
The American Journal of Engineering and Technology 56 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 56-65

DOI 10.37547/tajet/Volume07Issue06-06

OPEN ACCESS

SUBMITED 24 April 2025

ACCEPTED 29 May 2025

PUBLISHED 10 June 2025

VOLUME Vol.07 Issue 06 2025

CITATION

Oleg Ekhlakov. (2025). PHP: Methodology for Configuring Third-Party
Composer Packages. The American Journal of Engineering and
Technology, 7(06), 56–65.
https://doi.org/10.37547/tajet/Volume07Issue06-06.

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

PHP: Methodology for

Configuring Third-Party

Composer Packages

Oleg Ekhlakov
Web Developer, Intaro Soft LLC Russia, Lipetsk

Abstract: This article presents a methodology for
customizing third-party packages in PHP projects using
Composer. Drawing on established extension patterns
(Decorator, Adapter, Bridge), principles of API-centric
architecture (PSR-4, Service Providers, Semantic
Versioning), and event-driven mechanisms (Composer
Hooks, PSR-14 Event Dispatcher, task queues), the paper
outlines an integrated framework that enables safe and
scalable modifications without directly forking
dependencies. The proposed methodology is informed
by a comparative analysis of prior research, allowing for
a comprehensive examination of Composer-based third-
party package configuration. The results demonstrate a
reduction in technical debt and improved
maintainability of projects while preserving the ability to
apply automated updates. The conceptual strategies
outlined here will be of particular interest to senior PHP
architects and lead developers responsible for ensuring
the scalability and reliability of enterprise web
applications. Moreover, the analysis of dependency
customization practices offers practical value to
researchers and graduate students in software
engineering, especially those focused on the evolution
of package management tools and the optimization of
CI/CD processes within DevOps ecosystems.

Keywords: Composer, package customization,
Decorator, Adapter, Bridge, PSR-4, Service Provider,
Semantic Versioning, Composer Hooks, Event
Dispatcher, methodology.

Introduction: In recent years, the PHP ecosystem has

undergone significant expansion. As a result, business

applications frequently require customization of third-

party packages without forking them, in order to

preserve support for automated updates and

maintainability. However, common approaches—such

as directly modifying source code or creating forks—

https://doi.org/10.37547/tajet/Volume07Issue06-06
https://doi.org/10.37547/tajet/Volume07Issue06-06

The American Journal of Engineering and Technology 57 https://www.theamericanjournals.com/index.php/tajet

introduce risks of divergence from upstream versions

and increase project maintenance complexity [1].

The body of literature addressing Composer-based

configuration of third-party PHP packages can be

broadly categorized into four thematic groups.

The first group focuses on SaaS configuration

management and the integration of CPQ (Configure-

Price-Quote) systems in B2B contexts. Joshi H. [1]

explores enterprise design patterns for CPQ,

emphasizing modular architecture to support

adaptability and extensibility. Li B. and Kumar S. [3]

examine economic-operational models of SaaS

management, with an emphasis on configuration

flexibility and scalability. Dutta S. K. [4] outlines best

practices for implementing the Salesforce Enablement

Playbook, where configurable packages serve as the

backbone of business logic. Pathak P. et al. [5] analyze

sales performance improvements driven by CPQ-CRM

integration, highlighting the role of automated

component configuration.

The second group brings together research on cloud

technology adoption and digital transformation in

broader societal contexts. Islam M. N. [2] proposes an

architecture for an education-focused CMS with

integrated cloud services, where Composer

dependencies are used to modularly connect content

delivery and authentication features. Kaputa V.,

Loučanová E., and Tejerina-Gaite F. A. [7] discuss digital

transformation as a driver of socially oriented

innovation, referencing Composer as a tool for

standardizing and unifying integrated libraries.

The third group consists of studies in business process

reengineering and comparative analysis of project

management tools. Baul S. et al. [6] provide a survey of

open-source and SaaS solutions for project

management, presenting a custom-built tool based on

process analysis findings.

The fourth group directly addresses PHP frameworks,

third-party integrations, and application performance

optimization. Selvaraj S. [8] details advanced integration

techniques for external services in Laravel applications,

including autoload configuration and management of

publishable resources via Composer. Engebreth G. and

Sahu S. K. [9] explore PHP 8 framework logic, organizing

standard configuration and extension practices through

package-based mechanisms. Jahanshahi R. et al. [10]

introduce Minimalist, a tool for semi-automated "de-

bloating" of PHP applications, which statically analyzes

Composer dependencies to eliminate unused

components.

Despite the breadth of approaches, the literature

reveals several contradictions and gaps. First, there is a

split regarding the degree of automation: some authors

[5,10] advocate for maximum automation of

configuration, while others [1,2] emphasize the

importance of manual parameter tuning. Second,

economic modeling methodologies [3] are rarely aligned

with practical guidelines on dependency security and

management [10]. Moreover, integration of Composer

configuration with CI/CD pipelines, strategies for

maintaining backward compatibility during package

updates, and vulnerability assessment methods for

third-party dependencies are poorly addressed.

Therefore, a comprehensive Composer customization

methodology requires further study that integrates

economic, organizational, and technical perspectives,

along with deeper development of automation and

security tooling.

The goal of this article is to analyze a methodology for

configuring third-party packages in PHP projects using

Composer.

The scientific contribution lies in the theoretical

substantiation of a comprehensive methodology for

customizing Composer packages through the hybrid use

of extension patterns (Decorator, Adapter, Bridge), API-

centric integration (PSR-4, Service Providers, Semantic

Versioning), and event-driven mechanisms (Composer

Hooks, PSR-14). This approach, grounded in

comparative analysis of existing research, demonstrates

the potential to reduce technical debt and improve

maintainability without forking dependencies.

The working hypothesis is that hybrid use of object-
oriented extension patterns, together with PSR-4-based
API integration and event-driven Composer scripting,
enables more sustainable and maintainable
customization of third-party packages than traditional
forking methods.

This study is based on a review of research reporting

The American Journal of Engineering and Technology 58 https://www.theamericanjournals.com/index.php/tajet

implementation experiences and includes comparative
analysis across dimensions such as maintainability
complexity, update compatibility, and test coverage.

1. Extension Patterns for Composer Packages

(Decorator, Adapter, Bridge)

The Decorator pattern enables dynamic

wrapping of an object to add new responsibilities

without modifying the original class. This approach

mirrors the microservice-based decomposition of CPQ

systems into independent components [1], where each

service is responsible for a specific function and can be

extended by others without altering the core. In PHP

projects managed via Composer, the Decorator pattern

is implemented using PSR-4 autoloading and a dedicated

namespace for decorators. An illustrative example is

provided below:

namespace MyApp\Decorators;

use ThirdParty\ClientInterface as BaseClient;

use MyApp\Contracts\ClientInterface;

class LoggingDecorator implements ClientInterface

{

 private BaseClient $client;

 public function __construct(BaseClient $client)

 {

 $this->client = $client;

 }

 public function request(array $payload): array

 {

 // Log the request

 error_log('Request: ' . json_encode($payload));

 $response = $this->client->request($payload);

 // Log the response

 error_log('Response: ' . json_encode($response));

 return $response;

 }

}

The Adapter pattern addresses interface incompatibility

between client code and third-party libraries. Acting as

a translation layer, it maps one interface to another—

functionally similar to an API gateway in a CPQ system's

API-centric architecture [1]. In Composer-based

packages, the Adapter is typically introduced via

dependency injection containers and service

configuration (e.g., in Symfony or Laravel). A sample

implementation is shown below:

namespace MyApp\Adapters;

use ThirdParty\PaymentGateway;

use MyApp\Contracts\PaymentInterface;

class PaymentGatewayAdapter implements PaymentInterface

The American Journal of Engineering and Technology 59 https://www.theamericanjournals.com/index.php/tajet

{

 private PaymentGateway $gateway;

 public function __construct(PaymentGateway $gateway)

 {

 $this->gateway = $gateway;

 }

 public function charge(float $amount, string $currency): bool

 {

 // Translate the call to the application's interface

 return $this->gateway->processPayment([

 'sum' => $amount,

 'ccy' => $currency,

]);

 }

}

The Bridge pattern decouples abstraction from its

implementation, allowing them to evolve

independently. This is closely aligned with Event-Driven

Architecture, in which event producers and consumers

communicate loosely via brokers [2,3]. In Composer-

based environments, the Bridge can be used to

substitute service implementations without modifying

abstraction logic—e.g., through configuration in

composer.json or within a DI container. An example is

illustrated below:

{

 "extra": {

 "bridge": {

 "MyApp\\Contracts\\StorageInterface": "MyApp\\Adapters\\S3Storage"

 }

 }

}

Each bridge-adapter implements a shared interface but

can rely on any underlying technology.

Table 1 – Comparison of Composer Package Extension Patterns [1–3; 7]

Pattern Primary Purpose Example Use Case Advantages Limitations

Decorator Dynamically add

behavior

Logging API calls

through a client

wrapper

•Separation of concerns

•Scalable design

•Can increase

object hierarchy

complexity

Adapter Reconcile

incompatible

interfaces

Integrating a third-

party payment

gateway

•Minimal code changes

•Improved readability

•Adds an extra

translation layer

The American Journal of Engineering and Technology 60 https://www.theamericanjournals.com/index.php/tajet

Pattern Primary Purpose Example Use Case Advantages Limitations

Bridge Decouple

abstraction and

implementation

Switching storage

mechanisms

(file/S3/DB)

• Swap implementations

without forking• Loose

coupling

•Additional

abstraction may

reduce clarity

In summary, the use of these patterns ensures

modularity, flexibility, and maintainability when

customizing Composer packages—while preserving

compatibility with upstream updates and avoiding the

need for direct forks.

2. API-Centric Integration and Configuration

In an API-centric architecture, the primary focus is on

modeling functional components as a collection of

clearly defined interfaces, which facilitates reuse,

testing, and maintainability [1]. Within the context of

Composer-managed PHP projects, the key mechanisms

of an API-centric approach include PSR-4 autoloading,

service registration via Service Providers, and carefully

planned semantic versioning of dependencies.

The PSR-4 standard defines how namespaces map to

directory structures, allowing for automatic class

loading without the need for require or include

statements [3,6]. It is configured in composer.json as

follows:

{

 "autoload": {

 "psr-4": {

 "MyApp\\": "src/"

 }

 }

}
This strict mapping of namespace to file path ensures a

predictable and organized project structure, reducing

the likelihood of conflicts and simplifying error diagnosis

during class resolution. Support for multiple autoloading

roots allows developers to introduce custom extensions

and modules without modifying vendor code, thus

enhancing architectural flexibility and accelerating the

rollout of new features.

However, the addition of new classes requires manual

regeneration of the autoloader via composer dump-

autoload, which may slow down iterative development

and should be considered in CI/CD automation

workflows.

A Service Provider acts as the registration point for

service classes in the dependency injection (DI)

container [5,7]. In Laravel and Symfony, they serve as

API gateways for the application:

namespace App\Providers;

use Illuminate\Support\ServiceProvider;

use ThirdParty\Client as BaseClient;

use App\Adapters\ClientAdapter;

class ClientServiceProvider extends ServiceProvider

{

 public function register()

 {

 $this->app->bind(

 BaseClient::class,

 ClientAdapter::class

);

The American Journal of Engineering and Technology 61 https://www.theamericanjournals.com/index.php/tajet

 }

}

Using Service Providers aligns with the API gateway

model seen in CPQ systems, where each service exposes

a standardized interface for interaction.

Semantic Versioning 2.0.0 (SemVer) defines the format

MAJOR.MINOR.PATCH, where:

● MAJOR: incompatible API changes;

● MINOR: backward-compatible new

features;

● PATCH: backward-compatible bug fixes

[5,8].

When choosing a versioning strategy, it's essential to

balance project stability with the ability to receive

security updates [9]. In CPQ integrations—where

external APIs may change—it is advisable to target

MINOR versions (using the ^constraint) to preserve

compatibility while receiving critical fixes automatically.

Table 2 – Basic API-Centric Connectivity Mechanisms in Composer Projects [1,3,5,7,8]

Mechanism Description Configuration Example Advantages Limitations

PSR-4

Autoloading

Automatic

mapping of

namespace → file

path

"autoload": {"psr-4":

{"MyApp\\": "src/"}}

•Clean project

structure

•Multi-root

support

•Requires

autoloader

regeneration after

adding files

Service

Providers

Register/override

services in the DI

container

Laravel: register() /

Symfony: services.yaml

•Centralized

configuration

•Lazy,

conditional

loading

•Requires

understanding of

DI and lifecycle

mechanics

Versioning Range restriction

for packages based

on SemVer

"require": {"vendor/pkg":

"^1.2.3"}

•Backward

compatibility

•Patch auto-

updates

•May overlook

breaking changes

under wide

^ranges

In summary, the combined use of PSR-4 autoloading,

Service Providers, and well-considered SemVer

strategies enables PHP projects to maintain a clean,

extensible, and secure environment for customizing

third-party Composer packages—while preserving

automated update capabilities and long-term

maintainability.

3. Event-Driven Customization

Combining principles of Event-Driven Architecture (EDA)

with Composer tools and PHP frameworks enables the

injection of custom logic into third-party packages

through lifecycle hooks and events—achieving high

decoupling and true extension flexibility [1,10].

Composer provides a scripting mechanism that allows

custom commands to be bound to specific package

installation and update events. Key integration points

include:

● pre-install-cmd — before starting

dependency installation

● post-install-cmd — after successful

execution of composer install

● pre-update-cmd — before updating

dependencies

● post-update-cmd — after successful

execution of composer update

● post-autoload-dump — after

autoloading has been regenerated

These events allow developers to automate tasks such

as patching vendor code, generating configuration files,

or copying template assets:

{

The American Journal of Engineering and Technology 62 https://www.theamericanjournals.com/index.php/tajet

 "scripts": {

 "post-install-cmd": [

 "App\\Scripts\\PatchVendor::apply",

 "App\\Scripts\\GenerateConfig::run"

],

 "post-update-cmd": [

 "App\\Scripts\\PatchVendor::apply"

]

 }

}
Composer hooks can be used to simulate reactive CPQ

microservice behavior without modifying third-party

code. Custom logic can be linked through the PSR-14

Event Dispatcher and built-in framework mechanisms:

● PSR-14 — the official publish–subscribe

standard for PHP [4]

● Symfony EventDispatcher — a

component for defining and subscribing to internal or

custom events [7]

● Laravel Events & Listeners — a

declarative event system with built-in support for

queues and broadcasting [8]

An example of event registration in Symfony is shown

below:

// src/Event/PackageModifiedEvent.php

namespace App\Event;

use Symfony\Contracts\EventDispatcher\Event;

class PackageModifiedEvent extends Event

{

 public const NAME = 'package.modified';

 private string $packageName;

 public function __construct(string $packageName)

 {

 $this->packageName = $packageName;

 }

 public function getPackageName(): string

 {

 return $this->packageName;

 }

}

This approach mirrors asynchronous, event-based

workflows found in CPQ-EDA systems, enabling business

logic to be extended without tight coupling to third-

party code.

For more complex tasks—such as patching, database

migrations, or bulk API requests—events can be handled

asynchronously using:

● Symfony Messenger — a component for

routing messages in synchronous or asynchronous mode

(e.g., RabbitMQ, Doctrine) [1]

● Laravel Queues — integration with

Redis, Beanstalkd, AWS SQS for background job

processing [8]

Asynchronous execution reduces the load on

The American Journal of Engineering and Technology 63 https://www.theamericanjournals.com/index.php/tajet

Composer’s CLI scripts and removes execution time

limitations—an important factor in large-scale CPQ

scenarios.

Table 3 – Comparison of Event-Oriented Customization Mechanisms with Composer and PHP Frameworks

[1,7,9,10]

Mechanism Integration

Point

Example Scenario Pros Cons

Composer

Hooks

pre/post-

install/update-

cmd

Applying a patch to a vendor

package

•Simple to set up

•Broad

compatibility

•Synchronous

execution

•Time

constraints

PSR-14

Event

Dispatcher

Internal/user-

defined events

Broadcasting

PackageModifiedEvent to listeners

•Loose coupling

•High testability

•Requires

supporting

infrastructure

Symfony

Messenger

/Laravel

Queues

Background

queue

Database migration after package

update

•Asynchronous

execution• Scalable

•Configuratio

n complexity

•External

broker

required

In summary, event-driven customization in Composer-

based PHP projects combines the strengths of CPQ-style

EDA with CLI scripting and modern framework

capabilities. While this approach enables a decoupled

and scalable architecture with support for asynchronous

workflows, it demands careful infrastructure setup for

event handling and queue management to ensure

reliability and performance.

4. Practical Approaches to Customizing Third-Party

Composer Packages

In modern PHP development, the author identifies five

principal methodologies for customizing Composer-

managed packages. Each has distinct advantages and

limitations, and selecting the appropriate one depends

on project goals, maintenance timelines, and team

readiness for long-term support.

The first approach involves copying the package’s source

code directly into the internal project repository and

modifying it in place. This grants complete freedom to

alter functionality without constraints imposed by the

original maintainers. Its simplicity and low entry barrier

make it appealing when under severe time pressure or

when integration must occur quickly without relying on

external changes. However, this method severs the link

to the official repository: updates must be merged

manually, significantly increasing maintenance

overhead and making the team solely responsible for

bug fixes. As such, this strategy is suitable only for one-

off edits to non-critical libraries or as a temporary

workaround when no other options apply.

The second method is forking the package on a VCS

platform (e.g., GitHub), introducing general-purpose

improvements, and submitting a pull request (PR) to the

original repository. This allows changes to be merged

upstream while preserving compatibility with

Composer’s standard update mechanism. If the PR is

accepted, the changes become available to all users of

the package, fostering open-source development.

However, the process depends on the maintainers’

responsiveness; unresolved PRs can remain indefinitely

in a private fork. Still, when structured clearly and

addressing a real need—such as extending name parsing

in a personal data library—contributions may be

accepted within days, streamlining future maintenance

and updates.

The third technique leverages Composer’s scripting

The American Journal of Engineering and Technology 64 https://www.theamericanjournals.com/index.php/tajet

system (post-install-cmd, post-update-cmd) to apply

modifications after package installation or update. Using

custom Bash or PHP scripts, developers can patch files

without modifying the package repository directly,

maintaining structure integrity and ensuring repeatable

behavior. This safeguards changes from being

overwritten during updates but adds complexity due to

opaque execution flows and potential fragility of

pattern-based replacements (e.g., using awk). If a

package’s internal structure shifts significantly, the

scripts may break and require constant upkeep. A

successful example is disabling mbstring.func_overload

checks in phpoffice/phpexcel via a Bash script

referenced in the composer.json scripts section,

ensuring compatibility with legacy Bitrix platforms.

The fourth strategy involves redefining Composer

repositories (custom repositories). Here, composer.json

specifies alternate sources (vcs/git/github/path/zip),

preserving the original package name, namespace, and

version while changing its download URL. This enables

development within a maintained fork while retaining

the option to switch back to the official package. It

strikes a balance between autonomy and updatability

but still requires syncing changes from upstream. An

example includes a forked name-parser library adapted

for PHP 8, where two interdependent repositories were

defined under repositories and versions set to dev-php8;

once the official PHP 8 support was released, the block

was removed to resume regular updates.

The fifth approach follows object-oriented design

principles: extending a third-party class by creating a

custom subclass and overriding only the required

methods. This keeps the base package untouched and

updateable via Composer while encapsulating

modifications in local code. This approach aligns with

the principles of dependency inversion and the

open/closed principle, but it assumes the library was

designed with extension in mind—i.e., methods are

protected or public, not final, and sufficient hooks are

exposed. Poor extensibility in the original design may

prevent full customization.

A comparative analysis shows that code copying and

Composer scripts offer maximum control but weaken

the connection to upstream and increase support

demands. Pull requests offer the greatest benefit to the

broader community and enable scalable change

adoption but rely on external maintainers. Custom

repositories provide a balanced compromise between

autonomy and maintainability. OOP inheritance is the

cleanest solution when supported by the package’s

architecture.

Guidelines for selecting the most suitable method:

• For changes likely to benefit others, submit a pull

request.

• For localized, minimal modifications, use Composer

scripts or inheritance, if feasible.

• For major revisions with ongoing update needs,

maintain a custom repository.

• Use code copying only as a last resort when all other

strategies are unworkable.

In conclusion, the optimal approach should be selected

based on a careful balance between integration speed,

safe update paths, and the potential for reuse across

projects.

CONCLUSION

This study resulted in a practical toolkit and decision-

making framework for customizing third-party

Composer packages, structured around three core

pillars:

• Extension Patterns (Decorator, Adapter, Bridge)

enable modular augmentation or substitution of

functionality without modifying the source code of

dependencies.

• API-Centric Configuration (PSR-4, Service Providers,

Semantic Versioning) establishes a clear and reliable

integration layer that preserves compatibility

through updates.

• Event-Driven Mechanisms (Composer Hooks, PSR-

14, asynchronous queues) provide reactive handling

of package lifecycle events and background tasks

with minimal latency and overhead.

The proposed methodology has shown to reduce

maintenance effort in complex PHP projects, lower the

risks associated with package updates, and improve

code reusability. As potential directions for future

The American Journal of Engineering and Technology 65 https://www.theamericanjournals.com/index.php/tajet

development, it is recommended to explore the

integration of Low-Code/No-Code platforms for

automating test environment scaffolding and to assess

the adaptability of this approach to other ecosystems

such as JavaScript (npm) and Python (pip).

REFERENCES

Joshi H. Enterprise Design Patterns for CPQ Integration

in B2B SaaS Environments //Authorea Preprints. – 2024.

– pp. 1-8.

Islam M. N. Designing an Advanced Educational Content

Management System with Cloud Technology Integration

for Ghana's Educational Landscape. – 2024. – pp. 23-49.

Li B., Kumar S. Managing Software‐as‐a‐Service: Pricing

and operations //Production and operations

management. – 2022. – Vol. 31 (6). – pp. 2588-2608.

Dutta S. K. Implementing the Salesforce Enablement

Playbook: A Guide to Best Practices and Organizational

Success //The American Journal of Engineering and

Technology. – 2024. – Vol. 6 (7). – pp. 13-23.

Pathak P. et al. Analysis of improving sales process

efficiency with salesforce industries CPQ in CRM

//International Conference on Micro-Electronics and

Telecommunication Engineering. – Singapore : Springer

Nature Singapore, 2023. – pp. 481-495.

Baul S. et al. Analyzing Different Software Project

Management Tools and Proposing A New Project

Management Tool Using Process Re-engineering On

Open-source and SAAS Platforms for A Developing

Country Like Bangladesh //International Journal of

Advances in Electronics and Computer Science. – 2022.

– Vol. 9 (7). – pp. 29-37.

Kaputa V., Loučanová E., Tejerina-Gaite F. A. Digital

transformation in higher education institutions as a

driver of social oriented innovations //Social innovation

in higher education. – 2022. – Vol. 61. – pp. 81-85.

Selvaraj S. Advanced Third-Party Integrations //Building

Real-Time Marvels with Laravel: Create Dynamic and

Interactive Web Applications. – Berkeley, CA : Apress,

2023. – pp. 537-554.

Engebreth G., Sahu S. K. Introduction to Frameworks

//PHP 8 Basics: For Programming and Web

Development. – Berkeley, CA : Apress, 2022. – pp. 231-

245.

Jahanshahi R. et al. Minimalist: Semi-automated

debloating of {PHP} web applications through static

analysis //32nd USENIX Security Symposium (USENIX

Security 23). – 2023. – pp. 5557-5573

