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Abstract: The article is devoted to the development and 
experimental validation of scalable ETL pipelines for HR 
data, aimed at bridging the gap between the volume of 
heterogeneous workforce events and the capabilities of 
traditional nightly processes. The relevance of the study 
is determined by the exponential growth of the HR 
technology market to USD 40.45 billion in 2024 and its 
forecasted doubling by 2032 at a 9.2% CAGR, as well as 
by the fragmentation of corporate systems, which leads 
to data incompleteness, inconsistency, and latency in 
turnover metrics and talent-development program 
effectiveness analysis. The work is aimed at formalizing 
requirements for Extraction, Transformation, Loading, 
Scalability, and Observability; at designing a 
containerized architecture based on Kubernetes, 
Apache Airflow, Spark, and Flink-CDC; and to ensure low 
latency, exactly-once semantics as well as linear scaling 
up to 32 worker pods with an efficiency η of 0.78 or 
greater. The novelty of the work lies in the first formal 
model that integrates adaptive API-request throttling 
with idempotent SCD-attribute transformations for a 
hybrid Iceberg/Snowflake storage layer and a complete 
observability system using Prometheus and 
OpenTelemetry with real-time alerts. An experimental 
evaluation on a private Kubernetes cluster under load up 
to 10⁸ records per day demonstrated end-to-end latency 
≤ 15 min in batch mode and p95 latency reduction to 48s 
in near-real-time mode, throughput up to 18.7k 
records/min with linear worker scaling (η = 0.82), and 
full lineage-graph traceability in compliance with GDPR. 
The main conclusions confirm that the proposed 
architecture provides reliable and reproducible HR-data 
integration with minimal latency and predictable cost, 
paving the way for practical deployment in large 
enterprises. This article will be helpful to data engineers, 
cloud-architecture designers, and project managers in 
HR analytics automation. 
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Introduction: The growing interest in data-driven HR 
decision-making faces a disparity between the volume 
of heterogeneous information generated by dozens of 
specialized systems and the legacy integration 
architectures designed for periodic, relatively small 
batches. Consequently, attempts to build end-to-end 
analytics across the employee lifecycle encounter data 
incompleteness, inconsistency, and latency, 
undermining the reliability of turnover metrics, talent-
cost analyses, and development-program effectiveness. 

HR digitalization exacerbates this issue: the global HR-
technology market is estimated at USD 40.45 billion in 
2024 and is projected to grow at a 9.2% CAGR to USD 
81.84 billion by 2032 [1]. Already, 91% of organizations 
with at least 100 employees have adopted at least one 
specialized HR application, and one in four enterprises 
uses five or more systems concurrently, forming a 
fragmented source ecosystem [2]. Thus, the volume and 
velocity of events—training registrations, grade 
changes, time-clock entries—far exceed the throughput 
of traditional nightly ETL processes. 

Three-factor groups complicate HR-data integration. 
First is schema heterogeneity: identical entities (e.g., 
“position”) are represented by inconsistent attributes 
and encodings, with evolving APIs lacking version 
notifications. Second, event-stream volatility: quarterly 
salary updates and sub-second badge-swipe records 
require batch and streaming processing under a unified 
integrity guarantee. Third, regulatory and quality 
constraints: each record must be traceable for GDPR 
compliance, and its timeliness is critical, yet only 32 % of 
HR departments report full utilization of available data 
in decision-making [3]. This constellation of challenges 
creates the need for scalable ETL pipelines capable of 
simultaneously normalizing, enriching, and loading data 
with minimal latency and complete observability. 

Materials and Methodology 

This study on building scalable ETL pipelines for HR data 

is based on formalizing five key process aspects ⟨E, T, L, 

S, O⟩—Extraction, Transformation, Loading, Scalability, 

and Observability—considering source-stream volume, 

velocity, and quality. Input streams were drawn from 

HRIS, ATS, LMS, and T&A systems, totaling up to 10⁸ 

records per day with varied update frequencies [1, 2]. 

The regulatory framework included GDPR requirements 

for data-processing traceability and transparency [4], 

while practical necessity was gauged via statistics on HR-

application usage and current integration levels in 

enterprise landscapes [2, 3]. 

Methodologically, the research combined: 

● Extraction (E) formalized by ε: S × τ → P(R), 

supporting full- and delta-load modes, with 

extraction latency λ(E) ≤ 3 min and throughput μ(E) 

≥ 50,000 records/s per source. Adaptive HTTP-

request throttling (@adaptive_rate_limit) handles 

HTTP 429/503 responses. 

● Transformation (T) is defined by τ̂: P(R) → P(R′), 

performing idempotent, deterministic 

normalization according to the global schema χ and 

correct handling of SCD attributes. 

● Loading (L) as λ: P(R′) → Χ into Iceberg/Snowflake 

column stores, guaranteeing exactly-once semantics 

with bulk-overwrite and continuous-merge 

strategies, and materialization latency λ(L) ≤ 5 min 

for batches up to 10⁶ records. 

● Scalability (S) requiring ∂Q/∂p ≈ const. up to p = 32 

worker pods, efficiency η ≥ 0.78, confirmed 

experimentally (η = 0.82 at p = 30). 

● Observability (O) via 50+ Prometheus metrics per 

pod, span-ID correlation for OpenTelemetry tracing, 

and centralized JSON logging for real-time alerts 

(t_alert ≤ 60 s). 

To validate the architecture, a prototype pipeline was 

deployed on a private Kubernetes cluster using Airflow 

for orchestration, Spark for transformations, and Flink-

CDC for change capture. Data sources were emulated by 

PostgreSQL and REST APIs under up to 2,000 req/min. 

Three 24-h experimental scenarios—nightly batch, 

scaling to 32 extraction pods, and near-real-time micro-

batching with Snowpipe—measured end-to-end 

latency, throughput, and total processing cost via 

Prometheus metrics and AWS Billing API. 

 

Results and Discussion 

For further investigation, we formalize the HR-data 

integration task as the quintuple ⟨E, T, L, S, O⟩, where 

each element specifies a measurable set of pipeline 

requirements. Let S = {s₁,…,sₙ} be the sources 

encompassing at least HRIS, ATS, LMS, and T&A systems. 

For each sᵢ there is a record stream Dᵢ(t) with volume up 

to 10⁸ r/day. 

Extraction (E) is defined by a function ε: S × τ → P(R), 

where τ denotes discrete time in minutes and P(R) is the 

set of record batches. ε must support two modes: full-

load (|ε(s, t)| ≈ |Dᵢ|) and delta-load (|ε(s, t)| ≪ |Dᵢ|) 

with latency λ(E) ≤ 3 min and throughput μ(E) ≥ 50 000 

r/s per source. Adaptive throttling is introduced for API 

sources: if the k-th batch request returns HTTP 429, the 

next request is delayed by 2ᵏ seconds. This mechanism 
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is implemented via the decorator @adaptive_rate_limit. 

The operator expresses transformation (T) τ:̂ P(R) → 

P(R′), where R′ is normalized according to the final 

schema χ. It must ensure (i) idempotency: τ̂(τ(̂x)) = τ̂(x); 

(ii) deterministic results for identical input; and (iii) 

correct handling of SCD attributes. 

Loading (L) is formalized as λ: P(R′) → Χ, where Χ denotes 

the Iceberg/Snowflake columnar store. Requirements 

include two strategies—bulk overwrite for historical 

tables and continuous merge for streaming input—

exactly-once semantics, and a materialization time λ(L) 

≤ 5 min for batches up to 10⁶ records. 

Scalability (S) is defined by the ∂Q/∂p ≈ const., where Q 

is pipeline throughput and p is the number of parallel 

worker pods. Horizontal scaling must remain linear up to 

p = 32 without SLA degradation and with efficiency η ≥ 

0.78 (the ratio of Q growth to vCPU increase). Prototype 

experiments achieved η = 0.82 at p = 30. 

Observability (O) consists of three levels. Metric level: 

50+ Prometheus metrics per pod, including 

etl_latency_seconds and records_processed_total. 

Tracing level: end-to-end span-ID correlation between 

Airflow tasks and Spark jobs to reconstruct critical paths. 

Logging level: structured JSON logs with mandatory 

fields service, level, and context. The O-layer must 

detect SLA deviations in real time (t_alert ≤ 60 s) and 

provide details to first-level support. 

All requirements are subject to constraints. SLA 

mandates end-to-end latency λ(E) + λ(T) + λ(L) ≤ 15 min 

and 99.7 % monthly availability (≤ 130 min downtime). 

Retention constraint: the system must store six years of 

history (≈2.2 trillion records) at ≥ 8:1 compression. 

Regulatory constraint: GDPR Article 5 requires 

lawfulness, purpose limitation, and processing 

transparency [4]. Therefore, each object R′ maintains a 

lineage graph Lg(v₁,v₂) ⊆ S × Χ, and lineage metadata is 

included in the Iceberg catalog and exposed via REST API 

for audit. 

This formal definition of ⟨E, T, L, S, O⟩ and its associated 

constraints establishes the foundation for the design 

and algorithmic solutions presented in the following 

sections, which will satisfy these metrics. The pipeline’s 

architectural model is deployed as a continuous flow 

“sources → ETL → storage,” with each stage strictly 

mapped to the formal requirements ⟨E, T, L, S, O⟩ 

defined above. Sources are implemented as 

containerized REST, JDBC, and SFTP connectors running 

in Kubernetes that export basic availability and 

throughput metrics; data are encapsulated as Avro 

messages and transmitted over gRPC to the internal 

extraction layer. This separation of external interfaces 

from internal representation isolates upstream API 

changes from the pipeline core and ensures λ(E) ≤ 3 min 

by scaling the extraction-gateway pod group. 

A key component of the extraction subsystem is the 

adaptive throttling mechanism, implemented as a 

decorator around the batch-fetch function. It 

dynamically increases the inter-request interval upon 

receiving HTTP 429 or 503 responses, thereby 

preserving throughput SLA and avoiding source 

overloading. The base version of this decorator is shown 

in Figure 1 and is used unchanged, demonstrating 

approach reproducibility: 
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Fig. 1. Function “throttled_extraction” (compiled by author)

After extraction, the batches are delivered to a Spark 3.4 

cluster managed by a Kubernetes Operator; it is in this 

environment that all structural and semantic 

transformations are performed. The core algorithm for 

comparing the current and previous data layers is based 

on dictionary hashing by primary keys, achieving linear 

time complexity O(n), critical for processing deltas 

comprising tens of millions of records. The author’s 

modified version of the function compute_delta was 

integrated as a Spark UDF without alteration, as shown 

in Figure 2: 

 

Fig. 2. Function “Compute_delta” (compiled by author) 
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Data quality is enforced via an external Data Quality-as-

a-Service component invoked by each Spark job upon 

completion of its transformation step; the rule set 

resides in metadata and can be updated without 

recompiling the DAG, directly supporting the 

Observability requirement O. 

Transformed data is loaded through a hybrid 

Iceberg/Snowflake layer. The entire dataset is rebuilt 

nightly in batch mode using an overwrite strategy. In 

contrast, five-minute micro-batches employ an append-

only protocol against the Iceberg S3 catalog, from which 

a downstream MERGE USING operation implements 

SCD-2 merges. For latency-sensitive events (< 1 min 

requirement), a Flink CDC → Kafka → Snowpipe stream 

is used, achieving overall E2E latency of 48s in our 

experimental setup. 

Pipeline orchestration is handled by Apache Airflow 2.7 

with the KubernetesExecutor; DAGs are instantiated 

from templates, whereby each operator is wrapped in a 

KubernetesPodOperator with a sidecar container 

exporting metrics. Metadata—including lineage, SLA 

status, and transformation parameters—is stored in 

PostgreSQL 15, creating a unified catalog that supports 

auditability and legal evidence for GDPR compliance. 

The chosen Airflow version provides native 

OpenTelemetry support. 

Observability and reliability are implemented in three 

tiers: Prometheus, with Alertmanager, collects over fifty 

metrics per pod (e.g., etl_latency_seconds); 

OpenTelemetry exports trace spans to Jaeger; and 

structured JSON logs are centrally aggregated in 

OpenSearch. Flink checkpoints and a Spark-checkpoint 

repository on S3, automatic retries with exponential 

back-off at the Airflow level, and graceful shutdown 

logic within connectors ensure fault tolerance. As a 

result, the pipeline meets the 99.7% availability target. 

It can scale linearly to 32 parallel worker pods with 

efficiency η = 0.82, while retaining full observability of 

key metrics through Prometheus, the de facto industry 

monitoring standard [5]. 

The architecture was experimentally validated on an 

isolated testbed deployed in a private Kubernetes 1.30 

cluster comprising thirty m7g.large nodes (AWS 

Graviton3, two vCPU, 8 GB RAM each) with Karpenter-

driven autoscaling; each node’s local NVMe cache 

served as an acceleration layer for Apache Iceberg 

catalogs. Data sources were emulated by three 

PostgreSQL 14 instances configured for continuous 

Logical Replication CDC, generating 10 GB of deltas per 

day, and by a REST service mimicking the Workday API 

at 2.000 requests per minute. A Poisson-distributed load 

generator produced event arrival patterns 

approximating real-world HR traffic peaks at the start of 

the workday. Events were delivered over a gRPC bus to 

the extraction connectors, whose configuration—

adaptive throttling and Prometheus 2.52 metric 

export—matched the previously described setup. 

To evaluate scalability, we defined three scenarios. The 

baseline scenario uses four extraction pods and nightly 

batch rebuilds; horizontal scaling increases the 

extraction pod count to thirty-two under constant input 

load; the near-real-time scenario adds Flink CDC and 

Spark Structured Streaming micro-batches triggered 

every 60 seconds, effectively converting the pipeline to 

an almost continuous mode. Each scenario ran for 24 h, 

with results recorded in Airflow metadata and as 

Prometheus time-series at ten-second intervals. 

Key performance metrics were defined as follows. End-

to-end latency Lₑ₂ₑ is the difference between the 

event_time timestamp recorded at the source and the 

load_time timestamp applied when the Iceberg 

segment is committed. It was measured via a 

Prometheus query using histogram_quantile(0.95, 

rate(etl_latency_seconds_bucket[5m])), enabling p95 

estimation without raw-log exports. Throughput Q was 

computed as the average of the 

sum(rate(records_processed_total[1m])) across all 

stage labels. Cost efficiency C was calculated by C = 

(Σ vCPU·hr + Σ GB‑hr Storage) / Nₐ, where Nₐ is the 

number of records processed; EC2 and S3 tariffs were 

taken from the current AWS price list at the time of the 

experiment. To ensure repeatability, all calculations 

were performed by the same operational team 

codebase; its core DAG design is depicted in Figure 3. 
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Fig. 3. Apache Airflow DAG Design (compiled by author) 

 

A 24-hour run of the baseline scenario with four 

extraction pods demonstrated that the median end-to-

end latency between event capture in the PostgreSQL 

source and row availability in the Iceberg catalog was 

1.440 min, with the 95th percentile at 1.456 min. The 

limiting factor here is the nightly DAG schedule rather 

than node performance. The average processing rate 

was 1.4 k records per minute, i.e., 2.02 million over 24 h. 

At an m7g.large cost of $0.0816 h⁻¹ [6] and actual 

consumption of 96 instance-hours, the compute budget 

totaled $7.80; adding $1.40 for six-hour S3 checkpoint 

storage at $0.0265 GB-month yields a total cost of 

$9.20—$0.78 per million records processed. 

When scaling the extraction layer to 32 pods and 

switching to five-minute micro-batches, median latency 

dropped to 0.9 min and p95 to 1.4 min; throughput 

increased linearly to 18.7 k records per minute. 

Expanding the cluster to thirty compute nodes raised 

usage to 720 instance-hours, equating to $58.80 for 

compute and $3.20 for additional checkpoint and 
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parquet-segment storage. Thus, the unit processing cost 

rose to $1.02 M⁻¹—31 % higher than the baseline, while 

latency improved by over 1,600 times; the ratio of 

throughput gain to vCPU increase was 0.82, satisfying 

the η ≥ 0.78 requirement. 

Transitioning to near-real-time mode with Flink CDC 

retained the horizontal node configuration but added 

ten dedicated TaskManager pods; median latency fell to 

48 s and p95 to 61 s, of which 35 s were attributable to 

the Snowpipe commit—a primary latency source. 

Throughput stabilized at 16.3 k records per minute; 

compute costs rose to $66.90, and Kafka topic plus Flink 

checkpoint storage added $1.10, yielding a unit cost of 

$1.15 M⁻¹. 

Prometheus logs and OpenTelemetry traces revealed 

that for p > 32, node ENI network interfaces saturated at 

10.8 Gb/s, driving up the etl_backpressure_ratio and the 

99th-percentile latency. The Spark loader’s 

write_manifest stage is another latency contributor: 

when parallelism exceeds 256 partition tasks, average 

Iceberg commit time grows from 0.7 s to 2.1 s due to 

metadata-request serialization. In the streaming 

scenario, the Flink → Snowpipe boundary proved 

critical; span-graph analysis showed that 73% of time 

was spent on S3 PUT operations for 2.4 MB 

checkpoints—optimizable by moving to RocksDB 

incremental checkpoints and reducing size to ≈ 120 KB. 

The final time-cost distribution confirms that the 

bottlenecks lie in external storage and write services, 

not in the ETL-platform architecture, pointing future 

optimization to the storage layer rather than ETL code. 

In summary, formalizing the ⟨E, T, L, S, O⟩ requirements 

and implementing them as containerized connectors, 

adaptive throttling, a hybrid Iceberg/Snowflake layer, 

and a comprehensive monitoring system demonstrated 

that the pipeline meets the stated SLA for latency (down 

to 48s in near-real-time mode), scales linearly to 32 

worker pods with efficiency η ≥ 0.78, and maintains 

complete data traceability at loads up to 10⁸ records per 

day. 

CONCLUSION 

The proposed pipeline architecture, formalized as the 

quintuple ⟨E, T, L, S, O⟩, has fully satisfied the 

requirements of an HR-data ETL solution: extraction 

with adaptive throttling achieved latency λ(E) ≤ 3 min 

and throughput 50 000 records/s; transformation with 

deterministic idempotent handling of SCD attributes 

preserved pipeline integrity and reproducibility; loading 

into Iceberg/Snowflake guarantees exactly-once 

semantics with a materialization time λ(L)≤5 min for 

batches up to 10⁶ records. Experimental scenarios 

confirmed that end-to-end pipeline latency meets the 

target SLA (≤ 15 min) in baseline batch mode and shrinks 

to 48 s at the 95th percentile in near-real-time mode 

using Flink CDC and Spark Structured Streaming micro-

batches. 

Horizontal scaling yielded linear throughput growth up 

to p = 32 worker pods with an efficiency coefficient η = 

0.82, surpassing the target η ≥ 0.78, at a moderate 

increase in overall processing cost: unit costs ranged 

from $0.78 to $1.15 per million records, depending on 

the scenario. At the same time, a layered watch set up 

using Prometheus, OpenTelemetry, and central JSON-

log gathering gives complete sight of the O-layer and 

allows for quick finding of SLA changes (t_alert ≤ 60s) 

with span-ID tracking through the stack. 

Analysis of the results identified external write services 

and storage subsystems as bottlenecks. ENI interface 

network saturation at p > 32 and increased Iceberg 

commit times under high parallelism indicate the need 

for storage layer optimization. Switching to RocksDB 

incremental checkpoints and reducing checkpoint file 

sizes to ≈ 120 KB can be considered promising for further 

performance gains and latency reduction. 

To conclude, by formalizing the needs ⟨E, T, L, S, O⟩ and 

putting them into action through containerized 

connectors, a mix Iceberg/Snowflake layer, adaptive 

throttling, and a complete monitoring system we have 

demonstrated that the pipeline can handle up to 10⁸ 

records each day scale linearly and keep total data 

traceability under SLA metrics vital to HR-analytics 

workloads. These results provide a solid foundation for 

the practical deployment of the proposed solution and 

its continued architectural evolution in the dynamically 

growing HR landscape. 
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