
The American Journal of Engineering and Technology 154 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 154-158

DOI 10.37547/tajet/Volume07Issue05-14

OPEN ACCESS

SUBMITED 24 March 2025

ACCEPTED 20 April 2025

PUBLISHED 19 May 2025

VOLUME Vol.07 Issue 05 2025

CITATION
Alexandr Hacicheant. (2025). Ensuring the Availability of Critical Cloud
Services Through SRE Practices. The American Journal of Engineering and
Technology, 7(05), 154–158.
https://doi.org/10.37547/tajet/Volume07Issue05-14

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Ensuring the Availability of

Critical Cloud Services

Through SRE Practices

Alexandr Hacicheant
Software Engineer and Head of Reliability Engineering at Mayflower.

Author LinkedIn Profile: - Alexandr Hacicheant

company's site: - Mayflower

Abstract: The availability of cloud services is a critical

factor in the success of digital products. Downtime in

essential systems—whether for fintech platforms or

major online retailers—can lead to substantial financial

losses and reputational damage. Meanwhile, modern

cloud infrastructures continue to grow in complexity.

Distributed architectures, automated scaling, and

frequent software releases all increase the risk of

system failures.

In this dynamic environment, companies are actively

seeking strategies to minimize incidents and mitigate

their impact. One of the most effective approaches is

Site Reliability Engineering (SRE)—a discipline

pioneered at Google that combines engineering best

practices with operational processes to enhance the

reliability and resilience of cloud services.

This article examines how Site Reliability Engineering

(SRE) principles address the challenges of maintaining

cloud services availability. Alexandr Hacicheant, Head

of Reliability Engineering at Mayflower, provides an

analysis of key issues in this field, the core

methodologies of SRE, and real-world applications that

contribute to minimizing downtime.

Keywords: Site Reliability Engineering, SRE, Сloud
services, Infrastructure, SLI, SLO

Introduction:

Challenges in Cloud Infrastructure Availability

Modern cloud services function within distributed

environments characterized by fluctuating workloads

https://doi.org/10.37547/tajet/Volume07Issue05-14
https://www.linkedin.com/in/disc/
https://mayflower.work/
https://doi.org/10.37547/tajet/Volume07Issue05-14

The American Journal of Engineering and Technology 155 https://www.theamericanjournals.com/index.php/tajet

and infrastructure spanning multiple data centers

worldwide. This complexity presents challenges in

scalability, traffic balancing, and maintaining

continuous service availability.

A primary challenge in managing distributed systems is

their inherent complexity. Cloud services operate

across thousands of nodes, each vulnerable to

hardware failures, network congestion, and request

processing delays. As demand increases, resources

must be rapidly scaled; however, dynamic scaling itself

can introduce instability.

Another significant risk factor is human error. When

resource scaling is performed manually in response to

rising demand, delays in provisioning additional servers

may lead to service downtime. Misconfigurations—

such as incorrect hostnames, IP addresses, or port

settings—can also contribute to system failures.

Furthermore, erroneous changes may be applied to the

wrong environment, or critical resources, such as

virtual machines or databases, may be unintentionally

deleted. In the absence of well-defined testing

procedures and rollback mechanisms, such errors can

result in substantial business disruptions.

Service availability is also constrained by unpredictable

failures that cannot be entirely eliminated. These may

include sudden outages of major data centers, network

disruptions between regions, or failures in third-party

APIs on which a service relies. Even when systems are

designed with redundancy, unforeseen circumstances

can still result in service disruptions.

In this context, a key challenge for cloud infrastructure

is predicting failures and mitigating their impact.

Effectively addressing this issue requires a

comprehensive strategy that integrates automation,

continuous monitoring, and rapid recovery

mechanisms.

How SRE Addresses These Challenges

Site Reliability Engineering (SRE) is an engineering-

driven discipline focused on ensuring system reliability

and high availability. At its core, SRE establishes

measurable standards for evaluating service

performance and systematically managing incidents.

Rather than aiming for absolute failure prevention, this

approach prioritizes minimizing the impact of

disruptions and utilizing incidents as opportunities for

continuous learning and process refinement.

Failures as an Expected Norm: Accepting the

Inevitability of Outages

Given the complexity of modern distributed systems,

eliminating failures entirely is infeasible. SRE

acknowledges failures as an inherent aspect of system

operations and shifts the focus from prevention to

mitigation. The objective is to minimize the effects of

failures and restore service functionality as efficiently

as possible.

Rather than adopting a purely reactive approach, SRE

teams rely on comprehensive monitoring and proactive

alerting mechanisms to anticipate potential system

degradation. For instance, if API response latency

surpasses a predefined threshold, an automated scaling

process can be triggered to allocate additional

resources before users experience any perceptible

decline in service quality.

Moreover, instead of allowing an outage to fully disrupt

operations, systems can be designed to degrade

gracefully, maintaining partial functionality under

adverse conditions. For example, if a database becomes

temporarily unavailable, the system can retrieve

cached query results, ensuring that users continue to

receive responses while engineers resolve the

underlying issue.

A Unified Culture of Responsibility

A key limitation of traditional development models is

the separation of responsibilities: developers primarily

focus on building new features, while operations

engineers are tasked with maintaining system stability.

This division often leads to inefficiencies and delays in

deploying updates. SRE addresses this challenge by

integrating these roles, fostering a collaborative culture

that enhances consistency and accelerates the

deployment of new functionality without

compromising reliability.

Under this model, developers assume accountability

for the operational performance of their code. Rather

than limiting their responsibilities to writing and

shipping software, they also monitor its real-world

behavior in production environments. This approach

improves the quality of releases, reduces unexpected

failures, and encourages a proactive stance toward

system reliability. Conversely, SRE engineers actively

contribute to the development process by designing

The American Journal of Engineering and Technology 156 https://www.theamericanjournals.com/index.php/tajet

robust and scalable systems from the outset, ensuring

that reliability is embedded at every stage of the

software lifecycle.

Error Budget: A Risk Management Tool

While the complete elimination of failures is

unattainable, their frequency can be managed within

acceptable limits. To achieve this, SRE introduces the

concept of an error budget—a predefined threshold

that specifies the permissible amount of downtime

within a given period.

For example, if a service has an availability target of

99.95%, its error budget allows for 0.05% downtime per

month. This mechanism provides flexibility in release

management: when a system demonstrates high

reliability, updates can be deployed more frequently.

Conversely, if the error budget is depleted due to a

series of incidents, deployments are temporarily

paused to prioritize system stabilization. Furthermore,

error budgets help teams assess acceptable risk levels

and reinforce a reliability-first mindset across

development and operations.

Rapid Detection and Isolation of Issues

Minimizing downtime requires a structured approach

to failure recovery, with Mean Time to Recovery

(MTTR) serving as a critical performance metric. To

reduce MTTR, automated rollback strategies are

employed, enabling the system to revert to a previously

stable version without requiring manual intervention in

the event of a failed deployment. Additionally, feature

flags allow teams to selectively disable problematic

features rather than rolling back an entire release,

thereby preserving system stability while addressing

localized issues.

Another widely adopted strategy for risk mitigation is

canary releases, wherein new features are initially

deployed to a limited subset of users. If the system

remains stable, the deployment is incrementally

expanded to a broader audience. This controlled rollout

minimizes the potential impact of defects while

facilitating continuous innovation.

Measuring Reliability with Metrics

● Service Level Objectives (SLO) define target

reliability levels that organizations commit to

maintaining. These objectives help establish clear

risk thresholds based on key performance

indicators such as uptime, response times, and

request success rates.

For instance, an SLO may specify that a system must

maintain 99.9% availability per month, meaning

total downtime should not exceed 43 minutes. If

real-time monitoring data indicates a deviation

from this target, engineers receive alerts, often

The American Journal of Engineering and Technology 157 https://www.theamericanjournals.com/index.php/tajet

through tools such as Prometheus Alertmanager,

facilitating a rapid response.

● Service Level Indicators (SLI) provide an empirical

assessment of system health by tracking metrics

such as response latency, API success rates, and

error frequencies. These indicators allow

organizations to detect anomalies and address

potential reliability concerns before they escalate

into major incidents. Analytical tools such as

Grafana and Kubernetes’ built-in monitoring

capabilities are commonly used to collect and

analyze SLI data.

Practical Example: Configuring SLI and SLO Metrics

Implementing SRE best practices requires a structured

approach to measuring and improving service

reliability. This process involves defining key

performance indicators, monitoring system behavior,

and continuously refining infrastructure to minimize

downtime.

Consider a large international marketplace that

processes millions of orders each month across

multiple regions. Critical service scenarios include

product catalog browsing, search functionality, cart

operations, and payment processing.

For the payment system, an SLI may be defined as the

percentage of successful transactions, transaction

processing time, and service uptime. Similarly, for

search functionality, SLIs could include request success

rates, response times, and the accuracy of retrieved

product metadata.

To establish performance benchmarks, historical data

must be collected using tools such as Sentry Distributed

Tracing or Jaeger for request routing analysis, Web

Vitals for frontend performance insights, and ELK stack-

based log management systems for in-depth incident

analysis.

Based on this data, baseline performance indicators can

be defined. For example:

● Search requests demonstrate an availability of

99.92%, with a response time of 350 ms in 95% of

cases.

● Cart operations exhibit 99.95% availability, with a

response time of 240 ms in 95% of cases.

● Payments are successfully processed in 99.93% of

cases, with a transaction time of 3.1 seconds in 95%

of cases.

From these baselines, SLOs can be established in

alignment with business objectives. For instance, an

SLO for search functionality might require 99.95%

availability (with an error budget allowing 22 minutes

of downtime per month), response times below 400 ms

for 95% of requests. For the payment system, the SLO

could specify a transaction success rate of 99.95%, a

processing time of no more than 3.5 seconds for 95% of

transactions, and system availability of at least 99.98%

(error budget: 8.6 minutes per month).

Properly configured SLI and SLO metrics enable

marketplaces to scale while maintaining service

stability, ensuring an optimal user experience even as

traffic volumes grow.

Limitations of SRE

Despite its advantages, implementing SRE presents

several challenges. One of the primary concerns is

cost—establishing robust monitoring systems,

automating operational processes, and developing

incident response frameworks require substantial

upfront investment and dedicated team efforts.

From a technical standpoint, selecting appropriate SLIs

is critical. Poorly defined metrics can result in alert

fatigue, leading to either excessive false positives or

insufficient incident detection. For example, setting an

overly aggressive response time threshold may

generate an overwhelming number of alerts, causing

teams to overlook genuinely critical issues.

Cultural resistance also poses a significant challenge.

Successful SRE adoption requires fundamental shifts in

organizational processes, including close collaboration

between development and operations teams.

However, in companies with rigidly established

workflows, this shift may be met with resistance.

Additionally, some organizations may have punitive

cultures that discourage open discussions about

failures, making it difficult to implement post-mortem

analyses effectively.

The American Journal of Engineering and Technology 158 https://www.theamericanjournals.com/index.php/tajet

To address this issue, implementing a blameless culture

can be beneficial. This approach focuses on systemic

problems rather than individuals, viewing failures as a

consequence of system imperfections rather than

mistakes made by specific employees.

With this mindset, the approach to errors becomes

proactive: they are seen as opportunities to improve

the system and foster team growth. Early detection of

failures is encouraged, leading to open discussions and

knowledge sharing among teams.

For example, Google follows a postmortem culture:

after each incident, a document is created to analyze

the root causes without pointing fingers. The principle

of "Learning, not blaming" is applied, emphasizing

lessons learned from each incident and preventing

future occurrences through actionable steps.

Additionally, the Error Budget serves as an objective

tool for balancing development speed and system

stability.

Amazon, on the other hand, follows the "Two-Pizza

Team" approach, which involves forming small,

autonomous teams with full ownership of their

services. These teams participate in every stage of the

product lifecycle, from gathering business

requirements to delivering the final solution into

production.

CONCLUSION

This article has examined the key challenges associated

with ensuring high availability in cloud environments

and demonstrated how the adoption of SRE

methodologies can mitigate downtime and enhance

infrastructure resilience. By integrating error budgets,

proactive monitoring, automated recovery

mechanisms, and retrospective incident analyses,

organizations can systematically improve reliability

while maintaining operational efficiency.

Despite requiring significant investment in training,

process restructuring, and automation, the long-term

benefits—such as reduced failure rates, faster incident

resolution, and enhanced user satisfaction—position

SRE as an industry standard in modern cloud

computing. Future research directions include refining

failure prediction models, developing self-healing

systems, and integrating SRE methodologies with

emerging architectural paradigms such as serverless

computing and edge infrastructure.

REFERENCES

Impact of Site Reliability Engineering on Manufacturing

Operations: Improving Efficiency and Reducing

Downtime, IJSRP, 2020

https://www.arxiv.org/abs/2008.06717

Site Reliability Engineering (SRE), Google

https://sre.google/

SITE RELIABILITY ENGINEERING A MODERN APPROACH

TO ENSURING CLOUD SERVICE UPTIME AND

RELIABILITY, IJCET, 2024

https://www.researchgate.net/publication/37803256

9_SITE_RELIABILITY_ENGINEERING_A_MODERN_APPR

OACH_TO_ENSURING_CLOUD_SERVICE_UPTIME_AND

_RELIABILITY

Evaluating the Impact of Site Reliability Engineering on

Cloud Services Availability, WJAETS, 2020

https://www.researchgate.net/publication/38608764

2_Evaluating_the_Impact_of_Site_Reliability_Engineer

ing_on_Cloud_Services_Availability

Using Cloud-Native and SRE Principles to Achieve Speed

and Resiliency, IBM

https://www.ibm.com/think/insights/using-cloud-

native-and-sre-principles-to-achieve-speed-and-

resiliency

https://www.arxiv.org/abs/2008.06717
https://sre.google/
https://www.researchgate.net/publication/378032569_SITE_RELIABILITY_ENGINEERING_A_MODERN_APPROACH_TO_ENSURING_CLOUD_SERVICE_UPTIME_AND_RELIABILITY
https://www.researchgate.net/publication/378032569_SITE_RELIABILITY_ENGINEERING_A_MODERN_APPROACH_TO_ENSURING_CLOUD_SERVICE_UPTIME_AND_RELIABILITY
https://www.researchgate.net/publication/378032569_SITE_RELIABILITY_ENGINEERING_A_MODERN_APPROACH_TO_ENSURING_CLOUD_SERVICE_UPTIME_AND_RELIABILITY
https://www.researchgate.net/publication/378032569_SITE_RELIABILITY_ENGINEERING_A_MODERN_APPROACH_TO_ENSURING_CLOUD_SERVICE_UPTIME_AND_RELIABILITY
https://www.researchgate.net/publication/386087642_Evaluating_the_Impact_of_Site_Reliability_Engineering_on_Cloud_Services_Availability
https://www.researchgate.net/publication/386087642_Evaluating_the_Impact_of_Site_Reliability_Engineering_on_Cloud_Services_Availability
https://www.researchgate.net/publication/386087642_Evaluating_the_Impact_of_Site_Reliability_Engineering_on_Cloud_Services_Availability
https://www.ibm.com/think/insights/using-cloud-native-and-sre-principles-to-achieve-speed-and-resiliency
https://www.ibm.com/think/insights/using-cloud-native-and-sre-principles-to-achieve-speed-and-resiliency
https://www.ibm.com/think/insights/using-cloud-native-and-sre-principles-to-achieve-speed-and-resiliency

