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Abstract: This study analyzes existing strategies for 

automated recovery within self-healing cloud 

infrastructures. The research is grounded in a review of 

findings from previous scientific publications. The 

analysis demonstrates that intelligent remediation 

methods can not only reduce downtime but also 

enhance the economic resilience of cloud infrastructure, 

paving the way toward fully autonomous, self-healing 

digital platforms. The scientific contribution of this work 

lies in the first comparative evaluation of the 

effectiveness of rule-based approaches, ML-prioritized 

methods, genetic algorithms, and DQN agents in multi-

cloud Kubernetes environments. Its practical 

significance is reflected in the proposed modern 

approach of implementing a hybrid pipeline with a DQN-

based scheduler, which achieves more than a 70% 

reduction in downtime and establishes a balance 

between recovery speed and cost-efficiency in real-

world cloud platforms. The insights presented in this 

study will be particularly valuable to researchers in the 

field of autonomous distributed systems and cloud 

infrastructure reliability, especially those engaged in the 

development and formal verification of self-healing and 

automated failure correction mechanisms. 

Furthermore, the analysis of the effectiveness of these 

techniques holds practical relevance for leading 

DevOps/PlatformOps architects and SRE specialists 

seeking to enhance the availability and resilience of 

critical services through the integration of advanced 

automated recovery algorithms. 
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remediation, multi-cloud, anomaly, reinforcement 

learning, genetic algorithm, DevOps, AIOps, MTTR, 

Kubernetes. 
 

Introduction: The industry's transition from monolithic 

applications to microservices, Kubernetes clustering, 

and multi-cloud strategies has significantly increased the 

complexity of IT operations. Early system frameworks 

focused on well-structured modules for monitoring, 

diagnostics, and recovery. Patil R. V. et al. [1] propose a 

classical architecture built around event-driven reaction 

policies and predefined rollback and service restart 

procedures. Shah H. and Patel J. [3] analyze the use of 

container snapshots and unified cloud provider APIs to 

simplify automatic application rollback upon anomaly 

detection. Devi R. K. and Muthukannan M. [4] propose a 

combined approach, advocating proactive 

checkpointing of virtual machines and dynamic 

migration between datacenter nodes to reduce 

downtime during hardware failures. 

Later studies suggest that the limitations of these 

classical approaches—namely rigid rules and difficulties 

in maintaining large numbers of scenarios—can be 

overcome through the use of machine learning 

methods. Syed A. A. M. and Anazagasty E. [2] integrate 

self-learning models (decision trees, SVMs) into systems 

to cluster and classify failures by type, automatically 

selecting the optimal recovery and scaling policies from 

a pre-trained library. Gheibi O., Weyns D., and Quin F. 

[9] conducted a systematic review of machine learning 

approaches in autonomous and adaptive systems. Their 

work presents a mapping matrix that links types of 

adaptive responses to corresponding ML models, and 

provides a critical analysis of the limitations these 

approaches face in highly dynamic cloud environments. 

Building on this, Varma S. C. G. [10] offered a theoretical 

overview of cloud architectures and proposed an AI-

agent integration scheme at the level of virtual machine 

and container orchestration. The proposal is supported 

by simulation results, which model failure scenarios and 

evaluate key metrics such as MTTR and MTBF under 

synthetic workloads. 

Friesen M., Wisniewski L., and Jasperneite J. [8] expand 

the application of ML methods to heterogeneous 

industrial networks, where zero-touch management is 

based on a combination of unsupervised learning (for 

detecting hidden anomaly patterns) and closed-loop 

feedback controllers. 

A current milestone is the use of generative AI for 

creating recovery plans "on the fly." Khlaisamniang P. et 

al. [5] demonstrate how transformers and GANs can 

generate new configuration correction scenarios and 

even formulate automatic "patches" at the code level, 

an especially promising approach in situations where no 

exact metrics are available for specific failures. 

In parallel, predictive failure analytics is advancing. 

Domingos J. et al. [6] use ensemble models (Random 

Forest, XGBoost) to analyze infrastructure metrics (CPU, 

memory, I/O), achieving up to 90% accuracy in 

forecasting incidents 10–15 minutes before they occur, 

enabling systems to enter heightened readiness modes. 

Sarvari P. A. et al. [7] focus on integrating self-healing 

with auto-scaling policies. They propose hybrid 

optimization algorithms (genetic and heuristic) to 

balance between resource rental costs and reliability 

requirements, introducing "resilience scores" and 

demonstrating cost reductions of up to 25% while 

maintaining SLA targets in real cloud platforms. 

Overall, the existing body of research highlights two 

main directions: classical rule-based architectures and 

modern ML/AI-oriented frameworks. The central 

contradiction is that rule-based systems offer 

predictability and ease of validation but struggle to scale 

and adapt to new types of failures, whereas AI-driven 

approaches enable self-learning and pattern prediction 

but require extensive historical datasets and often lack 

explainability. Gaps remain in standardizing reliability 

metrics, evaluating self-healing effectiveness, 

integrating generative models with predictive 

monitoring, and addressing security requirements in 

multi-tenant cloud environments. Moreover, issues 

related to cross-cloud compatibility, transfer learning 

between heterogeneous infrastructures, and the impact 

of overheads on latency during real-world deployment 

of self-healing mechanisms remain underexplored. 

The aim of this article is to examine the characteristics 

of automated recovery methods and assess their 

effectiveness within self-healing cloud infrastructures. 

The scientific novelty lies in conducting a broad 

quantitative comparison of the effectiveness of rule-

based, ML-prioritized, genetic algorithms, and DQN 



The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet 

 

agents in self-healing multi-cloud Kubernetes 

environments, using statistical tests to evaluate MTTR, 

error budgets, and computational overheads. 

The author’s hypothesis posits that integrating a hybrid 

diagnostic pipeline with a DQN scheduler provides the 

optimal balance between minimizing MTTR and budget 

expenditure. 

The research methodology is based on a comparative 

analysis of results from previous studies in this field. 

1. Theoretical Foundations of Self-Healing 

Cloud Infrastructure 

The evolution of platform-as-a-service ecosystems has 

given rise to four dominant operational layers: IaaS, 

PaaS, CaaS, and FaaS. Each layer presents a distinct 

failure profile: 

• IaaS (EC2, Azure VM): hardware failures of 

hypervisors, VPC/VNet subnet network 

degradation, disk subsystem errors (read-write 

operations) [4]. 

• PaaS (RDS, BigQuery): logical failures at the 

managed service layer, such as replica 

desynchronization and inconsistent backups [1]. 

• CaaS (Kubernetes): pod crashes, crash loops, out-of-

memory errors, and network partitions within the 

service mesh [2]. 

• FaaS (Lambda, Cloud Functions): cold starts, 

timeout/memory limit overflows, and missing 

dependency errors [3]. 

A universal self-healing solution must account for both 

the controllability of components (root vs no-root 

access) and the differing frequency of failures across 

these layers. 

Effective remediation is possible only through a 

continuous feedback loop—“metric → event → 

decision.” An industry-standard three-tier architecture 

has emerged: 

1. Collection — exporting operational metrics 

(/metrics) and traces (OpenTelemetry) into 

Prometheus. 

2. Transport — using a high-speed Kafka bus for 

streaming alert events and feature vectors [1,8]. 

3. ML Pipeline — real-time processing through 

Spark Structured Streaming, with result storage 

in Redis or etcd for “hot” reads by remediation 

agents [2,10]. 

Such a topology minimizes the latency between anomaly 

detection and the initiation of a recovery workflow. 

Beyond simple static rules, cloud clusters require 

algorithms capable of distinguishing transient spikes 

from pathological trends. 

Table 1. Fundamentals of Self-Repair of Cloud Infrastructure [1–3].

 

Algorithm 

Class 

Examples Complexity 

O(·) 

Training Data 

Requirements 

Advantages Limitations 

Lightweight 

One-Class 

Models 

Isolation Forest, 

One-Class SVM 

O(n log n) 5–10 minutes 

of historical 

telemetry 

High online 

detection 

speed, low RAM 

usage 

Myopic to long-

term trends 

Deep 

Recurrent 

Networks 

LSTM, GRU, 

Transformer-TS 

O(n·d) ≥ 24 hours of 

metrics at ≤ 30s 

intervals 

Capture 

seasonality, 

complex 

correlations 

Requires pre-

warmed 

GPU/TPU, risk of 

overfitting 

Hybrid Isolation Forest 

+ ARIMA; CNN-

O(n log n + Historical data + 

business event 

Balances false 

positives and 

High MLOps 

maintenance 
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Algorithm 

Class 

Examples Complexity 

O(·) 

Training Data 

Requirements 

Advantages Limitations 

Ensembles LSTM n·d) context negatives complexity 

For a systematic evaluation of self-healing approaches, 

the following metrics are employed: 

• MTTR (Mean Time to Recovery) — the core SRE 

metric, indicating the average recovery time. 

• MTBF/MTTF (Mean Time Between Failures/Mean 

Time to Failure) — critical for assessing system 

stability alongside auto-scaling mechanisms to 

prevent repeated patching of identical failures. 

• Error Budget — the integral deviation from SLO 

targets, informing decisions between simple service 

restarts and the necessity for canary rollbacks. 

• Opex/Capex — evaluating the cost of reserved CPU 

hours and surplus pods by comparing rule-based 

and reinforcement learning approaches. 

Collectively, these foundations establish the platform 

upon which the subsequent analysis of automated 

remediation techniques and their quantitative 

validation in multi-cloud environments is built. 

2. Automated Remediation Techniques 

In the early stages of DevOps evolution, the dominant 

approach was based on if-this-then-that logic: crossing a 

metric threshold triggered an alert, which in turn 

activated a Bash or Ansible playbook via Alertmanager 

[5]. This approach offered clear logical transparency and 

minimal computational overhead. However, it also 

presented significant drawbacks: 

• Inability to adapt to previously unseen scenarios; 

• Avalanche “alert storms” during cascading failures; 

• Maintenance difficulties when managing hundreds 

of rules across multi-cloud environments. 

Nevertheless, rule-based systems remain fundamental 

for safeguard operations—such as automatic node 

cordon and drain when disk health drops below 80%—

where speed is more critical than cognitive flexibility [1]. 

Using a Decision Tree CART model, researchers from the 

SelfHealingInfrastructureSystem project demonstrated 

that automatic classification of alert streams based on 

user impact and blast radius significantly reduced P1 

incident escalation times. Validation of datasets 

confirmed a marked reduction in "noise" signals [1]. Key 

engineering challenges included: 

• Designing reward functions that balance speed and 

stability; 

• Ensuring safe, rollback-capable execution of actions 

(staged rollout); 

• High simulation costs, mitigated through transfer 

learning on basic failure templates [7,9]. 

Encoding remediation procedures into Terraform 

modules transforms the "healing" process into version-

controlled artifacts. GitOps practices (Argo CD, Flux) 

enable automatic application of patch manifests as soon 

as the ML module generates a new desired state [6]. 

Thus, the Kubernetes declarative model combined with 

CRD operators becomes the "execution engine" for 

autonomous RL agent decisions. 

All automatic corrections must pass through least-

privilege IAM roles and control gateways (change 

managers). Operational practice uses Just-In-Time roles 

(STS tokens valid for five minutes) and policy-as-code 

(OPA Gatekeeper) to block potentially destructive 

automated actions, as shown in Table 2. 

Table 2. Comparison of Remediation Categories [1,2,3].

Category Trigger Typical Actions Optimization Domain 

Rule-based Metric threshold systemctl restart, kubectl Static, predictable failures 
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Category Trigger Typical Actions Optimization Domain 

(PromQL) drain 

ML-Prioritized DT/CNN classifier Playbook maneuver + 

priority queue 

Large alert streams, moderate 

variability 

Genetic 

Algorithm 

Anomaly + GA 

optimizer 

Composite action 

packages 

Limited resource pools, multi-

objective optimization 

Reinforcement 

Learning 

DQN/PG agent Dynamic scaling/rollback High uncertainty, complex cascades 

Thus, the range of modern automated remediation 

techniques spans from simple declarative rules to self-

learning RL agents. Choosing an approach must consider 

the nature of failures, the maturity of MLOps processes, 

and acceptable operational overheads. The groundwork 

for further empirical analysis of the effectiveness of each 

category is established and will be addressed in the next 

section. 

Table 3. Results of Changes from the Introduction of AI [3].

Before AI Integration After AI Integration 

Manual system monitoring Continuous AI-driven monitoring and predictive alerts 

Static auto-scaling based on predefined 

rules 

Dynamic scaling based on real-time ML traffic patterns 

Human intervention required for failure 

recovery 

Self-healing mechanisms automatically resolve issues 

Resource waste due to over-provisioning Optimized scaling with intelligent resource allocation 

Unpredictable performance during traffic 

spikes 

Predictable and stable performance through proactive 

scaling 

The adoption of AI-based automation had a substantial 

impact. The most notable improvements include: 

• Downtime reduction: Self-healing algorithms 
independently resolved 85% of infrastructure 
issues, cutting downtime by over 70%. 

• Faster incident response: Average MTTR decreased 
from 30 minutes to less than 5 minutes. 

• Intelligent auto-scaling: Prevented unnecessary 
resource allocation, reducing cloud infrastructure 
costs. 

• Reduced downtime and faster responsiveness: 
Increased customer satisfaction by 25%. 

• Enhanced scalability: The AI-based system 
maintained performance during a threefold surge in 
traffic during peak sales periods. 

Thus, empirical verification confirms the hypothesis: 

combining predictive ML diagnostics with RL-based 

scheduling reliably reduces recovery time with a 

moderate increase in computational costs. The resulting 

regressions—linking failure complexity to MTTR and 
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associated costs—form the basis for practical 

recommendations presented in the concluding section. 

CONCLUSION 

The transition to hybrid ML + RL-based remediation 

enables a median reduction in MTTR while increasing 

the proportion of successful recoveries. Genetic 

algorithms also show significant potential but remain 

sensitive to cloud quota limitations. 

Rule-based approaches remain justified for simple, high-

frequency failures (F1, F2) under strict resource 

constraints. 

ML-prioritization is advisable during phases of alert 

stream growth, where noise reduction is critical for on-

call teams. 

RL agents should be deployed in clusters characterized 

by high workload uncertainty and access to GPU 

resources, with the mandatory implementation of a 

protective “supervisor policy.” 

It should be noted that the experimental setup did not 

simulate extra-regional disasters or failures specific to 

managed PaaS services. The RL agent was trained on a 

limited dataset; for production deployment, an 

expanded dataset and validation against real-world 

traffic are recommended. 

Overall, the findings demonstrate that intelligent 

remediation methods can not only reduce downtime 

but also enhance the economic resilience of cloud 

infrastructure, paving the way toward fully autonomous, 

self-healing digital platforms. 

REFERENCES 

Patil R. V. et al. Self Healing Infrastructure System 

//International Journal of Electrical, Electronics and 

Computer Systems. – 2025. – Vol. 14 (1). –pp. 13-18. 

Syed A. A. M., Anazagasty E. AI-Driven Infrastructure 

Automation: Leveraging AI and ML for Self-Healing and 

Auto-Scaling Cloud Environments //International 

Journal of Artificial Intelligence, Data Science, and 

Machine Learning. – 2024. – Vol. 5 (1). – pp. 32-43. 

Shah H., Patel J. Self-Healing AI: Leveraging Cloud 

Computing for Autonomous Software Recovery 

//Revista española de Documentación Científica. – 2022. 

– Vol. 16 (4). – pp. 180-200. 

Devi R. K., Muthukannan M. Self-Healing Fault Tolerance 

Technique in Cloud Datacenter //2021 6th International 

Conference on Inventive Computation Technologies 

(ICICT). – IEEE, 2021. – pp. 731-737. 

Khlaisamniang P. et al. Generative Ai For Self-Healing 

Systems //2023 18th International Joint Symposium on 

Artificial Intelligence and Natural Language Processing 

(iSAI-NLP). – IEEE, 2023. – pp. 1-6. 

Domingos J. et al. Predicting Cloud Applications Failures 

from Infrastructure Level Data //2023 53rd Annual 

IEEE/IFIP International Conference on Dependable 

Systems and Networks Workshops (DSN-W). – IEEE, 

2023. – pp. 9-16. 

Sarvari P. A. et al. Next-Generation Infrastructure and 

Application Scaling: Enhancing Resilience and 

Optimizing Resource Consumption //Global Joint 

Conference on Industrial Engineering and Its Application 

Areas. – Cham : Springer Nature Switzerland, 2023. – pp. 

63-76. 

Friesen M., Wisniewski L., Jasperneite J. Machine 

Learning for Zero-Touch Management in Heterogeneous 

Industrial Networks-A Review //2022 IEEE 18th 

International Conference on Factory Communication 

Systems (WFCS). – IEEE, 2022. – pp. 1-8. 

Gheibi O., Weyns D., Quin F. Applying Machine Learning 

in Self-Adaptive Systems: A Systematic Literature 

Review //ACM Transactions on Autonomous and 

Adaptive Systems (TAAS). – 2021. – Vol. 15 (3). – pp. 1-

37. 

Varma S. C. G. Artificial Intelligence in Cloud Computing: 

Building Intelligent, Distributed, and Fault-Tolerant 

Systems //International Journal of AI, BigData, 

Computational and Management Studies. – 2022. – Vol. 

3 (1). – pp. 37-45.

 


