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Abstract: This article considers the issue of systematic 

errors in predictive machine-learning models generating 

disparate outcomes for different social groups and 

proposes a holistic approach to its mitigation. The risks 

and increasing legal requirements, along with corporate 

commitments to ethical AIs, drive the relevance of this 

study. The work herewith attempts to develop a bias-

source taxonomy at data collection and annotation, 

proxy-feature selection, model training, and 

deployment stages; also, it tries to compare pre-, in-, 

and post-processing methods' effectiveness on 

representative datasets measured by demographic 

parity, equalized error rates, and disparate impact. This 

article is unprecedented in undertaking a two-level 

approach: first, a systematic review of regulatory 

definitions (NIST, IBM) and case studies (COMPAS, 

healthcare-service prediction, face recognition) that 

identified key bias factors from sample imbalance to 

feedback loops; second, an empirical comparison of 

Reweighing, adversarial debiasing, threshold post-

processing techniques alongside flexible multi-objective 

strategies—YODO (via AI Fairness 360 and Fairlearn 

libraries)—considering acceptable accuracy losses. The 

root source of unfairness remains data bias; hence, pre-

processing must be undertaken (rebalancing, synthetic 

oversampling), while in- and post-processing can 

essentially harmonize group metrics at some cost in 

accuracy reduction Furthermore, without continuous 

online monitoring and documentation (datasheets, 

model cards), the balanced model risks losing fairness 

due to dynamic feedback effects. Bringing together 

technical fixes with rules and making the audit process 

official ensures the ability to copy and openness, which 

is key for long-term faith in AI systems. This article will 

help machine-learning builders, AI-responsibility 

experts, and checkers find ways to find, gauge, and 

lessen algorithmic bias in live models. 
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Introduction:  Algorithmic bias refers to the systematic 

error of running a machine-learning model in such a way 

that causes members of different social groups to 

receive drastically different predictions or decisions. It 

develops when a model takes on historic inequities in 

the data, amplifies them through its training process, or 

applies them to new situations where implicit 

correlations stand in for causal connections. 

Consequently, some groups are perceived as “risk-

neutral” by default and others as “high risk” a priori, 

though in reality, event probabilities are equal. This is 

precisely how the National Institute of Standards and 

Technology (NIST) describes the problem—as a 

consequence of quantitative methods “flattening” rich 

social context into numerical categories, creating an 

illusion of objectivity—while IBM defines it as 

“systematic errors that produce unfair outcomes” [1, 2]. 

Concurrent legal, reputational, and social effects 

confirm the significance of this issue for business and 

society. The legal risk is evident: under the EU AI Act, 

violations of the prohibition against discriminatory 

practices may incur fines of up to €35 million or 7% of a 

company’s global annual turnover [2]. Reputational 

damage is measured in lost trust: 86% of surveyed 

organizations believe customers prefer brands that 

transparently apply ethical principles to their AI systems 

[3]. The social cost manifests in concrete human lives: 

analysis of the COMPAS tool showed that non-recidivist 

Black defendants were almost twice as likely as white 

defendants (45% vs. 23%) to be incorrectly classified as 

“high risk” of reoffending [4]. Together, these facts 

demonstrate that ignoring bias not only exacerbates 

existing inequalities but also creates direct financial 

losses and legitimacy threats for companies in the eyes 

of society. 

MATERIALS AND METHODOLOGY 

The materials and methodology of this study are based 

on a critical review of 29 publications from academic 

journals, industry reports, and regulatory documents. 

The theoretical foundation employs definitions of 

algorithmic bias from NIST and IBM, emphasizing 

systematic errors that lead to unfair outcomes [1, 2] and 

an empirical analysis of the COMPAS tool demonstrating 

real cases of discrimination in judicial predictions [4]. To 

detect data biases, we analyzed model performance 

across groups. Specifically, we compared top-5 

classification accuracy on ImageNet for images from 

regions with different income levels [5] and examined 

gender-recognition errors in commercial systems across 

“race–gender” combinations [6]. 

To mitigate bias, three classes of technical strategies 

were considered. The first line of defense comprises pre-

processing methods, such as Reweighing, that adjust the 

weights of training-set instances without altering the 

algorithm, achieving a disparate impact of 1.0 on the 

Adult dataset [18, 19]. The second class includes in-

processing techniques that embed fairness constraints 

directly into the loss function: adversarial debiasing 

achieved equalized odds parity with no more than a 2% 

reduction in overall accuracy [8]. The third line entails 

post-processing algorithms that adjust model output 

probabilities via threshold optimization to balance 

group error rates [20]. 

The legal and regulatory justification of the approach is 

ensured by mapping these technical practices to the 

requirements of the EU AI Act (mandatory dataset audit 

and discrimination checks, Art. 10) [10], NIST AI RMF 

recommendations (category “harmful bias”) [11, 27], 

Canada’s Algorithmic Impact Assessment [12], the ICO’s 

GDPR and AI guidance [13], Singapore’s Model AI 

Governance Framework [14], the UK Financial Conduct 

Authority’s directives for the financial sector [15], and 

the ISO/IEC 42001:2023 standard on continuous fairness 

monitoring [16]. These documents draw upon the OECD 

principles for eliminating unfair bias in AI systems [17]. 

RESULTS AND DISCUSSION 

Algorithmic bias almost always begins with data bias: if 

individual countries, income brackets, or social groups 

are underrepresented in the training set, the model 

inevitably absorbs the statistical skew. Analysis [5] 

showed that for six popular ImageNet classifiers, top-5 

accuracy on objects from households with monthly 

incomes below USD 50 is on average 10% lower than on 

images from the wealthiest categories, and the gap 

widens for scenes from non-Western regions, as shown 

in Fig. 1 [5]. 



The American Journal of Engineering and Technology 194 https://www.theamericanjournals.com/index.php/tajet 

 
 

 

Fig. 1. Top-5 Accuracy by Income [5] 

Such “blind spots” are not accidental: they reflect a 

historical research focus on English-language Internet 

content and commercially attractive markets. If these 

imbalances are not counteracted by rebalancing, 

synthetic oversampling, or causal justification of 

features, subsequent development stages can only 

mitigate rather than eliminate the root cause. 

A model can err even with a formally balanced sample 

due to measurement distortions. A classic example is 

sensor inaccuracies or manual annotation errors that 

correlate with appearance. In study [6], commercial 

gender-recognition systems misclassified dark-skinned 

women in 34.7% of cases, whereas for light-skinned men 

the error was only 0.8%. Because the algorithm “sees” 

incorrect or noisy labels as truth, subsequent training 

merely entrenches these differential errors, 

transforming them into systematic discrimination. 

Another important source of bias is the choice of 

objective function and evaluation metrics. In the widely 

used patient stratification algorithm studied in [7], 

healthcare cost was used as a proxy for health status. 

The metric that optimally reflected costs proved poorly 

correlated with actual care needs, and even a perfect 

model under this formulation inevitably produces a 

biased outcome. 

Even with a correctly specified task, the model 

architecture and hyperparameter settings influence the 

error distribution. Overly aggressive regularization or 

skewed class-weight coefficients can shift the decision 

boundary so that gains in overall accuracy come at the 

expense of a higher false-negative rate for the 

vulnerable group. Study [8] showed that post-processing 

a single decision by selecting differentiated thresholds 

can equalize false-positive and true-positive rates 

between groups at the cost of a moderate loss in overall 

accuracy of a couple of percentage points. This 

underscores that fairness concerns must be addressed 

in the data and the very “wiring” of the algorithm. 

Finally, feedback loops can quickly bias even a perfectly 

calibrated model after deployment. In [9], the PredPol 

predictive-policing system, after only a few iterations, 

began directing police almost exclusively to 

neighborhoods where arrests had already been 

recorded, amplifying the divergence between observed 

and actual crime activity. Since the model’s actions 

generate the subsequent training set, even a slight initial 

bias accumulates exponentially. Such dynamic effects 

require online monitoring and active “continuous” 

debiasing methods; otherwise, any static fairness 

assessment rapidly becomes outdated. 
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Regulatory efforts to reduce algorithmic bias form a 

multilayered system in which supranational norms set 

minimal requirements, and sectoral and national 

documents refine them for specific risks. Today, this 

system's center is Regulation (EU) 2024/1689, the EU AI 

Act. For “high-risk” systems, it introduces a mandatory 

dataset audit, discrimination checks before deployment, 

and a requirement to maintain detailed documentation 

on data collection and annotation processes, enshrined 

in Art. 10 “Data Governance” [10]. 

Suppose the European approach relies on strict 

enforcement in the United States. In that case, the 

voluntary but widely adopted NIST AI Risk Management 

Framework serves as a “de facto standard.” Since its 

publication on January 26, 2023, the document has 

defined a risk matrix in which “harmful bias” is 

highlighted as one of five key categories; by summer 

2024, NIST had added a separate profile for generative 

models, identifying even more new risks, including 

erroneous content personalization [11]. 

Several governments and sectoral regulators are 

building their complementary mechanisms. In Canada, 

all federal algorithms are subject to a mandatory 

Algorithmic Impact Assessment: 51 risk-related 

questions and 34 mitigation measures allow systems to 

be classified into four impact levels, with proportional 

bias-handling requirements [12]. In March 2023, the UK 

Information Commissioner’s Office updated its “AI and 

Data Protection” guidance, detailing how to assess and 

mitigate bias at every stage of the model lifecycle and 

permitting the processing of sensitive data for 

discrimination testing [13]. In May 2024, Singapore 

released the “Model AI Governance Framework for 

Generative AI,” dedicating chapters to data provenance 

and independent testing, and recognizing bias 

mitigation as one of nine pillars of “trust” [14]. In 2024, 

the UK Financial Conduct Authority integrated the risk of 

unfair outcomes into its overall oversight of credit-

scoring models [15], and the ISO/IEC 42001:2023 

international standard proposed a managerial “overlay” 

for all AI processes, including mandatory fairness-metric 

monitoring [16]. 

For international alignment, these frameworks 

draw on the OECD principles, which since 2019 have 

emphasized the need to eliminate “unfair bias” and by 

May 2023 had inspired over 1,000 policies across 70 

jurisdictions [17]. The common thread is a risk-based 

approach: the higher the potential social harm, the more 

detailed the data checks, model transparency, and legal 

safeguards must be. As a result, companies operating 

globally effectively climb a unified “compliance ladder”: 

from NIST’s voluntary metrics and industry guides 

through ISO 42001 certification to the legally binding 

requirements of the EU AI Act. This evolutionary logic 

reduces regulatory fragmentation and shifts the fight 

against algorithmic bias from ethical declarations to 

measurable, verifiable obligations. 

The regulatory requirement to measure and mitigate 

bias moves the issue from abstract ethics into practical 

engineering solutions, so developers rely on three 

classes of technical strategies. The first line of defense is 

pre-processing methods that correct the data before 

training the model. In practice, this may be simple 

weight rebalancing: for the Adult Income dataset, the 

initial disparate-impact ratio between men and women 

was 0.36, and after applying Reweighing, it became 

1.0—that is, statistically “discrimination-free” [18]. In 

clinical prediction of postpartum depression, the same 

technique raised disparate impact from 0.31 to 0.79 and 

almost eliminated the difference in true-positive rates 

between racial groups while preserving model accuracy 

[19]. A comparison of bias metrics on the test dataset—

using a baseline model, a race-blind model, a model 

debiased via Reweighing, and a model debiased via 

Prejudice Remover (logistic regression)—is shown in Fig. 

2. Such methods require no algorithmic changes. Still, 

their efficacy is limited to cases where bias resides 

entirely in the data. 
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Fig. 2. Comparison of bias metrics [19] 

If reweighing proves insufficient, one moves to in-

processing techniques that embed fairness directly into 

the loss function. The most popular approach is 

adversarial debiasing: alongside the primary predictor, a 

discriminator is trained to infer the protected attribute, 

and the predictor’s objective is to make accurate 

forecasts while obfuscating valuable information to the 

discriminator. On the Adult Income dataset, this scheme 

improved disparate impact and reduced average-odds 

difference to nearly zero with only a 2% drop in overall 

accuracy [18]. Adversarial methods provide the most 

incredible group parity but require gradient access to 

the model and can be unstable without careful tuning. 

The third line comprises post-processing algorithms that 

modify the obtained predictions without retraining the 

model. A classic example is a linear program that adjusts 

predicted probabilities to equalize false-positive and 

false-negative rates between privileged and vulnerable 

groups while leaving test power almost unchanged [20]. 

This “black-box” approach is especially valuable when 

the original model is proprietary or frozen, but it is 

limited to binary classification tasks and sensitive to 

threshold choices. 

Specialized libraries exist to facilitate the rapid 

integration of all three tactics. IBM AI Fairness 360 

implements ten mitigation algorithms covering the full 

pre-, in-, and post-processing spectrum. It provides 70 

metrics for evaluating group and individual fairness, 

making it the most comprehensive open platform [21]. 

A lighter but actively developed alternative is 

Microsoft’s Fairlearn. Thus, a developer can execute 

Reweighing or Adversarial Debiasing in AIF360 with a 

few lines of code, compare results with Fairlearn 

metrics, and document the trade-off between accuracy 

and fairness, thereby ensuring compliance with both 

regulatory minima and internal corporate-responsibility 
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standards. 

Classic fairness metrics—demographic parity, equalized 

odds, and predictive calibration—measure statistical 

dependencies but ignore causal links between features 

and protected attributes. Consequently, satisfying them 

all simultaneously is mathematically impossible outside 

trivial cases; the “fairness impossibility theorem” proves 

that the three most popular criteria cannot be achieved 

simultaneously, necessitating a trade-off in real-world 

data [22]. In healthcare, the choice of a “convenient” 

proxy label illustrated how external measures can 

mislead: the algorithm optimized for treatment costs 

enrolled only 17.7% of Black patients into additional 

support instead of the clinically justified 46.5% (Fig. 3), 

because historically less was spent on Black patients [7]. 

 

Fig. 3. Number of chronic illnesses versus algorithm-predicted risk, by race [7] 

To move beyond purely correlational criteria, 

counterfactual fairness is employed: a decision is 

deemed fair if it would remain unchanged in a 

hypothetical world where the individual belongs to a 

different group under the same risk factors. Formalized 

via structural causal models, this approach “removes” 

group-only associations. In a classical experiment 

predicting law-student performance, the 

counterfactually fair “Fair Add” model reduced root-

mean-square error from 0.873 to 0.918 (i.e., lost about 

5%)—but eliminated prediction dependence on race: 

when the protected attribute was swapped, grade 

distributions coincided completely, whereas the 

baseline model exhibited a systematic shift [23]. This 

example demonstrates that a small accuracy cost can 

radically reduce hidden discrimination. 

Organizations aim to navigate the accuracy–fairness 

trade-off rather than fix a single configuration. Modern 

methods combine both criteria into a unified loss 
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function or treat them as a multi-objective problem. The 

You Only Debias Once (YODO) approach trains the 

model simultaneously on two extremes—accuracy-

optimum and fairness-optimum—and finds in weight 

space a “line” of solutions along which the balance can 

be adjusted at inference time. For the ACS-E dataset, 

generating one hundred Pareto points took 3.53 s 

instead of 425 s for training one hundred separate 

models, with each solution remaining on the same 

“error ↔ demographic parity” front [24]. Combined or 

multi-objective optimizations do not override 

theoretical limits but provide managers with a 

transparent navigation tool, allowing the selection of a 

point acceptable to business, legal, and social-

responsibility requirements simultaneously. 

Once a company has identified and mapped bias sources 

to regulatory requirements, the next task is to formalize 

a reproducible bias-management process. In practice, 

this begins with a full-scale audit and data profiling: 

technical specialists verify sample representativeness, 

assess annotation quality, and identify signs of historical 

bias, while internal auditors record checkpoints. 

Regulators and professional communities already 

consider such an audit standard: ISACA defines 

algorithmic audit as a key method for detecting bias at 

“all points of the model lifecycle” [25]. However, real-

world adoption remains limited: only 47.2% of 

organizations working with generative AI conduct 

regular checks [26]. These figures indicate that a missing 

audit stage remains the most significant “gap” in 

discrimination protection. 

The next step is to define which model use cases are 

critical and which metrics fairness will be measured. 

NIST AI RMF recommendations propose starting with a 

harm map: first, describe which groups may be harmed, 

and only then select a statistical criterion—demographic 

parity, equalized odds, or individual fairness—that best 

reflects that risk [27]. This sequence helps avoid 

optimizing a “convenient” metric unrelated to social 

harm. The data team then conducts a series of 

controlled experiments: applying pre-, in-, and post-

processing methods to the baseline model, with results 

displayed on the accuracy–fairness trade-off surface. 

Integration via AIF360 and Fairlearn reduces the 

“hypothesis → evaluation” cycle to minutes, enabling 

product managers to make decisions based on a 

complete picture of trade-offs. 

When an acceptable configuration is found, the results 

are documented. For datasets, datasheets are created 

describing provenance and limitations; model cards 

present group-specific metrics and safe-use 

recommendations for models. Such documents are 

already hailed as a “selection tool” for AI transparency, 

and their use is piloted by large corporations and 

industry consortia [28]. A standardized card greatly 

simplifies internal reviews and regulator interactions: all 

key assumptions and tests are collected in one place. 

The final stage is deployment and continuous online 

monitoring. Uber’s practical experience showed that 

without automated tracking of data shifts and spikes in 

group-specific error rates, incorrect decisions 

accumulate unnoticed until reaching a crisis threshold 

[29]. Thus, the fight against bias transitions from one-off 

initiatives to ongoing operations: the model, 

documentation, and monitoring form a unified control 

chain in which a failure at any link is quickly detected and 

remedied. 

Thus, algorithmic bias permeates all stages of model 

development—from unevenly represented data and 

distorted metrics to architectural decisions and 

feedback loops in production—and requires a 

comprehensive approach. On one hand, at the level of 

regulatory governance (from the EU AI Act to national 

frameworks and ISO standards), mandatory audits, 

transparency requirements, and accountability 

measures have already been established; on the other, 

technical methods (pre-, in-, and post-processing, causal 

and multi-objective optimization) enable minimization 

of imbalances both during development and after 

deployment. Finally, introducing systematic checks, 

“harm maps,” datasheets, and model cards transforms 

the struggle against bias from a mere declaration into an 

ingrained process that ensures reproducibility and 

accountability. In the conclusion, we will articulate key 

recommendations for creating truly fair and reliable 

predictive models. 

CONCLUSION 

In conclusion, it has been demonstrated that algorithmic 

bias is a complex issue permeating every stage of a 

model’s lifecycle: from data collection and annotation 
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through the selection of target metrics, architectural 

configuration, and deployment in a production 

environment. Sources of bias may include historical 

imbalances in the data and annotation noise that 

become entrenched during training, as well as 

improperly chosen proxy variables and metrics that fail 

to account for the actual needs of protected groups. 

Moreover, even a correctly trained model is susceptible 

to feedback-loop effects in production, which amplify 

the initial bias in the absence of continuous monitoring. 

Achieving fairness requires diverse technical techniques: 

pre-, in-, and post-processing methods, each addressing 

a specific subtask. Pre-processing reduces data skew; 

embedding fairness constraints into the loss function 

enables explicit consideration of equity requirements 

during training; and post-processing provides a “black-

box” mechanism for balancing errors when access to the 

model’s internal parameters is limited. However, none 

of these approaches offers a universal solution: a trade-

off between accuracy and fairness is inevitable, and the 

specific business and social context must determine the 

optimal balance. 

Equally important is the incorporation of auditing, 

documentation, and continuous control processes: from 

preliminary dataset profiling and metric selection to the 

publication of datasheets and model cards that record 

assumptions and test outcomes for different groups. 

Only a formalized, reproducible process will allow 

regulators and internal auditors to verify compliance 

with bias-mitigation obligations and enable 

organizations to respond promptly to emerging 

deviations in fairness metrics. 

Finally, international, regional, and sectoral regulatory 

frameworks establish minimal requirements and create 

a “compliance ladder” ranging from NIST’s voluntary 

recommendations to the mandatory audits under the 

EU AI Act. This evolutionary structure reduces 

fragmentation and facilitates the shift from ethical 

declarations to measurable, verifiable commitments. 

Thus, an effective strategy for combating algorithmic 

bias must integrate technical mitigation methods, 

auditing and documentation processes, continuous 

monitoring, and regulatory compliance mechanisms. 

These elements will ensure the reliability and fairness of 

predictive models over the long term. 
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