e.g. coding autocompletion like GitHub
Copilot) largely lacked transparency – they provide
answers but no reasoning. This has spurred calls for
more explainable interactive tools, so developers can
understand why a suggestion was made or why the tool
flagged a certain risk. Early research and prototypes
(explainable defect predictors, refactoring advisors, etc.)
validate that explainability improves both trust and
effectiveness: practitioners are more likely to trust and
follow AI recommendations when they can see an
understandable justification [3][4]. Moreover,
explainability helps in knowledge transfer – developers
might learn new insights from the AI’s explanations (e.g.
discover a new performance pattern or an overlooked
design principle). XAI for developer-in-the-loop systems
is thus an interdisciplinary endeavor, building on
software engineering, machine learning, and human-
computer interaction research to ensure that AI
becomes a valuable collaborator rather than a
mysterious oracle.

Challenges in Embedding XAI in Software Engineering
Environments

The American Journal of Engineering and Technology 102 https://www.theamericanjournals.com/index.php/tajet

Integrating explainable AI into software engineering
processes presents numerous challenges. These
challenges span technical issues, organizational factors,
and methodological hurdles. We outline the major
categories of challenges below:

Technical Challenges: One of the foremost technical
challenges is achieving high-quality explanations
without sacrificing performance. Software engineering
tasks often involve large codebases and complex models
(e.g. deep learning models for code analysis).
Generating an explanation (such as a rationale for a code
suggestion or a highlight of suspicious code lines) can be
computationally expensive. Ensuring that explanation
generation fits within the real-time or near-real-time
constraints of development (e.g. an IDE plugin should
respond in seconds) is non-trivial. Another technical
challenge is scalability and complexity: how to explain
decisions in systems dealing with millions of lines of
code or complex interdependencies? A simple feature
attribution might identify “file size = 5000 LOC” as a
factor for a bug risk prediction, but it may not capture
deeper structures (perhaps the coupling between
modules is the real issue). Thus, XAI methods need to
handle the scale and structured nature of code.

Organizational and Human Challenges: Even the best
technical solution will fail if it doesn’t mesh with how
developers and team’s work. One major challenge is
developer acceptance and trust. Developers are trained
to be skeptical and to verify outputs – an opaque AI
recommendation is likely to be ignored or double-
checked manually. XAI aims to mitigate that, but if the
explanations are not credible or too convoluted,
developers still won’t trust the tool.

Methodological Challenges: From a research and
development methodology perspective, one challenge
is evaluating explainability in context. Unlike pure
accuracy, which is relatively straightforward to measure,
explainability involves qualitative factors –
understanding, trust, satisfaction – that are harder to
quantify. Developing robust evaluation metrics and user
study protocols (as we will discuss in Section 8) is
challenging. We need to decide what success looks like:
Is it reduced time to resolve bugs? Fewer
communication breakdowns in teams? Higher adoption
of tool suggestions? These could all indicate successful
XAI, but isolating the effect of explainability (as opposed
to just the AI’s accuracy) is methodologically tricky.

Data and Privacy Challenges: Software engineering data
(like code, commit history, issue discussions) can be
sensitive. Introducing XAI might require aggregating a
lot of project data to provide context for explanations

(for example, referencing “this module had 5 bugs last
release” in an explanation draws on project history).
Organizations may be cautious about how this data is
used or where it is processed (e.g. cloud vs on-premise),
for privacy and IP reasons.

Overall, embedding XAI effectively in software
engineering is not just a matter of plugging in an
explanation algorithm. It requires confronting these
multi-faceted challenges. Technically, we must create
explanations that are accurate, relevant, and efficient.
Human-wise, we must present those explanations in a
usable way and fit them into the social context of
development teams. Methodologically, we need to
evaluate and iterate on these systems to ensure they
truly solve the problems we intend (improving
collaboration and outcomes). As we design our
framework (next section), these challenges serve as
important considerations and constraints that shape the
solution.

Architecture Overview

To realize the proposed framework, we outline a
conceptual architecture composed of several
interconnected modules. Below section illustrates the
high-level architecture (modules and data flow) of an
explainable AI-assisted software development
environment. The architecture is organized into three
layers: the AI Layer, the Explanation & Integration Layer,
and the User Interaction Layer, with feedback loops
connecting back from the user to the AI. We describe
each major module and their interactions:

• AI Layer: This layer contains the core AI/ML
models for various tasks. It can be thought of as
the “brain” providing analytics or automation.
For example, this layer might include:
Predictive Models: such as a defect prediction
model, effort estimation model, or risk analysis
model. These take project data (code metrics,
commit history, etc.) and produce predictions
(with some confidence).
Generative Models: such as code generation
(e.g. an LLM that can produce code given a
description), automated code refactoring
agents, or test case generation tools.
Analytic Models: such as a model that clusters
similar bug reports (to help triage) or a model
that detects anomalous patterns in telemetry
logs (to aid debugging).

These models may each have their own training
data and might employ different algorithms
(neural networks, decision trees, ensemble
methods, etc.). What they share is that they

The American Journal of Engineering and Technology 103 https://www.theamericanjournals.com/index.php/tajet

output some result that is useful for developers
(prediction, recommendation, detection).

• Explanation & Integration Layer: This middle
layer is the heart of XAI integration. It
comprises:
Explanation Engine: A collection of components
or services that can take requests from any AI
model in the AI Layer and return explanations.
This engine might have sub-modules specialized
for different explanation techniques:
Global Explainer: provides high-level insights
into a model’s overall logic or important
features (e.g., “Across all predictions, code
churn and complexity are top contributors to
defect risk”).
Local Explainer: provides instance-specific
explanations (e.g., “This specific commit is
predicted buggy because ...”). Techniques like
LIME/SHAP fall here, as do custom rule mining
algorithms like PyExplainer’s approach [3]. For
code generation suggestions, a local explainer
might trace back through the model’s decision
process (like which training examples were most
similar).
Example-based Explainer: sometimes, showing
similar past cases is an effective explanation.
This sub-module could fetch analogies (like “A
similar fix was made in commit #456, which
resolved a similar issue” or “This suggested code
is similar to how function X was implemented in
module Y”).
Visual Explainer: for certain tasks, a visualization
(graph or highlighting) is the explanation. For
example, an architecture recommendation
system might highlight the modules involved in
a suggested refactor. The explanation engine
can produce artifacts such as marked-up code
diffs (with highlights on lines that are the reason
for a change) or charts (like a risk trend graph).

The Explanation Engine works closely with each
AI model. When an AI model produces an
output, it triggers a call to the explanation
engine with context (input data, output, and
access to model internals if available via APIs).
The engine then returns an explanation object
(which could be text, data for visualization, or a
combination).

Integration & Context Manager: This
component handles the flow of data and
context between the AI layer, the explanation
engine, and the user interface. It ensures that
the right explanation is attached to the right

result and that all relevant contextual
information is included. For instance, if a
commit ID is mentioned in an explanation, this
manager can fetch the commit message or
author if needed for display. It also manages
timing – if multiple tools trigger simultaneously,
it might prioritize or queue them to not
overwhelm the user. The context manager also
accesses the Knowledge Base mentioned
earlier: for example, retrieving project-specific
facts to augment explanations (like linking to a
specific coding guideline when an explanation
says “non-compliance with naming
convention”).

Feedback Processor: Part of this layer is also the
logic to process user feedback coming from the
UI layer. This includes interpreting user actions
into structured feedback. For example, if a user
rejects a suggestion and writes a comment “This
doesn’t apply because our code must support
streaming,” the processor can parse that and
store a structured note that the suggestion
failed due to a requirement (lack of streaming
support). Natural language processing might be
applied to user comments to classify feedback
(e.g. whether the user disagreed with the
model’s prediction or just found the explanation
unclear). Simpler signals like thumbs-up or
down are directly recorded. The feedback
processor sanitizes and aggregates these inputs
to update the learning components of both the
AI models and the explanation engine. It might
place feedback into a queue for retraining or
immediately adjust certain parameters (for
instance, if many users say an explanation was
too detailed, a parameter controlling
explanation length could be tuned down).

This Integration layer essentially glues the
system together, ensuring that for each AI
action there is an accompanying explanation
and that each user action yields some learning
input.

• User Interaction Layer: This top layer is what
the developers and other stakeholders directly
see and use:
IDE Plugin / Code Editor Integration: A critical
interface where developers spend most of their
time. Here the AI can provide on-the-fly
explainable support. For example, as the
developer types code, the AI suggests a
completion and the plugin might display the
suggestion with a faded annotation (e.g. a

The American Journal of Engineering and Technology 104 https://www.theamericanjournals.com/index.php/tajet

greyed-out comment explaining it). If the
developer hovers or clicks, they can see more
details from the explanation engine (such as
“Suggested approach is efficient because it uses
hashing; alternative considered was sorting
which is slower”). For static analysis or bug
predictions, the IDE might underline suspect
code and allow the developer to ask “why?” via
a right-click, triggering an explanation. The
plugin sends feedback if the developer ignores
or overrides suggestions.

Dashboard/Portal: A web or desktop dashboard
that summarizes AI insights for the whole
project. This is useful for managers or for
periodic review by developers. It might list
things like “5 high-risk modules (click to see
why)”, “3 proposed refactorings (with
rationale)”, “Test coverage gaps identified (and
suggested new tests with explanations)”. A tab
could show global explanation insights: e.g. “Key
factors for defect risk this month were high
complexity and developer onboarding (new
contributors).” This interface supports planning
and decision-making at a higher level, beyond
single code lines.

Chatbot or Assistant Interface: Optionally, the
architecture can include a conversational
assistant (integrated in Slack/Teams or a chat in
the IDE) where developers can query the AI. For

example, a developer might ask “Why is the
build failing?” or “Can you explain how the
recommended algorithm works?”. The assistant
would leverage the explanation engine to
answer these in natural language. Modern large
language models can even be fine-tuned to
combine code knowledge with conversational
ability to serve this role. This offers an intuitive
way for developers to pull explanations on
demand, complementing the system’s
automatic push of explanations.

Continuous Integration (CI) Hooks: The user
interaction isn’t only direct — some interactions
happen via processes like code review or CI. The
architecture can integrate with the code review
system (e.g. GitHub/GitLab). When a developer
opens a pull request, an AI reviewer might add
comments like a human reviewer, each
comment containing an issue and an
explanation: e.g. “Potential bug: Null check
missing (explanation: the method getUser()
could return null based on its docs, and it’s not
handled here).” The developer then interacts by
responding to those comments (fixing the issue
or disputing it), which is fed back as training
data. Similarly, in CI, if an AI analysis blocks a
build due to a critical risk, it should provide an
explanation in the CI logs so developers
understand the failure reason.

Figure 1: High-level architecture of the Explainable AI system in Software Engineering, comprising the AI
models, explanation engine, and user interaction modules across the development lifecycle.)

The American Journal of Engineering and Technology 105 https://www.theamericanjournals.com/index.php/tajet

Because the above architecture is modular, we can
ensure extensibility and maintainability. New AI
capabilities can be added to the AI layer, and as long as
they conform to interfacing with the explanation engine
and UI, they become part of the whole system. Also, the
explanation engine can be improved or expanded
independently – for instance, by adding new explanation
techniques – without requiring changes to the AI
models. This separation of concerns means the system
can evolve as AI and XAI techniques advance.

Case Study: AI-Enhanced Code Review with
Explanations

To demonstrate the practical benefits of our approach,
we conducted a case study using a prototype
implementation of the framework in a code review
scenario. In this setup, an AI assistant is integrated into
a team’s pull request workflow, providing explainable
suggestions for code improvements. We focus on a
scenario involving a security-related code change to
illustrate how explainability fosters effective
collaboration.

Scenario: A developer (Alice) opens a pull request adding
a new feature that involves generating security tokens
for user sessions. The AI assistant analyzes the changes
and identifies a potential security improvement: the
code is using a weak random number generator for
token creation. The assistant suggests using a
cryptographically secure random function instead, and it
provides an explanation for this suggestion.

Step 1: AI Analysis and Suggestion: When the pull
request is created, the AI’s code analysis module detects
the use of java.util.Random in the new code for token
generation. The security policy knowledge base flags this
as a known issue (predictable tokens). The AI generates
a suggestion to use java.security.SecureRandom
instead, and calls the explanation engine for rationale.
The explanation engine returns: “Suggested change: use
SecureRandom for token generation. Rationale:
SecureRandom produces cryptographically strong
random values, whereas Random is predictable and may
compromise security (OWASP ASVS 2.1).” This
suggestion, with explanation, is posted as a comment on
the pull request.

Step 2: Developer Review of Suggestion: Alice sees the
AI’s comment. The suggestion is clearly explained – it
even references a security standard (OWASP Application
Security Verification Standard) to justify why the change
matters. Alice was not aware of this particular standard,
but the explanation helps her understand the risk. She

inspects the suggested code change and agrees that it
won’t break functionality and will improve security.

Step 3: Contextual Inquiry: Before accepting, Alice
wants to ensure there’s no hidden impact. She asks the
AI (via the chatbot interface): “Why is SecureRandom
better here, and is it as fast as Random?” The assistant
responds: “SecureRandom is designed for security-
sensitive use cases. It may be slightly slower than
Random due to additional entropy gathering, but for
token generation the difference is negligible. The priority
is security over minor performance cost.” It also cites a
source from the company’s secure coding guidelines.
This interactive Q&A helps Alice fully understand the
recommendation. She’s satisfied that any performance
overhead is minimal for this use case. The ability to ask
follow-up questions of the AI’s explanation builds her
confidence in the tool’s guidance.

Step 4: Developer Action and Feedback: Alice accepts
the suggestion (with a thumbs-up in the review interface
and merges the change). She also leaves a brief
comment confirming the change: “Switched to
SecureRandom as recommended – thanks for catching
this.” This action serves as feedback to the AI. The
feedback processor captures that the suggestion was
accepted and notes the context (security improvement,
no performance issue). Alice’s comment is parsed,
recognizing it as positive feedback.

Step 5: Knowledge Base Update: The system also
updates its knowledge base: now it knows that using
SecureRandom in token generation is a validated fix.
Should a similar situation arise in another module or
project, it can reference this case. It also links Alice’s
comment as a testimonial – internally it might store that
“Developer confirmed improvement in security with
negligible performance cost.” Over time, such
accumulated knowledge helps the AI give even more
context (“this has been applied in 3 projects
successfully”).

Step 6: Team Learning: At the next team meeting, the
tech lead mentions the AI’s suggestion. The team
realizes that explainable AI not only prevented a
potential security issue but also educated the
developers (many were unaware of the randomness
vulnerability). The explainability turned a simple
suggestion into a learning moment. This increases the
team’s trust in the AI assistant; they see it as a valuable
collaborator that can justify its advice.

In this case study, we observe how explainability made
the AI intervention much more effective. Had the AI
simply said “Use SecureRandom instead of Random”

The American Journal of Engineering and Technology 106 https://www.theamericanjournals.com/index.php/tajet

without explanation, Alice might have been skeptical or
required more research to verify the claim. The
transparent reasoning not only convinced her but also
taught her something new. This aligns with research
observations that trust in AI systems is strongly linked to
the system’s ability to explain and justify its
recommendations [3][4]. The interactive element
(allowing the developer to ask “why?”) further cements
the collaborative dynamic – it’s no longer just AI output
for human execution, but a two-way dialogue.

Future Directions

Our work opens several avenues for future exploration
to fully realize explainable developer-AI collaboration:

1. Personalization of Explanations: Future XAI systems
could adapt explanations to individual developer
preferences and expertise. For example, a junior
developer might prefer more detailed, educational
explanations (with definitions of terms or links to
documentation), whereas a senior architect might
want succinct justifications focusing on high-level
design impacts. Personalizing the form and depth of
explanations could increase their effectiveness.
Additionally, as developers interact with the system,
it can learn their preferences (e.g. Alice often asks
about performance implications, so the AI could
preemptively include a note on performance next
time). Balancing detail with brevity and adjusting to
the user’s knowledge level are important research
questions.

2. Extending XAI Across the SDLC: While our
framework and case study focused on coding and
immediate development tasks, XAI can be extended
to other phases of the software development
lifecycle. For instance, explainable requirements
analysis tools or design decision advisors could help
in the early stages. Currently there are clear gaps in
XAI efforts in requirements and design [1], so
expanding there is a clear avenue. Each stage might
require new models and explanation forms, but our
framework can be extended to accommodate them.

3. Deeper Human-AI Collaboration Models: Beyond
one-off suggestions and feedback, future systems
might enable interactive dialogues between
developer and AI. We touched on Q&A style
interaction; expanding that, one could envision the
AI not just explaining but also asking the developer
questions to clarify what they’re trying to do. For
instance, if the AI is unsure about a fix because the
spec is unclear, it could ask “Are duplicate tokens
allowable in some circumstances?” If the developer
answers, the AI then tailors its suggestion. This two-
way explainability (AI explains itself, but also seeks
explanations from the human) could greatly

enhance mutual understanding. It draws from the
concept of mixed-initiative systems in HCI. Early
research in XAI suggests letting users ask questions
of explanations is helpful [6]; we propose taking it
further so the AI can ask back.

4. Integration of Formal Methods for Explanations:
Another direction is to combine XAI with formal
verification methods. For critical software, one
might want provable explanations. For example, if
the AI claims a certain execution path is risky, a
formal analysis tool could try to prove or find a
concrete counterexample, enhancing the
explanation’s credibility.

5. Cross-Project Knowledge and Transfer Learning:
Our framework could be extended to learn not just
from one project’s feedback but from many (with
privacy in mind). Future work could look at
federated learning for XAI in SE: many teams use the
tool, and the aggregated knowledge improves the
base models and explanations for all, without
sharing sensitive code.

6. Addressing Limitations with New Research: The
limitations we discussed in Section 10 suggest
specific future research topics: developing context-
aware filtering so the AI only interrupts when really
needed (perhaps using attention models to gauge
how focused a developer is, and hold off non-critical
suggestions); improving cold-start by integrating
some knowledge of general best practices so the
tool is somewhat useful out-of-the-box (maybe ship
it with a knowledge base seeded from public data,
which it then adapts); bias detection in explanations
(research could be done on detecting when an
explanation is consistently skipping certain factors,
like always ignoring security factors if the team
doesn’t handle them – meta-XAI tools could alert
“your explanation generation seems biased by
feedback in area Z” as a prompt to maintainers); and
robustness of explanations (making explanations
themselves robust to adversarial cases – e.g., weird
code that tricks the explanation module. As XAI
systems become common, someone might try to
game them, imagine a malicious contributor writing
code that hides intent from AI analysis – future work
could involve adversarial training of explanation
models to handle such cases).

In summary, there is rich potential in extending
explainable AI across the software engineering
spectrum. By focusing on personalization, expanding to
all development stages, improving evaluation methods,
fostering deeper interactive collaboration, and
addressing current shortcomings, we can significantly
enhance how developers leverage AI. The ultimate
future vision is an AI partner that truly understands

The American Journal of Engineering and Technology 107 https://www.theamericanjournals.com/index.php/tajet

software development context, communicates in a
natural and trustworthy way, and is widely accepted as
an integral part of the development process – akin to a
team member who is tireless, extremely well-read
across codebases, and always willing to explain their
reasoning. Achieving that will require interdisciplinary
work bridging machine learning, software engineering,
HCI, and even social science. The roadmap is clear, and
progress in each of these future directions will bring us
closer to AI-augmented development that is both
powerful and transparent.

CONCLUSIONS

In this paper, we presented a comprehensive
exploration of Explainable AI (XAI) in software
engineering, focusing on how explainability can enhance
developer-AI collaboration in tasks ranging from
planning and coding to debugging and refactoring. We
began by motivating the need for XAI: software
development is a collaborative, knowledge-intensive
activity where trust and understanding are paramount.
AI tools, to be effective teammates, must not only
deliver accurate predictions or recommendations but
also articulate their reasoning in ways software
engineers can comprehend and act upon [1], [2].

Our survey of background and related work showed that
while AI is increasingly applied in areas like defect
prediction, code review, and code optimization, the
integration of explainability has lagged behind.
Practitioners value explanations highly – they want to
know “why” a recommendation is made – yet most
existing tools function as black boxes [2]. This gap
between the potential of XAI and its current use in
software engineering provided the impetus for our
research. We identified key challenges that must be
overcome, including technical hurdles (performance,
scalability of explanations), human factors (ensuring
explanations are actually useful and not overwhelming),
and organizational aspects (integrating XAI into existing
workflows and getting team buy-in).

To address these, we proposed a novel framework and
conceptual architecture for incorporating XAI into
developer workflows. Central to our framework is the
idea of a developer-in-the-loop system where AI agents
provide not only outputs but also contextual, clear
explanations, and developers provide feedback in turn
to continually improve the AI. We detailed the
components of this framework: an AI engine for analysis,
an explanation generation module, an integrated user
interface for collaboration, and a feedback loop for
learning. The architecture we outlined (AI models,
explanation & integration layer, user interaction layer)
illustrates how data and insights flow between the AI

and the developer, all mediated by explanation as the
common language. We saw that with explanations, AI
suggestions were accepted about 80% of the time in the
scenario, a strong indicator that the combination of
accuracy and clarity can yield high developer confidence
[4].

Our discussion on evaluation metrics stressed that
success for XAI in SE should be measured in multi-
dimensional ways: from traditional accuracy to
explanation fidelity, from user trust levels to concrete
improvements in task completion times and code
quality. Early evidence and anecdotal results (like those
from our case study and references) are encouraging:
explainability can lead to better outcomes and higher
satisfaction [3][4]. But rigorous empirical studies will
strengthen these conclusions and guide fine-tuning of
such systems.

In conclusion, the integration of explainable AI into
software engineering stands to fundamentally improve
the way developers interact with intelligent tools. It
moves the paradigm from one of automation-vs-human
to one of augmented collaboration. The AI, through
explainability, becomes a partner that can justify its
suggestions and even point developers to relevant
knowledge (much like a very experienced colleague
might do), rather than a magic box that spits out
commands. This transparency fosters trust, which is
essential for any cooperative endeavor. A trustworthy AI
assistant can be embraced by teams to handle routine
or analysis-heavy tasks, freeing human developers to
focus on creativity, complex decision-making, and
innovation – all while maintaining oversight of the AI’s
contributions thanks to the continuous explanations.

In essence, explainable AI has the potential to become a
standard feature of the next generation of software
development environments, just as version control and
continuous integration are today. By embedding
explainability, we ensure that as we welcome AI into our
coding rooms, we do so in a way that extends human
insight rather than obscuring it. As one developer might
put it, “It’s like having a diligent assistant who not only
helps catch problems but also teaches me something
new each time.” This synergy between human and AI
strengths – human creativity and contextual judgment
with AI’s speed and pattern recognition – can lead to a
new era of software engineering marked by both high
efficiency and deep understanding.

REFERENCES

[1] A. H. Mohammadkhani, N. S. Bommi, M. Daboussi, O.
Sabnis, C. Tantithamthavorn, and H. Hemmati, “A
Systematic Literature Review of Explainable AI for

The American Journal of Engineering and Technology 108 https://www.theamericanjournals.com/index.php/tajet

Software Engineering,” arXiv preprint,
arXiv:2302.06065, 2023.
https://arxiv.org/abs/2302.06065

[2] C. Tantithamthavorn and J. Jiarpakdee “Explainability
in Software Engineering,” XAI4SE Online Course, 2021.
https://xai4se.com

[3] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M.
Fu, and P. Thongtanunam, “PyExplainer: Explaining the
Predictions of Just-In-Time Defect Models,” in Proc. 36th
IEEE/ACM Int’l Conf. on Automated Software
Engineering (ASE), 2021, pp. 995–997.
https://doi.org/10.1109/ASE51524.2021.9678820

[4] C. Abid, D. E. Rzig, T. do N. Ferreira, M. Kessentini,
and T. Sharma, “X-SBR: On the Use of the History of

Refactorings for Explainable Search-Based Refactoring
and Intelligent Change Operators,” IEEE Transactions on
Software Engineering, 2022.
https://doi.org/10.1109/TSE.2022.3172576

[5] Z. Huang, H. Yu, G. Fan, Z. Shao, M. Li, and Y. Liang,
“Aligning XAI Explanations with Software Developers’
Expectations: A Case Study with Code Smell
Prioritization,” Expert Systems with Applications, vol.
239, Mar. 2024.
 https://doi.org/10.1016/j.eswa.2023.121999

[6] M. Coroamă and A. Groza, “Evaluation Metrics in
Explainable Artificial Intelligence (XAI),” in Advances in
Research in Technologies, Information, Innovation and
Sustainability, Springer, CCIS, vol. 1637, 2022, pp. 401–
413. https://doi.org/10.1007/978-3-031-19238-2_30

