
The American Journal of Engineering and Technology 127 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 127-134

DOI 10.37547/tajet/Volume07Issue06-14

OPEN ACCESS

SUBMITED 18 April 2025

ACCEPTED 25 May 2025

PUBLISHED 18 June 2025

VOLUME Vol.07 Issue 06 2025

CITATION

Khrystyna Terletska. (2025). Data Consistency in Distributed Multi-Stage
Event Processing Pipelines. The American Journal of Engineering and
Technology, 7(06), 127–134.
https://doi.org/10.37547/tajet/Volume07Issue06-14

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Data Consistency in

Distributed Multi-Stage

Event Processing Pipelines

Khrystyna Terletska

Senior Software Engineer at Datadog New York, USA

Abstract: The article examines the problem of ensuring

end-to-end data consistency in distributed multi-stage

event processing pipelines, which are actively used in

modern real-time systems. The relevance of the study is

determined by the rapid growth of streaming analytics

needs and the widespread use of Apache Kafka, making

message latency, duplication, and disorder critical

factors for industries ranging from fintech to IoT. The

goal of this work is to propose a formal model that

unifies an extended event representation and a set of

invariants that guarantee correct processing even in the

presence of component failures. The novelty of the

approach lies in the formalization of an event as a tuple

⟨id, tsₛᵣ𝚌, p, v, σ⟩, where id is responsible for

deduplication, tsₛᵣ𝚌 records the time of occurrence, p

specifies the partition, v is the payload, and σ is the

schema version, which enables ordering recovery and

supports format evolution. The pipeline is modeled as a

directed acyclic graph (DAG) of operators having the

properties of determinism, idempotence, and

monotonicity. CRDT aggregates are used for

convergence in duplication; SLA alerts from watermark

mechanisms are used to minimize data loss. The main

findings indicate that, under specified conditions, the

system can tolerate delays, failures, and redeliveries

without compromising consistency. Extended events

and formal operators enable state recovery; stream

semantics are ensured by four invariants. This research

is particularly relevant for professionals designing and

operating real-time event-driven systems, stream

processing applications, microservices architectures,

and high-integrity data integration pipelines.

KEYWORDS

https://doi.org/10.37547/tajet/Volume07Issue06-14
https://doi.org/10.37547/tajet/Volume07Issue06-14

The American Journal of Engineering and Technology 128 https://www.theamericanjournals.com/index.php/tajet

streaming event processing, distributed systems, data

consistency, logical clocks, vector clocks, CRDT, schema

evolution, checkpoints, Apache Kafka, Exactly-Once

Semantics.

INTRODUCTION

Over the past five years, the volume of data requiring

sub-second processing latency has increased by orders

of magnitude. The streaming analytics market,

according to Markets & Markets, is projected to grow

from USD 29.53 billion in 2024 to USD 125.85 billion by

2029, corresponding to a compound annual growth rate

of 33.6 % [1]. The infrastructural foundation of this

growth has become event platforms, primarily Apache

Kafka, which is used by more than 80% of Fortune 100

companies [2]. Such a scale of adoption means that for

many industries—from fintech to IoT networks—

continuous stream processing has become not an

auxiliary but a critically important function.

The industry’s pragmatic response has manifested in the

increasing complexity of pipelines themselves: the same

event now traverses the chain ingestion → enrichment

→ filtering → aggregation → storage, with each stage

served by isolated microservices or dedicated

frameworks. The practical cost of an error grows

exponentially: a failure at any stage immediately

impacts e-commerce recommendations, risk

calculations in banking, or vehicle telemetry monitoring.

However, the asynchronous nature of distributed

systems raises questions about the concept of end-to-

end integrity. Between nodes, delays, duplications, and

reordering of messages are possible. Operators

aggregate data with only partial knowledge of the global

time, and individual services may temporarily drop out

of the network. In such conditions, the pipeline

developer is forced to balance speed, availability, and

correctness, with the compromise often becoming

implicit: the loss of a single event can lead to an incorrect

dependency graph, while redelivery can lead to inflated

metrics or inaccurate accounting.

Existing theoretical frameworks do not close this gap.

ACID transactions guarantee atomicity only within a

single store and do not describe streams where data

changes on the fly. The CAP theorem formulates the

boundaries of replication but operates on static objects

rather than transformational stages. Lambda and Kappa

architectures provide organizational schemes for

combining batch and streaming processing; however,

they delegate the consistency problem to the level of

individual operators and do not offer formal invariants

that cover the entire multi-stage event journey. As a

result, engineers are forced to invent local solutions—

from custom idempotent keys to complex replay

protocols—without a single overarching model capable

of guaranteeing predictable pipeline behavior even in

the presence of failures and schema evolution.

MATERIALS AND METHODOLOGY

The study of data consistency in distributed multi-stage

event processing pipelines relies on the analysis of 13

sources: industry reports from Markets & Markets [1],

Apache Kafka documentation [2, 4], scientific

publications on logical and vector clocks [6, 7], Confluent

materials on the Avro/Protobuf registry [9, 10], research

on stream watermarks in Flink [8], CRDT approaches to

aggregation [12], and Saga pattern rollback patterns in

microservices [13].

The theoretical basis was formed by formalizing an

event as a tuple ⟨id, tsₛᵣ𝚌, p, v, σ⟩, where id provides

deduplication, tsₛᵣ𝚌 specifies the time of occurrence, p

defines the partition, v contains the payload, and σ

represents the schema version. This representation

enables the recovery of the original order and accounts

for format evolution [4, 9].

Methodologically, the work combines: (1) a comparative

analysis of ordering within partitions (idempotent

producer and sequence-id) and causal ordering across

partitions (Lamport logical clocks and vector clocks) [5,

6, 7]; (2) a systematic review of schema compatibility

verification practices (BACKWARD, FORWARD, FULL

modes) with automatic blocking of incompatible

changes in CI/CD [9, 10]; (3) the study of the atomicity

mechanism of checkpoints via barrier messages,

ensuring Exactly-Once Semantics and a hybrid 2PC +

Saga scheme for global commit or rollback [4, 11, 13]; (4)

analysis of CRDT-based aggregate processing,

guaranteeing state convergence during replay and event

duplication [12]; (5) evaluation of the impact of

watermarks on data loss (up to 33%) and the

implementation of SLA alerts for timely watermark

advancement [8].

RESULTS AND DISCUSSION

The American Journal of Engineering and Technology 129 https://www.theamericanjournals.com/index.php/tajet

The formal foundation of the proposed model begins

with the definition of a unified representation of an

event as the tuple ⟨id, tsₛᵣ𝚌, p, v, σ⟩. The unique

identifier, id, ensures deduplication; the source

timestamp, tsₛᵣ𝚌, records the moment of occurrence;

the partition key, p, determines the partition in the

message log; the payload, v, contains business data; and

σ indicates the schema version. Such an extended event

carries sufficient context to reconstruct both the original

order and the transformations applied to it at any stage

during pipeline replay.

The stages themselves form a directed acyclic graph G =

(S, E), where S is a finite set of operators and E is the set

of delivery channels. Each vertex is described by a

function fₛ: E* → E*, which accepts a multiset of input

events and produces a multiset of outputs. For

reliability, fₛ must remain deterministic: identical inputs

always produce identical outputs upon any repeated

execution. The second required characteristic is

idempotence, meaning that repeated application of the

operator to the same event does not change the result:

fₛ(fₛ(e)) = fₛ(e). Finally, monotonicity is formulated as the

inclusion fₛ(A) ⊆ fₛ(B) for any A ⊆ B; this property

guarantees that partial results can be safely extended

without a global rollback.

At the system level, consistency is enforced by four

invariants. The first, I₁, is the preservation of order within

each partition. This is achieved by the log itself: Kafka

writes and delivers events strictly in the order in which

they arrived with a given key p, regardless of reader

parallelism. The second, I₂, involves causal ordering

between partitions; this is implemented via Lamport

logical clocks or, when necessary, complete vector

clocks, which enable the reconstruction of a correct

directed acyclic graph (DAG) of causality in the event of

delayed or conflicting events [3]. The third, I₃, is schema

compatibility at stage boundaries. Each event carries a

schema version σ, and upon reading, a stage performs

validation: a transition σ_in → σ_out is declared

permissible only if the operation belongs to the class of

backward- or forward-compatible changes, for example

add a field with a default value; otherwise, the stream is

blocked until migration occurs. Finally, the fourth, I₄, is

the atomicity of checkpoint commit upon passing a

control barrier. A stage acknowledges the upstream

offset only after all its local states have been saved and

downstream channels have accepted the barrier, which

makes the global commit equivalent to a single

transaction and eliminates divergence between data

replicas [4].

When these conditions are jointly satisfied, an event

does not lose ordering, is correctly interpreted despite

any schema evolution, and is either fully persisted at all

stages or rolled back entirely. The properties of

associativity, commutativity, and idempotence,

inherent in CRDT-like aggregate processing, further

guarantee that the result converges to a single state

even in the presence of delays and packet duplication.

Thus, the formal model establishes a verifiable

framework on which to rely when designing distributed

pipelines that require strict end-to-end consistency.

Figure 1 illustrates how partitioning a topic into multiple

partitions simultaneously achieves both preserved

message order (I₁) and horizontal write scaling. Each

producer selects a specific partition (depending on the

key or routing logic), and its events are appended strictly

to the end of the chosen logical segment without

overlapping with other partitions. As a result,

concurrent work by Producer client one and Producer

client two on different partitions (P1, P3, and P4) does

not violate ordering within any of them, and it also

simplifies processing and load balancing, yielding high

throughput while maintaining a deterministic delivery

order for each key.

The American Journal of Engineering and Technology 130 https://www.theamericanjournals.com/index.php/tajet

Fig. 1. Producer Clients Writing Events to Kafka Topic Partitions [4]

Event ordering begins within each partition: a Kafka log

segment is an immutable list, so all records from a single

producer with the same key p arrive and are read strictly

in the sequence in which they were sent, provided

replication quorum is maintained [5]. In failure

scenarios, duplicates may occur; however, an

idempotent producer assigns each record a

monotonically increasing sequence ID, thereby restoring

relative order after a restart and allowing the consumer

to rely on a shifting rather than skipping offset. This local

invariant remains inexpensive: costs are linear in the

number of events, and order verification reduces to

comparing neighboring offsets, which is O(1) per

message.

Inter-partition order is maintained not by absolute

global time but by causality. Lamport logical clocks

append a counter t to each message, guaranteeing that

the recipient never observes an effect with a timestamp

less than its local clock if that effect occurred later [6].

For streams where dozens of services compete, this is

insufficient: a unique scalar cannot distinguish

competing paths. Vector clocks extend t to an N-

element array (one element per active node), and partial

order is then determined by component-wise

comparison, providing precise happened-before

relationships even with parallel processing branches [7].

An example of vector clock operation is shown in Figure

2.

Fig. 2. Vector Clock Algorithm [7]

The price of precision is O(N) memory in each message

and O(N) merge complexity. Therefore, practical

pipelines usually limit the vector size to a set of essential

sources or reduce it to a hash of the causal graph, which

leaves a risk of false equality but avoids unbounded

metadata growth.

The American Journal of Engineering and Technology 131 https://www.theamericanjournals.com/index.php/tajet

For stages based on windowed aggregation to complete

a window at all, they need a detector for the logical end

of the stream. This task can be solved using watermarks:

the source regularly publishes a watermark w, promising

no events with timestamps ts < w. Each subsequent

stage advances w forward when it has processed all

prior events and its lag does not exceed the configured

tolerance. If the source is stuck, an idle detector

advances w after a timeout so as not to block the entire

graph. Observations indicate that overly conservative

strategies result in significant data loss. A study [8] found

that up to 33% of records were not processed when half

of the keys were delayed at the median of the delay

distribution. Therefore, the platform accompanies

water markers with SLA alerts. Suppose the difference

between the actual wall-clock time and the last w for any

key exceeds X seconds. In that case, the orchestrator

raises the priority of the corresponding streams or

activates a fallback replay branch.

A separate barrier mechanism is needed to capture a

consistent snapshot of the state across multiple stages.

The producer-coordinator inserts a special barrier

message B into the log, and each stage forwards it only

after it has flushed its checkpoint. When B returns to the

coordinator from all branches, the commit has

atomically covered the entire pipeline. A timeout turns

the operation into an abort and initiates a rollback to the

previous stabilized barrier; such a scheme requires only

O(E) messages per round, where E is the number of

channels, and scales robustly to hundreds of parallel

streams.

Finally, the model’s complexity has clear boundaries.

Per-partition ordering scales horizontally because

adding partitions does not complicate the algorithm.

Complete global sorting, as shown in practice, degrades

throughput fourfold and negates the benefits of

sharding; therefore, most authors agree that causal

(rather than total) ordering and carefully chosen keys

are sufficient. Vector clocks become unacceptable when

N approaches hundreds, and barriers cease to be

effective if the event’s path exceeds the graph’s

diameter—then checkpoint latency grows linearly and

conflicts with the watermark generation interval. These

limitations emphasize that ordering guarantees must be

designed based on real usage patterns rather than as a

universal total sort of everything passing through a

distributed pipeline.

Schema consistency begins with each event carrying a

version σ registered in a centralized Avro / Protobuf

registry. The registry stores the complete history and

assigns a monotonic number. The producer serializes

the payload, prefixes it with the schema identifier, and

the consumer extracts the ID, decodes the version, and

applies the local deserializer. By default, compatibility

checking is performed before publishing: the new

schema is compared to the last saved one, and the

operation is blocked if a violation of the selected

mode—BACKWARD, FORWARD, or their transitive

variants—is detected [9].

Adding a field with a default value is considered non-

destructive: consumers not yet aware of the field ignore

it, while producers immediately begin populating the

new field. Dropping an optional field is a safe drop as

long as downstream code does not rely on its presence.

Renaming requires a two-step process—first add +

deprecate, then physical removal; a single-step rename

is deemed incompatible. Finally, changing a type (for

example, int → string) is allowed only via an additional

alias or migration. Otherwise, the deserialization

invariant is broken.

To prevent such changes from being introduced

spontaneously, teams establish a strict compatibility

contract. In the registry, a domain, topic, or event type

is designated as a subject, and for each subject, a

BACKWARD, FORWARD, or FULL policy is assigned. The

FULL policy (both backward and forward

simultaneously) is used rarely due to high testing costs.

Confluent, by default, enables BACKWARD, as it allows

consumers to rewind to earlier offsets and reread

history without additional migration [10].

Control is passed to the CI/CD pipeline: a pull request

with any new schema triggers a task that registers it in a

test registry and checks for restrictions. If the transition

σₙ → σₙ₊₁ is not compatible, then the build fails before

deployment, with a diff report sent back to the

developer. This check is supplemented by an RBAC

policy and tags that prohibit any ad hoc schema updates

in production without review; this has become a

mandatory data quality practice in large installations for

some time.

Correct schema evolution helps only if the pipeline

operators themselves perform transformations

The American Journal of Engineering and Technology 132 https://www.theamericanjournals.com/index.php/tajet

correctly. The basic requirement is determinism: a

stateless map (key, value) function always produces the

same result, and a stateful aggregate reduce (k, state, v)

produces the same output when replaying the log. The

second guarantee is idempotence; here, the upsert

pattern is applied, where the output key matches the

original ID, and the record overwrites the previous

version instead of creating a new one. With Exactly-

Once Transactions enabled, Kafka maintains a dual

producer-id/sequence-id counter and commits only

when all records of a batch have been successfully

written to the log and are ready for consumption,

thereby eliminating duplicates even in the event of

network failures. The cost of such precision has been

measured as an additional 30–40% p99 latency

overhead and a minimum end-to-end latency equal to

the sum of the commit intervals of all subtopologies of

the stream [11].

The third property is monotonicity. Aggregates built as

CRDTs or their commutative analogues possess merge

operations that are simultaneously associative,

commutative, and idempotent. Upon replaying the log,

the storage layer simply adds new state fragments, and

the result converges to a single, exact state, regardless

of the delivery order, as formally proven in works on

type-checking CRDT convergence and synthesizing

state-based structures [12]. A comparison of typical and

CRDT methods is shown in Figure 3.

Fig. 3. Situations where a sequential type (left) has consistency issues that are resolved by a CRDT (right) [12]

The combination of determinism, idempotence, and

monotonicity greatly simplifies recovery after a failure.

When a node fails, the executor rereads events starting

from the last barrier, reapplies all operations to a clean

snapshot, and is guaranteed to reach the same final

state; recovery time is bounded by the number of events

between barriers and the full commit interval, which

was already measured in the previous complexity

evaluation section. Transient errors during writes to an

external system also become reversible: retry either

does not change the result or yields a non-idempotent

error at the protocol level, without breaking the

integrity of the entire multi-stage event path.

At the transport level, pipeline resilience is determined

by which delivery semantics are chosen by producers

and consumers. At least once, each message is

replicated until acknowledged, but in the event of a

failure, the producer may resend an already recorded

frame, causing duplication and requiring idempotent

operators. Exactly-once extends the protocol with two

mechanisms: the idempotent-producer adds several

bytes of a sequence number to the header, and the

transactional coordinator commits a batch only after all

affected partitions have acknowledged the write.

To prevent a node failure from nullifying computation,

each stage is equipped with regular state snapshots and

a write-ahead log protocol. Flink’s algorithm launches an

asynchronous checkpoint by marking the stream with a

control barrier, then snapshots the operator state and

the input log offsets; as soon as all partitions

acknowledge the same barrier, the coordinator saves

the global meta-descriptor and allows the producer to

advance the upstream topic offset.

The coordinator inserts a special barrier message into

the stream, and each stage, upon receiving it, completes

its local transaction and passes the barrier onward.

When the same identifier is returned to the coordinator

The American Journal of Engineering and Technology 133 https://www.theamericanjournals.com/index.php/tajet

from all branches, a commit point is recorded. If any

stage misses the timeout, a compensating chain is

triggered, analogous to rollbacks in the Saga pattern

described in modern microservices guides [13]. This

approach avoids the blocking of a long-lived 2PC with

external APIs while preserving atomicity I₄, ensuring that

the pipeline either swallows the barrier in its entirety or

rolls back all operations.

Partial rollback and roll-forward are based on the fact

that each operator is deterministic and idempotent.

Upon detecting a discrepancy, the coordinator

computes the minimal prefix of stages where ordering

or schema version was violated, rolls them back to the

last checkpoint, and replays events up to the current

barrier. Since operators are monotonic, repeated

applications do not alter the already agreed-upon state,

and the reconciliation time T_reconcile is bounded by

the sum of the maximum checkpoint interval, the

network delay to the furthest stage, and the local roll-

forward time.

Thus, the presented formal model demonstrates that

end-to-end consistency in multi-component distributed

pipelines is achievable under several key principles:

preserving order within and between partitions

(invariants I₁ and I₂) ensures correct stream semantics,

strict schema compatibility checks (I₃) eliminate risks of

inconsistent deserialization, and checkpoint atomicity

(I₄) guarantees a global all-or-nothing state commit.

Detailed descriptions of deterministic, idempotent, and

monotonic operators, as well as barrier and reverse-log

mechanisms, confirm that with proper design and

orchestration, the system can withstand failures,

duplications, and delays without losing consistency. At

the same time, practical limitations (metadata growth in

vector clocks, the cost of total sorting, and checkpoint

latencies) underscore the necessity of adapting the

model to real-world scenarios.

CONCLUSION

The work demonstrates that strict end-to-end

consistency in distributed multi-stage event processing

pipelines is achieved under three primary conditions.

First, the extended event representation ⟨id, tsₛᵣ𝚌, p, v,

σ⟩ enables the restoration of order, deduplication of

messages, and tracking of schema evolution. Second,

modeling the pipeline as a directed acyclic graph (DAG)

with deterministic, idempotent, and monotonic

operators ensures predictability when replaying the log:

identical input produces identical output, and repeated

application does not alter the result. Finally, four

invariants— preservation of order within partitions (I₁),

causal order between partitions (I₂), schema

compatibility checks (I₃), and checkpoint atomicity (I₄) —

combine into a unified system that ensures correct

stream semantics, protection against inconsistent

deserialization, and a global all-or-nothing state commit.

The mechanisms for preserving order are based on

Kafka’s immutable logs (I₁) and logical or vector clocks

(I₂). Lamport logical clocks provide causality when the

number of nodes is small, while vector timestamps,

although requiring O(N) memory, accurately reconstruct

the DAG in the presence of competing branches. For

schema consistency (I₃), each event carries a version σ,

and a centralized Avro/Protobuf registry, together with

CI/CD checks, prevents incompatible changes.

Checkpoint atomicity (I₄) is achieved through barrier

messages: stages persist local states and forward the

barrier, and the global commit is recorded only after all

branches acknowledge; on timeout, a rollback to the

previous stable state is initiated.

The limitations of the model stem from the growth of

metadata in vector clocks with large numbers of nodes,

resulting in diminished throughput under total global

sorting. Checkpoint latency also increases in deeply

branched pipelines. However, the model remains

applicable to real systems through the choice of causal

ordering, accompanied by CRDT-like aggregates, and the

dynamic tuning of watermark and barrier parameters.

REFERENCES

“Streaming Analytics Market Size, Share, Growth Drivers
& Opportunities,” Markets and Markets, Sep. 2024.
https://www.marketsandmarkets.com/Market-
Reports/streaming-analytics-market-64196229.html
(accessed Apr. 30, 2025).

“Apache Kafka,” Apache. https://kafka.apache.org/
(accessed May 01, 2025).

G. Manepalli, “Clocks and Causality - Ordering Events in
Distributed Systems,” Exhypothesi, Nov. 16, 2022.
https://www.exhypothesi.com/clocks-and-causality/
(accessed May 02, 2025).

“Kafka 4.0 Documentation,” Apache.

The American Journal of Engineering and Technology 134 https://www.theamericanjournals.com/index.php/tajet

https://kafka.apache.org/documentation/ (accessed
May 03, 2025).

J. Rao, “Configuring Durability, Availability, and Ordering
Guarantees,” Confluent.
https://developer.confluent.io/courses/architecture/gu
arantees/ (accessed May 05, 2025).

“Lamport’s logical clock,” Geeks for Geeks, Oct. 02,
2023. https://www.geeksforgeeks.org/lamports-logical-
clock/ (accessed May 07, 2025).

“Vector Clocks in Distributed Systems,” Geeks for Geeks,
Oct. 14, 2024. https://www.geeksforgeeks.org/vector-
clocks-in-distributed-systems/ (accessed May 08, 2025).

T. Yasser, T. Arafa, M. ElHelw, and A. Awad, “Keyed
watermarks: A fine-grained watermark generation for
Apache Flink,” Future Generation Computer Systems,
vol. 169, p. 107796, Aug. 2025, doi:
https://doi.org/10.1016/j.future.2025.107796.

“Schema Evolution and Compatibility for Schema
Registry on Confluent Platform | Confluent

Documentation,” Confluent.
https://docs.confluent.io/platform/current/schema-
registry/fundamentals/schema-evolution.html
(accessed May 10, 2025).

“Schema Registry API Reference,” Confluent.
https://docs.confluent.io/platform/current/schema-
registry/develop/api.html (accessed May 13, 2025).

Valeriu Crudu, “Exactly-Once Semantics in Kafka -
Advanced Topics Explained,” MoldStud.
https://moldstud.com/articles/p-exactly-once-
semantics-in-kafka-advanced-topics-explained
(accessed May 15, 2025).

S. Laddad, C. Power, M. Milano, A. Cheung, and J. M.
Hellerstein, “Katara: synthesizing CRDTs with verified
lifting,” Proceedings of the ACM on Programming
Languages, vol. 6, no. OOPSLA2, pp. 1349–1377, Oct.
2022, doi: https://doi.org/10.1145/3563336.

“SAGA Design Pattern,” Geeks for Geeks, Nov. 08, 2024.
https://www.geeksforgeeks.org/saga-design-pattern/
(accessed May 20, 2025).

