
The American Journal of Engineering and Technology 88 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 88-95

DOI 10.37547/tajet/Volume07Issue06-09

OPEN ACCESS

SUBMITED 22 April 2025

ACCEPTED 19 May 2025

PUBLISHED 10 June 2025

VOLUME Vol.07 Issue 06 2025

CITATION

Chetan Urkudkar. (2025). Building Scalable ETL Pipelines for HR Data. The
American Journal of Engineering and Technology, 7(06), 88–95.
https://doi.org/10.37547/tajet/Volume07Issue06-09.

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Building Scalable ETL

Pipelines for HR Data

Chetan Urkudkar
Senior Staff Software Development Engineer, Liveramp Inc San Ramon,

California, USA

Abstract: The article is devoted to the development and
experimental validation of scalable ETL pipelines for HR
data, aimed at bridging the gap between the volume of
heterogeneous workforce events and the capabilities of
traditional nightly processes. The relevance of the study
is determined by the exponential growth of the HR
technology market to USD 40.45 billion in 2024 and its
forecasted doubling by 2032 at a 9.2% CAGR, as well as
by the fragmentation of corporate systems, which leads
to data incompleteness, inconsistency, and latency in
turnover metrics and talent-development program
effectiveness analysis. The work is aimed at formalizing
requirements for Extraction, Transformation, Loading,
Scalability, and Observability; at designing a
containerized architecture based on Kubernetes,
Apache Airflow, Spark, and Flink-CDC; and to ensure low
latency, exactly-once semantics as well as linear scaling
up to 32 worker pods with an efficiency η of 0.78 or
greater. The novelty of the work lies in the first formal
model that integrates adaptive API-request throttling
with idempotent SCD-attribute transformations for a
hybrid Iceberg/Snowflake storage layer and a complete
observability system using Prometheus and
OpenTelemetry with real-time alerts. An experimental
evaluation on a private Kubernetes cluster under load up
to 10⁸ records per day demonstrated end-to-end latency
≤ 15 min in batch mode and p95 latency reduction to 48s
in near-real-time mode, throughput up to 18.7k
records/min with linear worker scaling (η = 0.82), and
full lineage-graph traceability in compliance with GDPR.
The main conclusions confirm that the proposed
architecture provides reliable and reproducible HR-data
integration with minimal latency and predictable cost,
paving the way for practical deployment in large
enterprises. This article will be helpful to data engineers,
cloud-architecture designers, and project managers in
HR analytics automation.

Keywords: ETL pipeline, HR data, scalability,
Observability, Iceberg, Snowflake, Kubernetes, Airflow.

https://doi.org/10.37547/tajet/Volume07Issue06-09
https://doi.org/10.37547/tajet/Volume07Issue06-09

The American Journal of Engineering and Technology 89 https://www.theamericanjournals.com/index.php/tajet

Introduction: The growing interest in data-driven HR
decision-making faces a disparity between the volume
of heterogeneous information generated by dozens of
specialized systems and the legacy integration
architectures designed for periodic, relatively small
batches. Consequently, attempts to build end-to-end
analytics across the employee lifecycle encounter data
incompleteness, inconsistency, and latency,
undermining the reliability of turnover metrics, talent-
cost analyses, and development-program effectiveness.

HR digitalization exacerbates this issue: the global HR-
technology market is estimated at USD 40.45 billion in
2024 and is projected to grow at a 9.2% CAGR to USD
81.84 billion by 2032 [1]. Already, 91% of organizations
with at least 100 employees have adopted at least one
specialized HR application, and one in four enterprises
uses five or more systems concurrently, forming a
fragmented source ecosystem [2]. Thus, the volume and
velocity of events—training registrations, grade
changes, time-clock entries—far exceed the throughput
of traditional nightly ETL processes.

Three-factor groups complicate HR-data integration.
First is schema heterogeneity: identical entities (e.g.,
“position”) are represented by inconsistent attributes
and encodings, with evolving APIs lacking version
notifications. Second, event-stream volatility: quarterly
salary updates and sub-second badge-swipe records
require batch and streaming processing under a unified
integrity guarantee. Third, regulatory and quality
constraints: each record must be traceable for GDPR
compliance, and its timeliness is critical, yet only 32 % of
HR departments report full utilization of available data
in decision-making [3]. This constellation of challenges
creates the need for scalable ETL pipelines capable of
simultaneously normalizing, enriching, and loading data
with minimal latency and complete observability.

Materials and Methodology

This study on building scalable ETL pipelines for HR data

is based on formalizing five key process aspects ⟨E, T, L,

S, O⟩—Extraction, Transformation, Loading, Scalability,

and Observability—considering source-stream volume,

velocity, and quality. Input streams were drawn from

HRIS, ATS, LMS, and T&A systems, totaling up to 10⁸

records per day with varied update frequencies [1, 2].

The regulatory framework included GDPR requirements

for data-processing traceability and transparency [4],

while practical necessity was gauged via statistics on HR-

application usage and current integration levels in

enterprise landscapes [2, 3].

Methodologically, the research combined:

● Extraction (E) formalized by ε: S × τ → P(R),

supporting full- and delta-load modes, with

extraction latency λ(E) ≤ 3 min and throughput μ(E)

≥ 50,000 records/s per source. Adaptive HTTP-

request throttling (@adaptive_rate_limit) handles

HTTP 429/503 responses.

● Transformation (T) is defined by τ̂: P(R) → P(R′),

performing idempotent, deterministic

normalization according to the global schema χ and

correct handling of SCD attributes.

● Loading (L) as λ: P(R′) → Χ into Iceberg/Snowflake

column stores, guaranteeing exactly-once semantics

with bulk-overwrite and continuous-merge

strategies, and materialization latency λ(L) ≤ 5 min

for batches up to 10⁶ records.

● Scalability (S) requiring ∂Q/∂p ≈ const. up to p = 32

worker pods, efficiency η ≥ 0.78, confirmed

experimentally (η = 0.82 at p = 30).

● Observability (O) via 50+ Prometheus metrics per

pod, span-ID correlation for OpenTelemetry tracing,

and centralized JSON logging for real-time alerts

(t_alert ≤ 60 s).

To validate the architecture, a prototype pipeline was

deployed on a private Kubernetes cluster using Airflow

for orchestration, Spark for transformations, and Flink-

CDC for change capture. Data sources were emulated by

PostgreSQL and REST APIs under up to 2,000 req/min.

Three 24-h experimental scenarios—nightly batch,

scaling to 32 extraction pods, and near-real-time micro-

batching with Snowpipe—measured end-to-end

latency, throughput, and total processing cost via

Prometheus metrics and AWS Billing API.

Results and Discussion

For further investigation, we formalize the HR-data

integration task as the quintuple ⟨E, T, L, S, O⟩, where

each element specifies a measurable set of pipeline

requirements. Let S = {s₁,…,sₙ} be the sources

encompassing at least HRIS, ATS, LMS, and T&A systems.

For each sᵢ there is a record stream Dᵢ(t) with volume up

to 10⁸ r/day.

Extraction (E) is defined by a function ε: S × τ → P(R),

where τ denotes discrete time in minutes and P(R) is the

set of record batches. ε must support two modes: full-

load (|ε(s, t)| ≈ |Dᵢ|) and delta-load (|ε(s, t)| ≪ |Dᵢ|)

with latency λ(E) ≤ 3 min and throughput μ(E) ≥ 50 000

r/s per source. Adaptive throttling is introduced for API

sources: if the k-th batch request returns HTTP 429, the

next request is delayed by 2ᵏ seconds. This mechanism

The American Journal of Engineering and Technology 90 https://www.theamericanjournals.com/index.php/tajet

is implemented via the decorator @adaptive_rate_limit.

The operator expresses transformation (T) τ:̂ P(R) →

P(R′), where R′ is normalized according to the final

schema χ. It must ensure (i) idempotency: τ̂(τ(̂x)) = τ̂(x);

(ii) deterministic results for identical input; and (iii)

correct handling of SCD attributes.

Loading (L) is formalized as λ: P(R′) → Χ, where Χ denotes

the Iceberg/Snowflake columnar store. Requirements

include two strategies—bulk overwrite for historical

tables and continuous merge for streaming input—

exactly-once semantics, and a materialization time λ(L)

≤ 5 min for batches up to 10⁶ records.

Scalability (S) is defined by the ∂Q/∂p ≈ const., where Q

is pipeline throughput and p is the number of parallel

worker pods. Horizontal scaling must remain linear up to

p = 32 without SLA degradation and with efficiency η ≥

0.78 (the ratio of Q growth to vCPU increase). Prototype

experiments achieved η = 0.82 at p = 30.

Observability (O) consists of three levels. Metric level:

50+ Prometheus metrics per pod, including

etl_latency_seconds and records_processed_total.

Tracing level: end-to-end span-ID correlation between

Airflow tasks and Spark jobs to reconstruct critical paths.

Logging level: structured JSON logs with mandatory

fields service, level, and context. The O-layer must

detect SLA deviations in real time (t_alert ≤ 60 s) and

provide details to first-level support.

All requirements are subject to constraints. SLA

mandates end-to-end latency λ(E) + λ(T) + λ(L) ≤ 15 min

and 99.7 % monthly availability (≤ 130 min downtime).

Retention constraint: the system must store six years of

history (≈2.2 trillion records) at ≥ 8:1 compression.

Regulatory constraint: GDPR Article 5 requires

lawfulness, purpose limitation, and processing

transparency [4]. Therefore, each object R′ maintains a

lineage graph Lg(v₁,v₂) ⊆ S × Χ, and lineage metadata is

included in the Iceberg catalog and exposed via REST API

for audit.

This formal definition of ⟨E, T, L, S, O⟩ and its associated

constraints establishes the foundation for the design

and algorithmic solutions presented in the following

sections, which will satisfy these metrics. The pipeline’s

architectural model is deployed as a continuous flow

“sources → ETL → storage,” with each stage strictly

mapped to the formal requirements ⟨E, T, L, S, O⟩

defined above. Sources are implemented as

containerized REST, JDBC, and SFTP connectors running

in Kubernetes that export basic availability and

throughput metrics; data are encapsulated as Avro

messages and transmitted over gRPC to the internal

extraction layer. This separation of external interfaces

from internal representation isolates upstream API

changes from the pipeline core and ensures λ(E) ≤ 3 min

by scaling the extraction-gateway pod group.

A key component of the extraction subsystem is the

adaptive throttling mechanism, implemented as a

decorator around the batch-fetch function. It

dynamically increases the inter-request interval upon

receiving HTTP 429 or 503 responses, thereby

preserving throughput SLA and avoiding source

overloading. The base version of this decorator is shown

in Figure 1 and is used unchanged, demonstrating

approach reproducibility:

The American Journal of Engineering and Technology 91 https://www.theamericanjournals.com/index.php/tajet

Fig. 1. Function “throttled_extraction” (compiled by author)

After extraction, the batches are delivered to a Spark 3.4

cluster managed by a Kubernetes Operator; it is in this

environment that all structural and semantic

transformations are performed. The core algorithm for

comparing the current and previous data layers is based

on dictionary hashing by primary keys, achieving linear

time complexity O(n), critical for processing deltas

comprising tens of millions of records. The author’s

modified version of the function compute_delta was

integrated as a Spark UDF without alteration, as shown

in Figure 2:

Fig. 2. Function “Compute_delta” (compiled by author)

The American Journal of Engineering and Technology 92 https://www.theamericanjournals.com/index.php/tajet

Data quality is enforced via an external Data Quality-as-

a-Service component invoked by each Spark job upon

completion of its transformation step; the rule set

resides in metadata and can be updated without

recompiling the DAG, directly supporting the

Observability requirement O.

Transformed data is loaded through a hybrid

Iceberg/Snowflake layer. The entire dataset is rebuilt

nightly in batch mode using an overwrite strategy. In

contrast, five-minute micro-batches employ an append-

only protocol against the Iceberg S3 catalog, from which

a downstream MERGE USING operation implements

SCD-2 merges. For latency-sensitive events (< 1 min

requirement), a Flink CDC → Kafka → Snowpipe stream

is used, achieving overall E2E latency of 48s in our

experimental setup.

Pipeline orchestration is handled by Apache Airflow 2.7

with the KubernetesExecutor; DAGs are instantiated

from templates, whereby each operator is wrapped in a

KubernetesPodOperator with a sidecar container

exporting metrics. Metadata—including lineage, SLA

status, and transformation parameters—is stored in

PostgreSQL 15, creating a unified catalog that supports

auditability and legal evidence for GDPR compliance.

The chosen Airflow version provides native

OpenTelemetry support.

Observability and reliability are implemented in three

tiers: Prometheus, with Alertmanager, collects over fifty

metrics per pod (e.g., etl_latency_seconds);

OpenTelemetry exports trace spans to Jaeger; and

structured JSON logs are centrally aggregated in

OpenSearch. Flink checkpoints and a Spark-checkpoint

repository on S3, automatic retries with exponential

back-off at the Airflow level, and graceful shutdown

logic within connectors ensure fault tolerance. As a

result, the pipeline meets the 99.7% availability target.

It can scale linearly to 32 parallel worker pods with

efficiency η = 0.82, while retaining full observability of

key metrics through Prometheus, the de facto industry

monitoring standard [5].

The architecture was experimentally validated on an

isolated testbed deployed in a private Kubernetes 1.30

cluster comprising thirty m7g.large nodes (AWS

Graviton3, two vCPU, 8 GB RAM each) with Karpenter-

driven autoscaling; each node’s local NVMe cache

served as an acceleration layer for Apache Iceberg

catalogs. Data sources were emulated by three

PostgreSQL 14 instances configured for continuous

Logical Replication CDC, generating 10 GB of deltas per

day, and by a REST service mimicking the Workday API

at 2.000 requests per minute. A Poisson-distributed load

generator produced event arrival patterns

approximating real-world HR traffic peaks at the start of

the workday. Events were delivered over a gRPC bus to

the extraction connectors, whose configuration—

adaptive throttling and Prometheus 2.52 metric

export—matched the previously described setup.

To evaluate scalability, we defined three scenarios. The

baseline scenario uses four extraction pods and nightly

batch rebuilds; horizontal scaling increases the

extraction pod count to thirty-two under constant input

load; the near-real-time scenario adds Flink CDC and

Spark Structured Streaming micro-batches triggered

every 60 seconds, effectively converting the pipeline to

an almost continuous mode. Each scenario ran for 24 h,

with results recorded in Airflow metadata and as

Prometheus time-series at ten-second intervals.

Key performance metrics were defined as follows. End-

to-end latency Lₑ₂ₑ is the difference between the

event_time timestamp recorded at the source and the

load_time timestamp applied when the Iceberg

segment is committed. It was measured via a

Prometheus query using histogram_quantile(0.95,

rate(etl_latency_seconds_bucket[5m])), enabling p95

estimation without raw-log exports. Throughput Q was

computed as the average of the

sum(rate(records_processed_total[1m])) across all

stage labels. Cost efficiency C was calculated by C =

(Σ vCPU·hr + Σ GB‑hr Storage) / Nₐ, where Nₐ is the

number of records processed; EC2 and S3 tariffs were

taken from the current AWS price list at the time of the

experiment. To ensure repeatability, all calculations

were performed by the same operational team

codebase; its core DAG design is depicted in Figure 3.

The American Journal of Engineering and Technology 93 https://www.theamericanjournals.com/index.php/tajet

Fig. 3. Apache Airflow DAG Design (compiled by author)

A 24-hour run of the baseline scenario with four

extraction pods demonstrated that the median end-to-

end latency between event capture in the PostgreSQL

source and row availability in the Iceberg catalog was

1.440 min, with the 95th percentile at 1.456 min. The

limiting factor here is the nightly DAG schedule rather

than node performance. The average processing rate

was 1.4 k records per minute, i.e., 2.02 million over 24 h.

At an m7g.large cost of $0.0816 h⁻¹ [6] and actual

consumption of 96 instance-hours, the compute budget

totaled $7.80; adding $1.40 for six-hour S3 checkpoint

storage at $0.0265 GB-month yields a total cost of

$9.20—$0.78 per million records processed.

When scaling the extraction layer to 32 pods and

switching to five-minute micro-batches, median latency

dropped to 0.9 min and p95 to 1.4 min; throughput

increased linearly to 18.7 k records per minute.

Expanding the cluster to thirty compute nodes raised

usage to 720 instance-hours, equating to $58.80 for

compute and $3.20 for additional checkpoint and

The American Journal of Engineering and Technology 94 https://www.theamericanjournals.com/index.php/tajet

parquet-segment storage. Thus, the unit processing cost

rose to $1.02 M⁻¹—31 % higher than the baseline, while

latency improved by over 1,600 times; the ratio of

throughput gain to vCPU increase was 0.82, satisfying

the η ≥ 0.78 requirement.

Transitioning to near-real-time mode with Flink CDC

retained the horizontal node configuration but added

ten dedicated TaskManager pods; median latency fell to

48 s and p95 to 61 s, of which 35 s were attributable to

the Snowpipe commit—a primary latency source.

Throughput stabilized at 16.3 k records per minute;

compute costs rose to $66.90, and Kafka topic plus Flink

checkpoint storage added $1.10, yielding a unit cost of

$1.15 M⁻¹.

Prometheus logs and OpenTelemetry traces revealed

that for p > 32, node ENI network interfaces saturated at

10.8 Gb/s, driving up the etl_backpressure_ratio and the

99th-percentile latency. The Spark loader’s

write_manifest stage is another latency contributor:

when parallelism exceeds 256 partition tasks, average

Iceberg commit time grows from 0.7 s to 2.1 s due to

metadata-request serialization. In the streaming

scenario, the Flink → Snowpipe boundary proved

critical; span-graph analysis showed that 73% of time

was spent on S3 PUT operations for 2.4 MB

checkpoints—optimizable by moving to RocksDB

incremental checkpoints and reducing size to ≈ 120 KB.

The final time-cost distribution confirms that the

bottlenecks lie in external storage and write services,

not in the ETL-platform architecture, pointing future

optimization to the storage layer rather than ETL code.

In summary, formalizing the ⟨E, T, L, S, O⟩ requirements

and implementing them as containerized connectors,

adaptive throttling, a hybrid Iceberg/Snowflake layer,

and a comprehensive monitoring system demonstrated

that the pipeline meets the stated SLA for latency (down

to 48s in near-real-time mode), scales linearly to 32

worker pods with efficiency η ≥ 0.78, and maintains

complete data traceability at loads up to 10⁸ records per

day.

CONCLUSION

The proposed pipeline architecture, formalized as the

quintuple ⟨E, T, L, S, O⟩, has fully satisfied the

requirements of an HR-data ETL solution: extraction

with adaptive throttling achieved latency λ(E) ≤ 3 min

and throughput 50 000 records/s; transformation with

deterministic idempotent handling of SCD attributes

preserved pipeline integrity and reproducibility; loading

into Iceberg/Snowflake guarantees exactly-once

semantics with a materialization time λ(L)≤5 min for

batches up to 10⁶ records. Experimental scenarios

confirmed that end-to-end pipeline latency meets the

target SLA (≤ 15 min) in baseline batch mode and shrinks

to 48 s at the 95th percentile in near-real-time mode

using Flink CDC and Spark Structured Streaming micro-

batches.

Horizontal scaling yielded linear throughput growth up

to p = 32 worker pods with an efficiency coefficient η =

0.82, surpassing the target η ≥ 0.78, at a moderate

increase in overall processing cost: unit costs ranged

from $0.78 to $1.15 per million records, depending on

the scenario. At the same time, a layered watch set up

using Prometheus, OpenTelemetry, and central JSON-

log gathering gives complete sight of the O-layer and

allows for quick finding of SLA changes (t_alert ≤ 60s)

with span-ID tracking through the stack.

Analysis of the results identified external write services

and storage subsystems as bottlenecks. ENI interface

network saturation at p > 32 and increased Iceberg

commit times under high parallelism indicate the need

for storage layer optimization. Switching to RocksDB

incremental checkpoints and reducing checkpoint file

sizes to ≈ 120 KB can be considered promising for further

performance gains and latency reduction.

To conclude, by formalizing the needs ⟨E, T, L, S, O⟩ and

putting them into action through containerized

connectors, a mix Iceberg/Snowflake layer, adaptive

throttling, and a complete monitoring system we have

demonstrated that the pipeline can handle up to 10⁸

records each day scale linearly and keep total data

traceability under SLA metrics vital to HR-analytics

workloads. These results provide a solid foundation for

the practical deployment of the proposed solution and

its continued architectural evolution in the dynamically

growing HR landscape.

REFERENCES

“HR Statistics You Need to Know,” Paycor, Oct. 11, 2024.

https://www.paycor.com/resource-center/articles/hr-

statistics-you-need-to-know/ (accessed Apr. 06, 2025).

https://www.paycor.com/resource-center/articles/hr-statistics-you-need-to-know/
https://www.paycor.com/resource-center/articles/hr-statistics-you-need-to-know/
https://www.paycor.com/resource-center/articles/hr-statistics-you-need-to-know/
https://www.paycor.com/resource-center/articles/hr-statistics-you-need-to-know/

The American Journal of Engineering and Technology 95 https://www.theamericanjournals.com/index.php/tajet

“Annual Hr Systems Survey Report Sapient Insights

Group Hr Systems Adoption Blueprint,” Sapient Insights,

2024. Accessed: Apr. 06, 2025. [Online]. Available:

https://sapientinsights.com/wp-

content/uploads/2024/11/SIG_2024SEGMENTREPORT_

HRBLUEPRINT_FINAL_11112024.pdf

E.-L. Jones, “Survey reveals the HR metrics that matter

most,” Ciphr Ltd, May 24, 2024.

https://www.ciphr.com/press-releases/survey-reveals-

the-hr-metrics-that-matter-most (accessed Apr. 07,

2025).

G. Feretzakis, E. Vagena, K. Kalodanis, P. Peristera, D.

Kalles, and A. Anastasiou, “GDPR and Large Language

Models: Technical and Legal Obstacles,” Future Internet,

vol. 17, no. 4, p. 151, Mar. 2025, doi:

https://doi.org/10.3390/fi17040151.

“Overview,” Prometheus.

https://prometheus.io/docs/introduction/overview/

(accessed Apr. 16, 2025).

“m7g.large prices and specs,” Instances, 2025.

https://instances.vantage.sh/aws/ec2/m7g.large

(accessed Apr. 20, 2025).

https://sapientinsights.com/wp-content/uploads/2024/11/SIG_2024SEGMENTREPORT_HRBLUEPRINT_FINAL_11112024.pdf
https://sapientinsights.com/wp-content/uploads/2024/11/SIG_2024SEGMENTREPORT_HRBLUEPRINT_FINAL_11112024.pdf
https://sapientinsights.com/wp-content/uploads/2024/11/SIG_2024SEGMENTREPORT_HRBLUEPRINT_FINAL_11112024.pdf
https://sapientinsights.com/wp-content/uploads/2024/11/SIG_2024SEGMENTREPORT_HRBLUEPRINT_FINAL_11112024.pdf
https://sapientinsights.com/wp-content/uploads/2024/11/SIG_2024SEGMENTREPORT_HRBLUEPRINT_FINAL_11112024.pdf
https://www.ciphr.com/press-releases/survey-reveals-the-hr-metrics-that-matter-most
https://www.ciphr.com/press-releases/survey-reveals-the-hr-metrics-that-matter-most
https://www.ciphr.com/press-releases/survey-reveals-the-hr-metrics-that-matter-most
https://www.ciphr.com/press-releases/survey-reveals-the-hr-metrics-that-matter-most
https://doi.org/10.3390/fi17040151
https://doi.org/10.3390/fi17040151
https://doi.org/10.3390/fi17040151
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://instances.vantage.sh/aws/ec2/m7g.large
https://instances.vantage.sh/aws/ec2/m7g.large
https://instances.vantage.sh/aws/ec2/m7g.large

