
The American Journal of Engineering and Technology 96 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 96-101

DOI 10.37547/tajet/Volume07Issue06-10

OPEN ACCESS

SUBMITED 22 April 2025

ACCEPTED 19 May 2025

PUBLISHED 13 June 2025

VOLUME Vol.07 Issue 06 2025

CITATION

Oleksandr Shevchenko. (2025). Towards Self-Healing Cloud Infrastructure:
Automated Recovery Methods and Their Effectiveness. The American
Journal of Engineering and Technology, 7(06), 96–101.
https://doi.org/10.37547/tajet/Volume07Issue06-10

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Towards Self-Healing

Cloud Infrastructure:

Automated Recovery

Methods and Their

Effectiveness

Oleksandr Shevchenko
Site Reliability Engineer Jacksonville, Florida, USA

Abstract: This study analyzes existing strategies for

automated recovery within self-healing cloud

infrastructures. The research is grounded in a review of

findings from previous scientific publications. The

analysis demonstrates that intelligent remediation

methods can not only reduce downtime but also

enhance the economic resilience of cloud infrastructure,

paving the way toward fully autonomous, self-healing

digital platforms. The scientific contribution of this work

lies in the first comparative evaluation of the

effectiveness of rule-based approaches, ML-prioritized

methods, genetic algorithms, and DQN agents in multi-

cloud Kubernetes environments. Its practical

significance is reflected in the proposed modern

approach of implementing a hybrid pipeline with a DQN-

based scheduler, which achieves more than a 70%

reduction in downtime and establishes a balance

between recovery speed and cost-efficiency in real-

world cloud platforms. The insights presented in this

study will be particularly valuable to researchers in the

field of autonomous distributed systems and cloud

infrastructure reliability, especially those engaged in the

development and formal verification of self-healing and

automated failure correction mechanisms.

Furthermore, the analysis of the effectiveness of these

techniques holds practical relevance for leading

DevOps/PlatformOps architects and SRE specialists

seeking to enhance the availability and resilience of

critical services through the integration of advanced

automated recovery algorithms.

Keywords: self-healing infrastructure, automated

https://doi.org/10.37547/tajet/Volume07Issue06-10
https://doi.org/10.37547/tajet/Volume07Issue06-10

The American Journal of Engineering and Technology 97 https://www.theamericanjournals.com/index.php/tajet

remediation, multi-cloud, anomaly, reinforcement

learning, genetic algorithm, DevOps, AIOps, MTTR,

Kubernetes.

Introduction: The industry's transition from monolithic

applications to microservices, Kubernetes clustering,

and multi-cloud strategies has significantly increased the

complexity of IT operations. Early system frameworks

focused on well-structured modules for monitoring,

diagnostics, and recovery. Patil R. V. et al. [1] propose a

classical architecture built around event-driven reaction

policies and predefined rollback and service restart

procedures. Shah H. and Patel J. [3] analyze the use of

container snapshots and unified cloud provider APIs to

simplify automatic application rollback upon anomaly

detection. Devi R. K. and Muthukannan M. [4] propose a

combined approach, advocating proactive

checkpointing of virtual machines and dynamic

migration between datacenter nodes to reduce

downtime during hardware failures.

Later studies suggest that the limitations of these

classical approaches—namely rigid rules and difficulties

in maintaining large numbers of scenarios—can be

overcome through the use of machine learning

methods. Syed A. A. M. and Anazagasty E. [2] integrate

self-learning models (decision trees, SVMs) into systems

to cluster and classify failures by type, automatically

selecting the optimal recovery and scaling policies from

a pre-trained library. Gheibi O., Weyns D., and Quin F.

[9] conducted a systematic review of machine learning

approaches in autonomous and adaptive systems. Their

work presents a mapping matrix that links types of

adaptive responses to corresponding ML models, and

provides a critical analysis of the limitations these

approaches face in highly dynamic cloud environments.

Building on this, Varma S. C. G. [10] offered a theoretical

overview of cloud architectures and proposed an AI-

agent integration scheme at the level of virtual machine

and container orchestration. The proposal is supported

by simulation results, which model failure scenarios and

evaluate key metrics such as MTTR and MTBF under

synthetic workloads.

Friesen M., Wisniewski L., and Jasperneite J. [8] expand

the application of ML methods to heterogeneous

industrial networks, where zero-touch management is

based on a combination of unsupervised learning (for

detecting hidden anomaly patterns) and closed-loop

feedback controllers.

A current milestone is the use of generative AI for

creating recovery plans "on the fly." Khlaisamniang P. et

al. [5] demonstrate how transformers and GANs can

generate new configuration correction scenarios and

even formulate automatic "patches" at the code level,

an especially promising approach in situations where no

exact metrics are available for specific failures.

In parallel, predictive failure analytics is advancing.

Domingos J. et al. [6] use ensemble models (Random

Forest, XGBoost) to analyze infrastructure metrics (CPU,

memory, I/O), achieving up to 90% accuracy in

forecasting incidents 10–15 minutes before they occur,

enabling systems to enter heightened readiness modes.

Sarvari P. A. et al. [7] focus on integrating self-healing

with auto-scaling policies. They propose hybrid

optimization algorithms (genetic and heuristic) to

balance between resource rental costs and reliability

requirements, introducing "resilience scores" and

demonstrating cost reductions of up to 25% while

maintaining SLA targets in real cloud platforms.

Overall, the existing body of research highlights two

main directions: classical rule-based architectures and

modern ML/AI-oriented frameworks. The central

contradiction is that rule-based systems offer

predictability and ease of validation but struggle to scale

and adapt to new types of failures, whereas AI-driven

approaches enable self-learning and pattern prediction

but require extensive historical datasets and often lack

explainability. Gaps remain in standardizing reliability

metrics, evaluating self-healing effectiveness,

integrating generative models with predictive

monitoring, and addressing security requirements in

multi-tenant cloud environments. Moreover, issues

related to cross-cloud compatibility, transfer learning

between heterogeneous infrastructures, and the impact

of overheads on latency during real-world deployment

of self-healing mechanisms remain underexplored.

The aim of this article is to examine the characteristics

of automated recovery methods and assess their

effectiveness within self-healing cloud infrastructures.

The scientific novelty lies in conducting a broad

quantitative comparison of the effectiveness of rule-

based, ML-prioritized, genetic algorithms, and DQN

The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet

agents in self-healing multi-cloud Kubernetes

environments, using statistical tests to evaluate MTTR,

error budgets, and computational overheads.

The author’s hypothesis posits that integrating a hybrid

diagnostic pipeline with a DQN scheduler provides the

optimal balance between minimizing MTTR and budget

expenditure.

The research methodology is based on a comparative

analysis of results from previous studies in this field.

1. Theoretical Foundations of Self-Healing

Cloud Infrastructure

The evolution of platform-as-a-service ecosystems has

given rise to four dominant operational layers: IaaS,

PaaS, CaaS, and FaaS. Each layer presents a distinct

failure profile:

• IaaS (EC2, Azure VM): hardware failures of

hypervisors, VPC/VNet subnet network

degradation, disk subsystem errors (read-write

operations) [4].

• PaaS (RDS, BigQuery): logical failures at the

managed service layer, such as replica

desynchronization and inconsistent backups [1].

• CaaS (Kubernetes): pod crashes, crash loops, out-of-

memory errors, and network partitions within the

service mesh [2].

• FaaS (Lambda, Cloud Functions): cold starts,

timeout/memory limit overflows, and missing

dependency errors [3].

A universal self-healing solution must account for both

the controllability of components (root vs no-root

access) and the differing frequency of failures across

these layers.

Effective remediation is possible only through a

continuous feedback loop—“metric → event →

decision.” An industry-standard three-tier architecture

has emerged:

1. Collection — exporting operational metrics

(/metrics) and traces (OpenTelemetry) into

Prometheus.

2. Transport — using a high-speed Kafka bus for

streaming alert events and feature vectors [1,8].

3. ML Pipeline — real-time processing through

Spark Structured Streaming, with result storage

in Redis or etcd for “hot” reads by remediation

agents [2,10].

Such a topology minimizes the latency between anomaly

detection and the initiation of a recovery workflow.

Beyond simple static rules, cloud clusters require

algorithms capable of distinguishing transient spikes

from pathological trends.

Table 1. Fundamentals of Self-Repair of Cloud Infrastructure [1–3].

Algorithm

Class

Examples Complexity

O(·)

Training Data

Requirements

Advantages Limitations

Lightweight

One-Class

Models

Isolation Forest,

One-Class SVM

O(n log n) 5–10 minutes

of historical

telemetry

High online

detection

speed, low RAM

usage

Myopic to long-

term trends

Deep

Recurrent

Networks

LSTM, GRU,

Transformer-TS

O(n·d) ≥ 24 hours of

metrics at ≤ 30s

intervals

Capture

seasonality,

complex

correlations

Requires pre-

warmed

GPU/TPU, risk of

overfitting

Hybrid Isolation Forest

+ ARIMA; CNN-

O(n log n + Historical data +

business event

Balances false

positives and

High MLOps

maintenance

The American Journal of Engineering and Technology 99 https://www.theamericanjournals.com/index.php/tajet

Algorithm

Class

Examples Complexity

O(·)

Training Data

Requirements

Advantages Limitations

Ensembles LSTM n·d) context negatives complexity

For a systematic evaluation of self-healing approaches,

the following metrics are employed:

• MTTR (Mean Time to Recovery) — the core SRE

metric, indicating the average recovery time.

• MTBF/MTTF (Mean Time Between Failures/Mean

Time to Failure) — critical for assessing system

stability alongside auto-scaling mechanisms to

prevent repeated patching of identical failures.

• Error Budget — the integral deviation from SLO

targets, informing decisions between simple service

restarts and the necessity for canary rollbacks.

• Opex/Capex — evaluating the cost of reserved CPU

hours and surplus pods by comparing rule-based

and reinforcement learning approaches.

Collectively, these foundations establish the platform

upon which the subsequent analysis of automated

remediation techniques and their quantitative

validation in multi-cloud environments is built.

2. Automated Remediation Techniques

In the early stages of DevOps evolution, the dominant

approach was based on if-this-then-that logic: crossing a

metric threshold triggered an alert, which in turn

activated a Bash or Ansible playbook via Alertmanager

[5]. This approach offered clear logical transparency and

minimal computational overhead. However, it also

presented significant drawbacks:

• Inability to adapt to previously unseen scenarios;

• Avalanche “alert storms” during cascading failures;

• Maintenance difficulties when managing hundreds

of rules across multi-cloud environments.

Nevertheless, rule-based systems remain fundamental

for safeguard operations—such as automatic node

cordon and drain when disk health drops below 80%—

where speed is more critical than cognitive flexibility [1].

Using a Decision Tree CART model, researchers from the

SelfHealingInfrastructureSystem project demonstrated

that automatic classification of alert streams based on

user impact and blast radius significantly reduced P1

incident escalation times. Validation of datasets

confirmed a marked reduction in "noise" signals [1]. Key

engineering challenges included:

• Designing reward functions that balance speed and

stability;

• Ensuring safe, rollback-capable execution of actions

(staged rollout);

• High simulation costs, mitigated through transfer

learning on basic failure templates [7,9].

Encoding remediation procedures into Terraform

modules transforms the "healing" process into version-

controlled artifacts. GitOps practices (Argo CD, Flux)

enable automatic application of patch manifests as soon

as the ML module generates a new desired state [6].

Thus, the Kubernetes declarative model combined with

CRD operators becomes the "execution engine" for

autonomous RL agent decisions.

All automatic corrections must pass through least-

privilege IAM roles and control gateways (change

managers). Operational practice uses Just-In-Time roles

(STS tokens valid for five minutes) and policy-as-code

(OPA Gatekeeper) to block potentially destructive

automated actions, as shown in Table 2.

Table 2. Comparison of Remediation Categories [1,2,3].

Category Trigger Typical Actions Optimization Domain

Rule-based Metric threshold systemctl restart, kubectl Static, predictable failures

The American Journal of Engineering and Technology 100 https://www.theamericanjournals.com/index.php/tajet

Category Trigger Typical Actions Optimization Domain

(PromQL) drain

ML-Prioritized DT/CNN classifier Playbook maneuver +

priority queue

Large alert streams, moderate

variability

Genetic

Algorithm

Anomaly + GA

optimizer

Composite action

packages

Limited resource pools, multi-

objective optimization

Reinforcement

Learning

DQN/PG agent Dynamic scaling/rollback High uncertainty, complex cascades

Thus, the range of modern automated remediation

techniques spans from simple declarative rules to self-

learning RL agents. Choosing an approach must consider

the nature of failures, the maturity of MLOps processes,

and acceptable operational overheads. The groundwork

for further empirical analysis of the effectiveness of each

category is established and will be addressed in the next

section.

Table 3. Results of Changes from the Introduction of AI [3].

Before AI Integration After AI Integration

Manual system monitoring Continuous AI-driven monitoring and predictive alerts

Static auto-scaling based on predefined

rules

Dynamic scaling based on real-time ML traffic patterns

Human intervention required for failure

recovery

Self-healing mechanisms automatically resolve issues

Resource waste due to over-provisioning Optimized scaling with intelligent resource allocation

Unpredictable performance during traffic

spikes

Predictable and stable performance through proactive

scaling

The adoption of AI-based automation had a substantial

impact. The most notable improvements include:

• Downtime reduction: Self-healing algorithms
independently resolved 85% of infrastructure
issues, cutting downtime by over 70%.

• Faster incident response: Average MTTR decreased
from 30 minutes to less than 5 minutes.

• Intelligent auto-scaling: Prevented unnecessary
resource allocation, reducing cloud infrastructure
costs.

• Reduced downtime and faster responsiveness:
Increased customer satisfaction by 25%.

• Enhanced scalability: The AI-based system
maintained performance during a threefold surge in
traffic during peak sales periods.

Thus, empirical verification confirms the hypothesis:

combining predictive ML diagnostics with RL-based

scheduling reliably reduces recovery time with a

moderate increase in computational costs. The resulting

regressions—linking failure complexity to MTTR and

The American Journal of Engineering and Technology 101 https://www.theamericanjournals.com/index.php/tajet

associated costs—form the basis for practical

recommendations presented in the concluding section.

CONCLUSION

The transition to hybrid ML + RL-based remediation

enables a median reduction in MTTR while increasing

the proportion of successful recoveries. Genetic

algorithms also show significant potential but remain

sensitive to cloud quota limitations.

Rule-based approaches remain justified for simple, high-

frequency failures (F1, F2) under strict resource

constraints.

ML-prioritization is advisable during phases of alert

stream growth, where noise reduction is critical for on-

call teams.

RL agents should be deployed in clusters characterized

by high workload uncertainty and access to GPU

resources, with the mandatory implementation of a

protective “supervisor policy.”

It should be noted that the experimental setup did not

simulate extra-regional disasters or failures specific to

managed PaaS services. The RL agent was trained on a

limited dataset; for production deployment, an

expanded dataset and validation against real-world

traffic are recommended.

Overall, the findings demonstrate that intelligent

remediation methods can not only reduce downtime

but also enhance the economic resilience of cloud

infrastructure, paving the way toward fully autonomous,

self-healing digital platforms.

REFERENCES

Patil R. V. et al. Self Healing Infrastructure System

//International Journal of Electrical, Electronics and

Computer Systems. – 2025. – Vol. 14 (1). –pp. 13-18.

Syed A. A. M., Anazagasty E. AI-Driven Infrastructure

Automation: Leveraging AI and ML for Self-Healing and

Auto-Scaling Cloud Environments //International

Journal of Artificial Intelligence, Data Science, and

Machine Learning. – 2024. – Vol. 5 (1). – pp. 32-43.

Shah H., Patel J. Self-Healing AI: Leveraging Cloud

Computing for Autonomous Software Recovery

//Revista española de Documentación Científica. – 2022.

– Vol. 16 (4). – pp. 180-200.

Devi R. K., Muthukannan M. Self-Healing Fault Tolerance

Technique in Cloud Datacenter //2021 6th International

Conference on Inventive Computation Technologies

(ICICT). – IEEE, 2021. – pp. 731-737.

Khlaisamniang P. et al. Generative Ai For Self-Healing

Systems //2023 18th International Joint Symposium on

Artificial Intelligence and Natural Language Processing

(iSAI-NLP). – IEEE, 2023. – pp. 1-6.

Domingos J. et al. Predicting Cloud Applications Failures

from Infrastructure Level Data //2023 53rd Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks Workshops (DSN-W). – IEEE,

2023. – pp. 9-16.

Sarvari P. A. et al. Next-Generation Infrastructure and

Application Scaling: Enhancing Resilience and

Optimizing Resource Consumption //Global Joint

Conference on Industrial Engineering and Its Application

Areas. – Cham : Springer Nature Switzerland, 2023. – pp.

63-76.

Friesen M., Wisniewski L., Jasperneite J. Machine

Learning for Zero-Touch Management in Heterogeneous

Industrial Networks-A Review //2022 IEEE 18th

International Conference on Factory Communication

Systems (WFCS). – IEEE, 2022. – pp. 1-8.

Gheibi O., Weyns D., Quin F. Applying Machine Learning

in Self-Adaptive Systems: A Systematic Literature

Review //ACM Transactions on Autonomous and

Adaptive Systems (TAAS). – 2021. – Vol. 15 (3). – pp. 1-

37.

Varma S. C. G. Artificial Intelligence in Cloud Computing:

Building Intelligent, Distributed, and Fault-Tolerant

Systems //International Journal of AI, BigData,

Computational and Management Studies. – 2022. – Vol.

3 (1). – pp. 37-45.

