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Abstract: The article examines the problem of ensuring 

end-to-end data consistency in distributed multi-stage 

event processing pipelines, which are actively used in 

modern real-time systems. The relevance of the study is 

determined by the rapid growth of streaming analytics 

needs and the widespread use of Apache Kafka, making 

message latency, duplication, and disorder critical 

factors for industries ranging from fintech to IoT. The 

goal of this work is to propose a formal model that 

unifies an extended event representation and a set of 

invariants that guarantee correct processing even in the 

presence of component failures. The novelty of the 

approach lies in the formalization of an event as a tuple 

⟨id, tsₛᵣ𝚌, p, v, σ⟩, where id is responsible for 

deduplication, tsₛᵣ𝚌 records the time of occurrence, p 

specifies the partition, v is the payload, and σ is the 

schema version, which enables ordering recovery and 

supports format evolution. The pipeline is modeled as a 

directed acyclic graph (DAG) of operators having the 

properties of determinism, idempotence, and 

monotonicity. CRDT aggregates are used for 

convergence in duplication; SLA alerts from watermark 

mechanisms are used to minimize data loss. The main 

findings indicate that, under specified conditions, the 

system can tolerate delays, failures, and redeliveries 

without compromising consistency. Extended events 

and formal operators enable state recovery; stream 

semantics are ensured by four invariants. This research 

is particularly relevant for professionals designing and 

operating real-time event-driven systems, stream 

processing applications, microservices architectures, 

and high-integrity data integration pipelines. 
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INTRODUCTION 

Over the past five years, the volume of data requiring 

sub-second processing latency has increased by orders 

of magnitude. The streaming analytics market, 

according to Markets & Markets, is projected to grow 

from USD 29.53 billion in 2024 to USD 125.85 billion by 

2029, corresponding to a compound annual growth rate 

of 33.6 % [1]. The infrastructural foundation of this 

growth has become event platforms, primarily Apache 

Kafka, which is used by more than 80% of Fortune 100 

companies [2]. Such a scale of adoption means that for 

many industries—from fintech to IoT networks—

continuous stream processing has become not an 

auxiliary but a critically important function. 

The industry’s pragmatic response has manifested in the 

increasing complexity of pipelines themselves: the same 

event now traverses the chain ingestion → enrichment 

→ filtering → aggregation → storage, with each stage 

served by isolated microservices or dedicated 

frameworks. The practical cost of an error grows 

exponentially: a failure at any stage immediately 

impacts e-commerce recommendations, risk 

calculations in banking, or vehicle telemetry monitoring. 

However, the asynchronous nature of distributed 

systems raises questions about the concept of end-to-

end integrity. Between nodes, delays, duplications, and 

reordering of messages are possible. Operators 

aggregate data with only partial knowledge of the global 

time, and individual services may temporarily drop out 

of the network. In such conditions, the pipeline 

developer is forced to balance speed, availability, and 

correctness, with the compromise often becoming 

implicit: the loss of a single event can lead to an incorrect 

dependency graph, while redelivery can lead to inflated 

metrics or inaccurate accounting. 

Existing theoretical frameworks do not close this gap. 

ACID transactions guarantee atomicity only within a 

single store and do not describe streams where data 

changes on the fly. The CAP theorem formulates the 

boundaries of replication but operates on static objects 

rather than transformational stages. Lambda and Kappa 

architectures provide organizational schemes for 

combining batch and streaming processing; however, 

they delegate the consistency problem to the level of 

individual operators and do not offer formal invariants 

that cover the entire multi-stage event journey. As a 

result, engineers are forced to invent local solutions—

from custom idempotent keys to complex replay 

protocols—without a single overarching model capable 

of guaranteeing predictable pipeline behavior even in 

the presence of failures and schema evolution. 

MATERIALS AND METHODOLOGY 

The study of data consistency in distributed multi-stage 

event processing pipelines relies on the analysis of 13 

sources: industry reports from Markets & Markets [1], 

Apache Kafka documentation [2, 4], scientific 

publications on logical and vector clocks [6, 7], Confluent 

materials on the Avro/Protobuf registry [9, 10], research 

on stream watermarks in Flink [8], CRDT approaches to 

aggregation [12], and Saga pattern rollback patterns in 

microservices [13]. 

The theoretical basis was formed by formalizing an 

event as a tuple ⟨id, tsₛᵣ𝚌, p, v, σ⟩, where id provides 

deduplication, tsₛᵣ𝚌 specifies the time of occurrence, p 

defines the partition, v contains the payload, and σ 

represents the schema version. This representation 

enables the recovery of the original order and accounts 

for format evolution [4, 9]. 

Methodologically, the work combines: (1) a comparative 

analysis of ordering within partitions (idempotent 

producer and sequence-id) and causal ordering across 

partitions (Lamport logical clocks and vector clocks) [5, 

6, 7]; (2) a systematic review of schema compatibility 

verification practices (BACKWARD, FORWARD, FULL 

modes) with automatic blocking of incompatible 

changes in CI/CD [9, 10]; (3) the study of the atomicity 

mechanism of checkpoints via barrier messages, 

ensuring Exactly-Once Semantics and a hybrid 2PC + 

Saga scheme for global commit or rollback [4, 11, 13]; (4) 

analysis of CRDT-based aggregate processing, 

guaranteeing state convergence during replay and event 

duplication [12]; (5) evaluation of the impact of 

watermarks on data loss (up to 33%) and the 

implementation of SLA alerts for timely watermark 

advancement [8]. 

RESULTS AND DISCUSSION 
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The formal foundation of the proposed model begins 

with the definition of a unified representation of an 

event as the tuple ⟨id, tsₛᵣ𝚌, p, v, σ⟩. The unique 

identifier, id, ensures deduplication; the source 

timestamp, tsₛᵣ𝚌, records the moment of occurrence; 

the partition key, p, determines the partition in the 

message log; the payload, v, contains business data; and 

σ indicates the schema version. Such an extended event 

carries sufficient context to reconstruct both the original 

order and the transformations applied to it at any stage 

during pipeline replay. 

The stages themselves form a directed acyclic graph G = 

(S, E), where S is a finite set of operators and E is the set 

of delivery channels. Each vertex is described by a 

function fₛ: E* → E*, which accepts a multiset of input 

events and produces a multiset of outputs. For 

reliability, fₛ must remain deterministic: identical inputs 

always produce identical outputs upon any repeated 

execution. The second required characteristic is 

idempotence, meaning that repeated application of the 

operator to the same event does not change the result: 

fₛ(fₛ(e)) = fₛ(e). Finally, monotonicity is formulated as the 

inclusion fₛ(A) ⊆ fₛ(B) for any A ⊆ B; this property 

guarantees that partial results can be safely extended 

without a global rollback. 

At the system level, consistency is enforced by four 

invariants. The first, I₁, is the preservation of order within 

each partition. This is achieved by the log itself: Kafka 

writes and delivers events strictly in the order in which 

they arrived with a given key p, regardless of reader 

parallelism. The second, I₂, involves causal ordering 

between partitions; this is implemented via Lamport 

logical clocks or, when necessary, complete vector 

clocks, which enable the reconstruction of a correct 

directed acyclic graph (DAG) of causality in the event of 

delayed or conflicting events [3]. The third, I₃, is schema 

compatibility at stage boundaries. Each event carries a 

schema version σ, and upon reading, a stage performs 

validation: a transition σ_in → σ_out is declared 

permissible only if the operation belongs to the class of 

backward- or forward-compatible changes, for example 

add a field with a default value; otherwise, the stream is 

blocked until migration occurs. Finally, the fourth, I₄, is 

the atomicity of checkpoint commit upon passing a 

control barrier. A stage acknowledges the upstream 

offset only after all its local states have been saved and 

downstream channels have accepted the barrier, which 

makes the global commit equivalent to a single 

transaction and eliminates divergence between data 

replicas [4]. 

When these conditions are jointly satisfied, an event 

does not lose ordering, is correctly interpreted despite 

any schema evolution, and is either fully persisted at all 

stages or rolled back entirely. The properties of 

associativity, commutativity, and idempotence, 

inherent in CRDT-like aggregate processing, further 

guarantee that the result converges to a single state 

even in the presence of delays and packet duplication. 

Thus, the formal model establishes a verifiable 

framework on which to rely when designing distributed 

pipelines that require strict end-to-end consistency. 

Figure 1 illustrates how partitioning a topic into multiple 

partitions simultaneously achieves both preserved 

message order (I₁) and horizontal write scaling. Each 

producer selects a specific partition (depending on the 

key or routing logic), and its events are appended strictly 

to the end of the chosen logical segment without 

overlapping with other partitions. As a result, 

concurrent work by Producer client one and Producer 

client two on different partitions (P1, P3, and P4) does 

not violate ordering within any of them, and it also 

simplifies processing and load balancing, yielding high 

throughput while maintaining a deterministic delivery 

order for each key. 
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Fig. 1. Producer Clients Writing Events to Kafka Topic Partitions [4] 

Event ordering begins within each partition: a Kafka log 

segment is an immutable list, so all records from a single 

producer with the same key p arrive and are read strictly 

in the sequence in which they were sent, provided 

replication quorum is maintained [5]. In failure 

scenarios, duplicates may occur; however, an 

idempotent producer assigns each record a 

monotonically increasing sequence ID, thereby restoring 

relative order after a restart and allowing the consumer 

to rely on a shifting rather than skipping offset. This local 

invariant remains inexpensive: costs are linear in the 

number of events, and order verification reduces to 

comparing neighboring offsets, which is O(1) per 

message. 

Inter-partition order is maintained not by absolute 

global time but by causality. Lamport logical clocks 

append a counter t to each message, guaranteeing that 

the recipient never observes an effect with a timestamp 

less than its local clock if that effect occurred later [6]. 

For streams where dozens of services compete, this is 

insufficient: a unique scalar cannot distinguish 

competing paths. Vector clocks extend t to an N-

element array (one element per active node), and partial 

order is then determined by component-wise 

comparison, providing precise happened-before 

relationships even with parallel processing branches [7]. 

An example of vector clock operation is shown in Figure 

2. 

 

Fig. 2. Vector Clock Algorithm [7] 

The price of precision is O(N) memory in each message 

and O(N) merge complexity. Therefore, practical 

pipelines usually limit the vector size to a set of essential 

sources or reduce it to a hash of the causal graph, which 

leaves a risk of false equality but avoids unbounded 

metadata growth. 
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For stages based on windowed aggregation to complete 

a window at all, they need a detector for the logical end 

of the stream. This task can be solved using watermarks: 

the source regularly publishes a watermark w, promising 

no events with timestamps ts < w. Each subsequent 

stage advances w forward when it has processed all 

prior events and its lag does not exceed the configured 

tolerance. If the source is stuck, an idle detector 

advances w after a timeout so as not to block the entire 

graph. Observations indicate that overly conservative 

strategies result in significant data loss. A study [8] found 

that up to 33% of records were not processed when half 

of the keys were delayed at the median of the delay 

distribution. Therefore, the platform accompanies 

water markers with SLA alerts. Suppose the difference 

between the actual wall-clock time and the last w for any 

key exceeds X seconds. In that case, the orchestrator 

raises the priority of the corresponding streams or 

activates a fallback replay branch. 

A separate barrier mechanism is needed to capture a 

consistent snapshot of the state across multiple stages. 

The producer-coordinator inserts a special barrier 

message B into the log, and each stage forwards it only 

after it has flushed its checkpoint. When B returns to the 

coordinator from all branches, the commit has 

atomically covered the entire pipeline. A timeout turns 

the operation into an abort and initiates a rollback to the 

previous stabilized barrier; such a scheme requires only 

O(E) messages per round, where E is the number of 

channels, and scales robustly to hundreds of parallel 

streams. 

Finally, the model’s complexity has clear boundaries. 

Per-partition ordering scales horizontally because 

adding partitions does not complicate the algorithm. 

Complete global sorting, as shown in practice, degrades 

throughput fourfold and negates the benefits of 

sharding; therefore, most authors agree that causal 

(rather than total) ordering and carefully chosen keys 

are sufficient. Vector clocks become unacceptable when 

N approaches hundreds, and barriers cease to be 

effective if the event’s path exceeds the graph’s 

diameter—then checkpoint latency grows linearly and 

conflicts with the watermark generation interval. These 

limitations emphasize that ordering guarantees must be 

designed based on real usage patterns rather than as a 

universal total sort of everything passing through a 

distributed pipeline. 

Schema consistency begins with each event carrying a 

version σ registered in a centralized Avro / Protobuf 

registry. The registry stores the complete history and 

assigns a monotonic number. The producer serializes 

the payload, prefixes it with the schema identifier, and 

the consumer extracts the ID, decodes the version, and 

applies the local deserializer. By default, compatibility 

checking is performed before publishing: the new 

schema is compared to the last saved one, and the 

operation is blocked if a violation of the selected 

mode—BACKWARD, FORWARD, or their transitive 

variants—is detected [9]. 

Adding a field with a default value is considered non-

destructive: consumers not yet aware of the field ignore 

it, while producers immediately begin populating the 

new field. Dropping an optional field is a safe drop as 

long as downstream code does not rely on its presence. 

Renaming requires a two-step process—first add + 

deprecate, then physical removal; a single-step rename 

is deemed incompatible. Finally, changing a type (for 

example, int → string) is allowed only via an additional 

alias or migration. Otherwise, the deserialization 

invariant is broken. 

To prevent such changes from being introduced 

spontaneously, teams establish a strict compatibility 

contract. In the registry, a domain, topic, or event type 

is designated as a subject, and for each subject, a 

BACKWARD, FORWARD, or FULL policy is assigned. The 

FULL policy (both backward and forward 

simultaneously) is used rarely due to high testing costs. 

Confluent, by default, enables BACKWARD, as it allows 

consumers to rewind to earlier offsets and reread 

history without additional migration [10]. 

Control is passed to the CI/CD pipeline: a pull request 

with any new schema triggers a task that registers it in a 

test registry and checks for restrictions. If the transition 

σₙ → σₙ₊₁ is not compatible, then the build fails before 

deployment, with a diff report sent back to the 

developer. This check is supplemented by an RBAC 

policy and tags that prohibit any ad hoc schema updates 

in production without review; this has become a 

mandatory data quality practice in large installations for 

some time. 

Correct schema evolution helps only if the pipeline 

operators themselves perform transformations 
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correctly. The basic requirement is determinism: a 

stateless map (key, value) function always produces the 

same result, and a stateful aggregate reduce (k, state, v) 

produces the same output when replaying the log. The 

second guarantee is idempotence; here, the upsert 

pattern is applied, where the output key matches the 

original ID, and the record overwrites the previous 

version instead of creating a new one. With Exactly-

Once Transactions enabled, Kafka maintains a dual 

producer-id/sequence-id counter and commits only 

when all records of a batch have been successfully 

written to the log and are ready for consumption, 

thereby eliminating duplicates even in the event of 

network failures. The cost of such precision has been 

measured as an additional 30–40% p99 latency 

overhead and a minimum end-to-end latency equal to 

the sum of the commit intervals of all subtopologies of 

the stream [11]. 

The third property is monotonicity. Aggregates built as 

CRDTs or their commutative analogues possess merge 

operations that are simultaneously associative, 

commutative, and idempotent. Upon replaying the log, 

the storage layer simply adds new state fragments, and 

the result converges to a single, exact state, regardless 

of the delivery order, as formally proven in works on 

type-checking CRDT convergence and synthesizing 

state-based structures [12]. A comparison of typical and 

CRDT methods is shown in Figure 3. 

 

 

Fig. 3. Situations where a sequential type (left) has consistency issues that are resolved by a CRDT (right) [12] 

The combination of determinism, idempotence, and 

monotonicity greatly simplifies recovery after a failure. 

When a node fails, the executor rereads events starting 

from the last barrier, reapplies all operations to a clean 

snapshot, and is guaranteed to reach the same final 

state; recovery time is bounded by the number of events 

between barriers and the full commit interval, which 

was already measured in the previous complexity 

evaluation section. Transient errors during writes to an 

external system also become reversible: retry either 

does not change the result or yields a non-idempotent 

error at the protocol level, without breaking the 

integrity of the entire multi-stage event path. 

At the transport level, pipeline resilience is determined 

by which delivery semantics are chosen by producers 

and consumers. At least once, each message is 

replicated until acknowledged, but in the event of a 

failure, the producer may resend an already recorded 

frame, causing duplication and requiring idempotent 

operators. Exactly-once extends the protocol with two 

mechanisms: the idempotent-producer adds several 

bytes of a sequence number to the header, and the 

transactional coordinator commits a batch only after all 

affected partitions have acknowledged the write. 

To prevent a node failure from nullifying computation, 

each stage is equipped with regular state snapshots and 

a write-ahead log protocol. Flink’s algorithm launches an 

asynchronous checkpoint by marking the stream with a 

control barrier, then snapshots the operator state and 

the input log offsets; as soon as all partitions 

acknowledge the same barrier, the coordinator saves 

the global meta-descriptor and allows the producer to 

advance the upstream topic offset.  

The coordinator inserts a special barrier message into 

the stream, and each stage, upon receiving it, completes 

its local transaction and passes the barrier onward. 

When the same identifier is returned to the coordinator 
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from all branches, a commit point is recorded. If any 

stage misses the timeout, a compensating chain is 

triggered, analogous to rollbacks in the Saga pattern 

described in modern microservices guides [13]. This 

approach avoids the blocking of a long-lived 2PC with 

external APIs while preserving atomicity I₄, ensuring that 

the pipeline either swallows the barrier in its entirety or 

rolls back all operations. 

Partial rollback and roll-forward are based on the fact 

that each operator is deterministic and idempotent. 

Upon detecting a discrepancy, the coordinator 

computes the minimal prefix of stages where ordering 

or schema version was violated, rolls them back to the 

last checkpoint, and replays events up to the current 

barrier. Since operators are monotonic, repeated 

applications do not alter the already agreed-upon state, 

and the reconciliation time T_reconcile is bounded by 

the sum of the maximum checkpoint interval, the 

network delay to the furthest stage, and the local roll-

forward time. 

Thus, the presented formal model demonstrates that 

end-to-end consistency in multi-component distributed 

pipelines is achievable under several key principles: 

preserving order within and between partitions 

(invariants I₁ and I₂) ensures correct stream semantics, 

strict schema compatibility checks (I₃) eliminate risks of 

inconsistent deserialization, and checkpoint atomicity 

(I₄) guarantees a global all-or-nothing state commit. 

Detailed descriptions of deterministic, idempotent, and 

monotonic operators, as well as barrier and reverse-log 

mechanisms, confirm that with proper design and 

orchestration, the system can withstand failures, 

duplications, and delays without losing consistency. At 

the same time, practical limitations (metadata growth in 

vector clocks, the cost of total sorting, and checkpoint 

latencies) underscore the necessity of adapting the 

model to real-world scenarios. 

CONCLUSION 

The work demonstrates that strict end-to-end 

consistency in distributed multi-stage event processing 

pipelines is achieved under three primary conditions. 

First, the extended event representation ⟨id, tsₛᵣ𝚌, p, v, 

σ⟩ enables the restoration of order, deduplication of 

messages, and tracking of schema evolution. Second, 

modeling the pipeline as a directed acyclic graph (DAG) 

with deterministic, idempotent, and monotonic 

operators ensures predictability when replaying the log: 

identical input produces identical output, and repeated 

application does not alter the result. Finally, four 

invariants— preservation of order within partitions (I₁), 

causal order between partitions (I₂), schema 

compatibility checks (I₃), and checkpoint atomicity (I₄) — 

combine into a unified system that ensures correct 

stream semantics, protection against inconsistent 

deserialization, and a global all-or-nothing state commit. 

The mechanisms for preserving order are based on 

Kafka’s immutable logs (I₁) and logical or vector clocks 

(I₂). Lamport logical clocks provide causality when the 

number of nodes is small, while vector timestamps, 

although requiring O(N) memory, accurately reconstruct 

the DAG in the presence of competing branches. For 

schema consistency (I₃), each event carries a version σ, 

and a centralized Avro/Protobuf registry, together with 

CI/CD checks, prevents incompatible changes. 

Checkpoint atomicity (I₄) is achieved through barrier 

messages: stages persist local states and forward the 

barrier, and the global commit is recorded only after all 

branches acknowledge; on timeout, a rollback to the 

previous stable state is initiated. 

The limitations of the model stem from the growth of 

metadata in vector clocks with large numbers of nodes, 

resulting in diminished throughput under total global 

sorting. Checkpoint latency also increases in deeply 

branched pipelines. However, the model remains 

applicable to real systems through the choice of causal 

ordering, accompanied by CRDT-like aggregates, and the 

dynamic tuning of watermark and barrier parameters.  
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