
The American Journal of Engineering and Technology 88 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 88-100

DOI 10.37547/tajet/Volume07Issue05-07

OPEN ACCESS

SUBMITED 19 March 2025

ACCEPTED 24 April 2025

PUBLISHED 12 May 2025

VOLUME Vol.07 Issue 05 2025

CITATION

Anna Deviatko. (2025). Evolution of Automated Testing Methods Using
Machine Learning. The American Journal of Engineering and Technology,
7(05), 88–100. https://doi.org/10.37547/tajet/Volume07Issue05-07

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Evolution of Automated

Testing Methods Using

Machine Learning

Anna Deviatko
Sr. QA engineer, PGA Tour Ponte Vedra, USA

Abstract: program testing is crucial for guaranteeing

program dependability, but it has historically included

a lot of manual labor, which restricts coverage and

raises expenses. By creating and selecting test cases,

anticipating defect-prone locations, and evaluating test

results, machine learning (ML)-driven testing

approaches automate and improve traditional software

testing. This study examines the development of these

techniques. Significant enhancements are provided by

ML-driven techniques, such as early fault detection,

shorter testing times, and increased test coverage. The

paper offers a thorough synthesis of current

developments, contrasting ML-based testing with

conventional methods in a number of areas, including

efficacy and efficiency in defect identification. It also

highlights important research gaps, talks about real-

world implementation issues, and looks at

multidisciplinary uses of machine learning

technologies, such as deep learning and reinforcement

learning. The paper concludes by highlighting machine

learning's revolutionary influence on software testing

procedures and projecting a time when testing will

become more independent, flexible, and incorporated

into ongoing software development processes.

Keywords: adaptive leadership, organizational change,

crisis management, employee retention, workplace

innovation, participative change management, hybrid

work, leadership adaptability, career adaptability,

strategic agility.

Introduction: For software systems to be reliable and

of high quality, software testing is essential.

Conventional testing methods can need a large amount

of manual labor to create and run test cases, which can

https://doi.org/10.37547/tajet/Volume07Issue05-07
https://doi.org/10.37547/tajet/Volume07Issue05-07

The American Journal of Engineering and Technology 89 https://www.theamericanjournals.com/index.php/tajet

take a lot of time and could not provide thorough

coverage. The discipline of ML-driven (or "intelligent")

software testing emerged as a result of researchers and

practitioners using machine learning (ML) and artificial

intelligence (AI) more and more during the past ten

years to improve and automate software testing

procedures. By automatically creating and prioritizing

test cases, anticipating defect-prone regions, and

analyzing test results, machine learning (ML)-driven

testing approaches can find flaws that manual methods

would overlook while also cutting down on testing time

and expense. For instance, ML-based test prioritization

can direct execution toward the most failure-prone

tests first, while ML-based test generation can get

greater code coverage than manual testing. These

benefits establish ML-driven testing as a revolutionary

development of conventional methods.

Traditional manual and heuristic-based testing

procedures frequently fail to retain efficacy and

efficiency in the increasingly complex and fast-paced

world of current software development, which makes

this topic crucial. Manual testing gets more expensive,

time-consuming, and prone to human error as software

systems get more complex. With its capacity to

automate intricate decision-making procedures and

analyze enormous volumes of data, machine learning

presents a viable answer to these problems.

Organizations can increase test coverage, identify

errors sooner, shorten testing times, and improve

software quality and dependability by incorporating

machine learning (ML) into testing procedures.

This review offers a unique synthesis of a broad range

of recent scholarly research to give a thorough

overview of how machine learning techniques—from

conventional supervised learning to state-of-the-art

deep learning and reinforcement learning methods—

are actively reshaping software testing processes,

whereas previous literature has primarily concentrated

on isolated applications or particular methodologies.

This article's contribution is its comprehensive

comparison of ML-driven testing techniques with

conventional testing methods, outlining their distinct

benefits, drawbacks, and useful implications for

software engineering processes. By highlighting

important research gaps, illustrating thematic links

through bibliometric studies, and talking about the

useful application of ML technologies in actual testing

situations, it significantly deepens our understanding of

the area. Additionally, the paper offers an integrated

viewpoint on how various machine learning methods

come together to tackle challenging testing problems

by examining interdisciplinary intersections like

computer vision and natural language processing.

Finally, by clearly illustrating the timeline of machine

learning's revolutionary influence on software testing

and defining prospective research avenues crucial for

ongoing innovation in intelligent testing

methodologies, this review provides insightful

information to scholars, practitioners, and industry

stakeholders.

METHODS AND MATERIALS

In order to contextualize and examine the

incorporation of machine learning into software

testing, this review consults a variety of scholarly and

peer-reviewed sources. The progress of testing

activities like test generation, defect detection, and test

suite optimization using ML techniques is highlighted in

Ajorloo et al.'s (2024) systematic analysis of machine

learning approaches in software testing [1]. In support

of this, Boukhlif et al. (2023) provide a bibliometric

analysis of intelligent software testing during the

previous ten years, mapping research trends,

important contributors, and developing themes in the

area with the aid of visualization tools [2]. The

potential of hybrid AI approaches in addressing

particular testing difficulties is demonstrated by

Esnaashari and Damia's (2021) targeted application of

genetic algorithms and reinforcement learning for

automated test data production [3].

One of the earliest investigations of AI in software

testing is provided by Last, Kandel and Bunke (2004),

who provide a fundamental viewpoint on AI

approaches such as fuzzy logic and neural networks in

the testing setting [4]. Mehmood et al. (2024), who

examine test suite optimization using a variety of

machine learning techniques, provide a thorough and

current summary of recent developments [5]. A

detailed bibliometric analysis and systematic literature

review are provided by Obreja et al. (2024), who map

the conceptual framework of innovation in AI research

and emphasize multidisciplinary links and trends

influencing the incorporation of AI in innovation

contexts [6]. In their empirical investigation of practical

ML testing procedures, Openja et al. (2024) examine

The American Journal of Engineering and Technology 90 https://www.theamericanjournals.com/index.php/tajet

how various ML software systems handle attributes

including security, fairness, and correctness [7]. Similar

to this, Pan et al. (2022) examine ML-based methods for

prioritizing and choosing test cases, identifying patterns

and gaps in the use of ML models to expedite regression

testing [8].

Sebastian et al. (2024) demonstrate the emergence of

data-driven optimization strategies by conducting a

thorough mapping analysis of unsupervised machine

learning techniques used for test suite reduction in

order to highlight real-world applications [9]. Wahono

(2015) offers domain-wide and historical insights, and

his systematic literature assessment on defect

prediction offers preliminary evidence for the

predictive utility of machine learning in software

reliability [10]. Finally, the paper by Zardari et al. (2022)

put current research orientations into context and

pinpoint areas that need more attention [11].

The materials analyzed cover a range of ML-enhanced

testing operations. The literature based on major

themes: (4) Oracle and result analysis (using ML to

detect anomalies or verify outputs, including

metamorphic testing and log analysis); (3) Defect

prediction and fault localization (training models to

predict likely defect locations or failure-prone

components); (2) Test suite optimization (including test

case prioritization, selection, and reduction using ML

techniques); and (3) Test input generation (using ML to

create test cases or test data automatically). Within

each category, the comparison baseline (manual

testing, random testing, or other conventional

automation) and the types of machine learning (ML)

methodologies utilized (e.g., traditional supervised

learning, deep learning (DL), reinforcement learning

(RL), or hybrid techniques) are noted.

RESULTS AND DISCUSSION

Applying AI methods to software testing is not a

completely novel concept. Researchers suggested

automating some aspects of the testing process as early

as the 2000s by utilizing techniques like fuzzy logic,

neural networks, and AI planning. An early book by Last

et al. (2004), for instance, gathered a variety of AI

techniques in software testing, including case-based

reasoning for identifying dangerous code modules and

neural networks for creating test cases [4]. A corpus of

research on machine learning-based defect prediction

surfaced during the 2010s. In order to forecast which

components are likely to contain bugs, machine

learning classifiers (such as decision trees, Bayesian

networks, and support vector machines) are trained

using historical code and bug data. Although it focuses

on QA analytics rather than test automation

specifically, rigorous studies of software defect

prediction by 2015 have established it as an effective

application of machine learning in software engineering

[10]. The use of search-based algorithms (genetic

algorithms, etc.) for test generation was another

forerunner of contemporary ML-driven testing. Search-

based testing (SBST), which is frequently regarded as a

component of artificial intelligence (AI) in testing,

automatically creates test inputs by optimizing a fitness

function (such code coverage). Although not all SBST

methods use machine learning, they all adhere to the

principles of informed search and automation.

Interest in AI-driven testing increased between 2016

and 2020. According to Zardari et al.'s thorough

bibliometric analysis, there was an increase in

publications between 2016 and 2019, reaching a high in

2019, and then seeing a minor decline in 2020–2021

(partly due to COVID-19 disruptions) [11]. Specialized

subfields emerged around this time, most notably test

case prioritization utilizing machine learning.

Continuous integration made test selection and

prioritizing a priority since ML models can forecast

which test cases are most likely to identify errors

following a code change as test suites get bigger.

Researchers have been depending more and more on

machine learning (ML) methods in recent years to

accomplish efficient test case selection and

prioritization (ML-based TSP), according to Pan et al.

(2022) [8]. More quickly than traditional regression

testing (e.g., running tests in fixed or random order),

machine learning (ML) models can learn to rank test

cases in an order that finds flaws by incorporating

information from multiple sources (code changes,

previous failures, coverage, etc.). Numerous

investigations conducted between 2018 and 2020

proved the feasibility of this strategy, frequently

employing test execution data from the past to develop

failure prediction models. -prone evaluations.

The distribution of 1225 articles on innovation and

artificial intelligence (AI) across the social sciences is

displayed in Figure 1, which makes it evident that

The American Journal of Engineering and Technology 91 https://www.theamericanjournals.com/index.php/tajet

scholarly interest is on the rise.

Figure 1. Analysis of research interest in AI by Obreja et al. [6]

Following a period of little activity, there was a

noticeable uptick beginning in 2018, with publications

increasing dramatically from 60 to 350 by 2023. This

quick expansion indicates increased interdisciplinary

research and use of AI approaches in a variety of

subjects, reflecting a rising understanding of AI's

revolutionary potential across disciplines. The dramatic

rise highlights how AI has progressed from specialized

study to broad scholarly recognition, emphasizing

important research topics and the increasing use of AI-

driven approaches to tackle challenging innovation

problems. The figure demonstrates this academic

momentum and suggests that AI will continue to grow

and be more deeply integrated into future research

projects.

The close ties between researchers, geographical areas,

and new subjects in intelligent software testing are a

major finding of the most recent bibliometric

investigation. As illustrated in Figure 2, for example,

the Three-Field Plot graphically depicts the connections

among nations, authors, and document title keywords.

The American Journal of Engineering and Technology 92 https://www.theamericanjournals.com/index.php/tajet

Figure 2. Three-Field Plot by Boukhlif et al. [2]

Each of the three fields is represented by a colored

rectangle in this picture. The thickness of the lines

connecting them shows how strong these links are,

while the height of the rectangle represents the total

weight of their connections. Notably, the plot

emphasizes how significant contributions are

concentrated in nations like the USA, China, and India,

which are closely related to the main study issues

represented in the keywords of the document title.

This implies that these areas not only produce a lot, but

also have similar research interests that spur

advancements in ML-driven testing techniques.

Automated test generation using machine learning is

another field that developed during this period. The

late 2010s saw a greater usage of machine learning for

test generation, whereas earlier attempts relied on

evolutionary algorithms. For instance, researchers

looked into using training models to direct fuzz testing

or produce inputs that meet complex constraints.

Although early results were limited, the idea of

employing neural networks to generate test cases has

been proposed by 2019. Additionally, around this time,

there was an increase in interest in using natural

language processing (NLP) in testing, such as parsing

requirements or user stories to create test cases or

examining system logs to look for anomalies. NLP-

assisted software testing techniques were laid out by

Garousi et al. (2020), showing how ML (especially NLP)

intersects with testing chores including requirements-

based testing and test oracle development.

The discipline has developed quickly in recent years,

embracing cutting-edge machine learning techniques.

The American Journal of Engineering and Technology 93 https://www.theamericanjournals.com/index.php/tajet

According to Ajorloo et al. (2024), a wide range of

machine learning techniques are currently being used

in various testing phases, and as the field develops,

comprehending these techniques and their difficulties

has grown more difficult [1]. A few key trends can be

used to describe the current situation. First, supervised

machine learning models trained on data (such as code

metrics and previous test outcomes) are used in many

testing applications. For example, classification or

regression models are used to forecast the priority of a

test or if a certain code commit will damage the build

(continuous integration testing). According to a

thorough analysis of test suite optimization methods,

Mehmood et al. (2024) find that while deep learning

and hybrid approaches are becoming more popular,

they are still less common than standard supervised

machine learning techniques (such as random forests

and support vector machines) [5]. This implies that

tabular data and classical machine learning are

sufficient and have been used the most thus far for

many problems (such ranking test cases or forecasting

flaws).

Second, deep learning has begun to become a

significant factor, particularly for activities that use

complicated data (such as textual specifications, GUI

pictures, or computer source code). The ability of

neural networks—including sophisticated architectures

like transformers—to automatically extract features

from unprocessed inputs is useful for creating test

cases or spotting errors with subtle patterns. One study

claims that neural networks have surpassed more

established approaches like Bayesian networks in

popularity as one of the most widely used methods for

classification tasks in testing (such as determining if a

test will fail). Two prominent examples are A3Test

(2023) and AthenaTest (2020), which frame the

creation of unit tests as a neural machine translation

problem—that is, converting code into tests. A3Test, a

deep learning-based method, has shown increased

correctness in generated tests by supplementing neural

test production with learnt assertions. Deep models

may handle richer input data (such source code tokens

or GUI pixel data) to produce or assess tests in ways

that previous approaches could not, which signifies a

considerable shift in capacity from simple ML models.

A Sankey diagram showing the relationship between

the types of machine learning systems and the

attributes they examine is shown in Figure 3.

The American Journal of Engineering and Technology 94 https://www.theamericanjournals.com/index.php/tajet

Figure 3. Sankey diagram by Openja et al. [7]

 A startling imbalance in actual ML testing procedures

is seen in the diagram. Correctness dominates the flow

of testing efforts and is by far the most tested attribute

across all domains, including recommendation,

computer vision (CV), natural language processing

(NLP), and application platforms. Critical attributes like

Adversarial Perturbation, Security & Privacy, and Bias &

Fairness, on the other hand, are examined far less

frequently and are limited to a small number of system

kinds. For example, recommendation and CV systems

pay some attention to bias and fairness, but security

and privacy are rarely evaluated. The article's assertion

that existing techniques are still narrowly focused

despite the incorporation of machine learning into

contemporary testing workflows is supported by this

figure. It draws attention to the necessity of more

comprehensive, property-aware testing techniques

that take into account the particular difficulties

presented by ML systems, particularly when they are

used in fields with higher stakes and greater sensitivity.

Third, mixing machine learning with other methods is

becoming more and more popular. Some strategies

combine several ML models in an ensemble or combine

ML with search-based techniques to create learning-

optimization hybrids. To help with test suite reduction,

Tahvili et al. (2020), for instance, clustered similar test

cases using Word2Vec embeddings, an unsupervised

machine learning technique for text, in conjunction

with clustering. In test generation research, hybrid

approaches are also used, where a standard algorithm

may be guided by a learning component. Though they

were less numerous (about 8 out of 43) than studies

that only used ML or DL, the IEEE Access study on test

suite optimization acknowledges the existence of

"hybrid" category studies, which combine ML and other

AI techniques. Using reinforcement learning to direct a

search-based test generator is an effective hybrid

example; the search algorithm creates candidate

inputs, and RL determines which regions of the input

space to concentrate on. These pairings can take

advantage of the advantages of several methods.

Fourth, evaluating machine learning models

The American Journal of Engineering and Technology 95 https://www.theamericanjournals.com/index.php/tajet

themselves—often referred to as ML testing or AI

software testing—is a parallel topic that is outside the

purview of this essay but is nevertheless noteworthy.

The community has also been interested in how to

systematically test AI systems (e.g., testing neural

networks for safety), even if our focus is on utilizing ML

to test software. It's interesting to note that there is

some cross-pollination: methods such as metamorphic

testing, which was initially created to test non-

deterministic or "non-testable" programs, are now

applied to machine learning models, and concepts from

that field (such as adversarial input generation) are

incorporated into the creation of general tests for

conventional software. Although the primary focus of

this paper is machine learning (ML) as a tool for

software testing, the increasing demand for AI system

verification provides more motivation for automated,

intelligent testing techniques.

Defect prediction, basic categorization, or clustering for

test jobs are examples of early applications of machine

learning (ML) that have evolved into more complex,

learning-enabled automation across the testing

lifecycle. As the subject matures, there is also a

noticeable rise in interdisciplinarity, as methods from

computer vision, time-series analysis, natural language

processing, etc., are being applied to software testing

issues. Whether these ML-driven techniques truly

perform better than conventional testing techniques is

a key topic. According to the research, ML-based

testing can greatly increase productivity and the

efficacy of flaw detection in a variety of situations.

However, each strategy has a different level of

improvement and a different set of circumstances in

which it appears.

Compared to manual test design or basic random

testing, automated test generation using machine

learning (ML) seeks to improve coverage and identify

more flaws. Positive results have been documented in

studies. For example, by learning program behavior,

ML models have been used to produce test inputs that

achieve high path coverage. In addition to lowering the

overall testing effort, an industry case study on AI-

enhanced testing tools demonstrated notable

increases in test coverage and error detection rates.

Similarly, studies using the NEATEST method, which

combines neuroevolution with deep learning for game

testing, showed a 93% decrease in search time and

greater branch coverage (81.3% vs. 75.9%) when

compared to a non-ML baseline. These findings suggest

that ML can produce more efficient test cases more

quickly than conventional techniques when used

appropriately. It is important to remember that

identifying bugs is the ultimate goal; coverage is not the

only statistic. Certain tests generated by machine

learning may improve coverage without discovering

new flaws (particularly if the ML optimizes coverage

directly). Therefore, direct fault-finding ability is also

measured in recent works. The deep learning strategy

was able to automatically identify some regression

errors in the AthenaTest and A3Test studies for unit

tests, but human-written tests or heuristic techniques

like EvoSuite still discovered some errors that the ML

missed. All things considered, machine learning (ML)-

driven test generation enhances traditional testing by

rapidly addressing simple scenarios and regressions,

freeing up human testers to concentrate on intricate,

scenario-based testing where insight is required.

ML has demonstrated distinct benefits in the areas of

test suite optimization and prioritizing. Conventional

test priority frequently depends on human judgment or

basic heuristics (such as executing tests that cover

updated code first). ML-based prioritizing can identify

which tests are most likely to show failures based on

past data. According to empirical assessments,

machine learning techniques can perform better than

traditional methods like random ordering or entire

coverage. For instance, a research cited by Esnaashari

& Damia used reinforcement learning to prioritize

regression tests and outperformed coverage-based

sorting in terms of early fault detection rates [3]. Using

a learning-to-rank model for test cases, Zhang et al.

(2022) observed gains of several percentage points in

the Average Percentage of Faults Detected (APFD)

measure compared to standard techniques.

Development teams now receive feedback on failures

more quickly thanks to these enhancements, which

speeds up continuous integration cycles.

Adaptability is a noteworthy benefit of machine

learning in this field. While a hard-coded heuristic may

become less effective, an ML model can retrain on new

data and modify the prioritizing method as the

software and test features change. A limitation noted

in certain research, though, is that in order for ML

models to train efficiently, a sizable history of test

The American Journal of Engineering and Technology 96 https://www.theamericanjournals.com/index.php/tajet

results is necessary. Traditional approaches might be

more dependable in projects with sparse signals or very

infrequent failures. In actuality, a mixed strategy might

be applied (for example, start with basic principles and

then progressively switch to an ML model as data

accumulates).

A more analytics-focused application of machine

learning is defect prediction and fault localization,

which has a direct influence on testing by directing

where additional testing should be conducted. ML

classifiers may predict defect-prone components with a

reasonable level of accuracy, as demonstrated by

numerous research (typically assessed by

precision/recall or AUC). This has been advanced by

contemporary deep learning techniques (such as code

embeddings), which can occasionally detect intricate

bug patterns. ML-based defect prediction might focus

testing on modules that are statistically likely to fail, as

opposed to expert intuition or traditional static

analysis. In reality, businesses have employed these

models to effectively distribute testing resources

(Google's "Testing Reliability Predictor," for instance,

uses machine learning to determine how much testing

should be done on a particular code update). Here,

comparative efficiency is frequently context-

dependent; for example, an ML model may not perform

better than a straightforward heuristic in projects with

noisy data. However, ML forecasts have outperformed

random or simplistic approaches in large systems with

a long history, increasing the rate of fault identification

before release.

ML can occasionally help determine if a test succeeds

or fails (the oracle problem). ML-based vision

algorithms, for example, can identify visual

abnormalities in GUI testing that a conventional script

might overlook. Algorithms for anomaly identification

(typically unsupervised machine learning) in log

analysis highlight odd patterns that might point to

malfunctions. These ML-driven oracles can detect

subtle failures more easily than if exhaustive assertions

or filters were written by hand. Research conducted on

production systems between 2021 and 2023 has

demonstrated that machine learning-based anomaly

detectors can identify problems like memory leaks or

performance regressions before human operators do.

The false positive rate is a problem, too, as ML oracles

might sound the alarm for harmless abnormalities;

therefore, they need to be adjusted or used in

conjunction with conventional tests to prevent noise.

In many instances, ML-driven testing has shown gains

in efficacy (raising coverage and faults identified) and

efficiency (cutting testing time and effort) across

several domains. An important benefit in agile and

DevOps environments is the ability of intelligent testing

tools to run continuously and adapt. It's critical to

temper enthusiasm with real-world factors discussed in

the literature. First and foremost, machine learning

techniques require data—either runtime data for

unsupervised anomaly detection or training data for

supervised approaches. The ML technique may

perform poorly if a project has insufficient data or data

of poor quality (such as an untrustworthy test result

history). This cold-start issue is not present in

traditional testing. Second, software engineers might

be hesitant to depend on "black-box" machine learning

judgments for crucial testing assignments. For

example, there needs to be assurance that an ML

model isn't missing a bug if it deprioritizes some tests.

In order to provide light on the reasoning behind a

model's testing choices, researchers have started

investigating explainable AI methodologies. Teams

may employ ML recommendations in advisory mode

rather than entirely automatic, at least initially, in

situations when trust is low. Third, ML models

themselves need to be maintained, which includes

managing concept drift and upgrading as software

changes. In contrast to standard scripts, this adds

overhead. But a lot of contemporary ML-based testing

solutions are made to learn or update automatically,

which minimizes the need for manual retraining.

In conclusion, research indicates that ML techniques

can produce outcomes that are on par with or better

than traditional methods while requiring less human

intervention, especially when it comes to regression

testing and repetitive activities. In exploratory and

scenario-based testing, where human ingenuity and

domain expertise are essential, traditional testing still

performs exceptionally well. The overall research

narrative is headed towards supporting and enhancing

human testers rather than replacing them. ML-driven

automation eliminates time-consuming testing tasks

and identifies possible trouble spots, freeing up testers

to focus on more sophisticated behavior verification

and higher-level test design. Teams that successfully

The American Journal of Engineering and Technology 97 https://www.theamericanjournals.com/index.php/tajet

use AI into testing view it as a means of increasing test

productivity (commonly referred to as "augmented

testing") rather than as a completely hands-off testing

solution, demonstrating this complementary

connection in industry acceptance.

The field of ML-driven testing is still developing, and

there are a few noteworthy new trends. Software

testing now has more options thanks to the

development of strong LLMs like GPT-3/4. These

models can produce code, including possible test cases

or test oracles, from natural language prompts since

they have been trained on extensive code corpora. In

certain situations, like GUI or game testing,

reinforcement learning (RL) has been used to teach an

agent how to use an application and identify bugs. The

program being tested is treated as an environment by

RL-based test agents, who then learn events (action

sequences) that maximize a reward (such as bug

discovery or coverage). This method is comparable to

an independent exploratory tester. The application of

RL algorithms for complex systems is increasing as

computer resources and algorithms get better (e.g.,

testing self-driving car software by learning sequences

of sensor inputs that trigger misbehavior). The special

benefit of reinforcement learning is its capacity to find

unknown unknowns, or unexpected sequences that

result in failures, that a deterministic script might not

attempt. A deep Q-learning agent was utilized in a

recent study by Al-Sabbagh et al. (2022) to prioritize

which tests to execute in continuous integration. In

some cases, the adaptive technique outperformed

static ordering. More RL integration with testing

frameworks is to be expected, potentially leading to

"smart test bots" that may be used to continuously

investigate a system in the field while learning from

each execution.

Although supervised learning has received a lot of

attention, unsupervised methods are essential in

situations when data labeling is challenging (e.g.,

differentiating between failing and passing conditions).

K-means and other clustering algorithms have been

effectively used to decrease test suites by combining

duplicate tests or to group comparable failure reports.

In a systematic mapping analysis, Sebastian et al. (2024)

emphasized how often K-means clustering is in test

suite reduction research, which frequently starts with

coverage metrics [9]. Using unsupervised machine

learning (ML) to address the test oracle problem is the

trend here. For instance, anomaly detection (clustering

or autoencoders) on program execution traces is being

used to identify deviations without the need for explicit

"failure" labels. There are also plans for self-supervised

learning, in which the system generates surrogate

labels from data. For example, it may generate

plausible invariants from execution data and then flag

violations as possible flaws without the need for

manual labeling. As these methods develop, they may

significantly lessen the requirement to preserve

predicted test results, enabling more flexible problem

identification.

The method of testing programs by comparing input-

output relationships (instead of outputs against a

predetermined predicted value) is known as

metamorphic testing. A synergy is emerging between

metamorphic testing and machine learning (ML): ML

models may be tested using metamorphic testing, and

ML can be used to discover metamorphic relations from

data. In order to automate the development of

metamorphic test cases, recent studies have started

utilizing machine learning (ML) to anticipate which

metamorphic relations hold for a given function. This is

particularly helpful for AI programs and other

algorithms without obvious oracles. We anticipate

greater effort to integrate these concepts and

successfully use machine learning to identify SUT

features that can function as pseudo-oracles.

Adding ML-driven testing tools to development

workflows is a useful trend. Both open-source and

commercial tools are becoming available (e.g.,

Microsoft's IntelliTest with some ML methods,

Launchable's predictive test selection, etc.). Although

many organizations have expressed enthusiasm in

using AI for testing, a 2022 quality assessment pointed

out that the promise has not yet been widely achieved

in practice. Industry reports on adoption have been

conflicting. Adoption is anticipated to quicken, though,

as tools continue to advance and encouraging case

studies are being documented. In the upcoming years,

CI/CD systems may incorporate intelligent testing

dashboards that optimize test execution schedule,

continuously assess test efficacy, and recommend new

tests using machine learning.

The dependability of ML itself is essential as it is

incorporated into the testing process. A flawed

The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet

machine learning model could miss important tests or

produce inaccurate results. Thus, the question of how

to evaluate the testing tools is becoming more and

more important. Validating ML models used in safety-

critical testing has been mentioned in research from

2023 (e.g., making sure an ML-based test selector

doesn't systematically overlook a class of tests, which

could be perceived as a bias). The NIST AI risk

framework and other initiatives place a strong

emphasis on the thorough assessment of AI

components in software processes. When testing

procedures are created to assess how well ML performs

in testing, a feedback loop may be created (for

example, seeding known flaws and observing if the ML-

driven process discovers them). The implementation of

AI-driven quality assurance in businesses is probably

going to include this meta-testing of AI systems as a

routine practice.

When combined, these patterns point to a future

where intelligent agents will increasingly support

software testing. As routine creation and execution

tasks become more automated, the human tester's

function will become more focused on oversight,

strategy, and interpretation. With machine learning

(ML) modifying tests as software changes, testing may

turn into an ongoing, independent process that

operates in the background. This has significant

ramifications: testing may stop being a phase and

instead become an ongoing service associated with

software development.

CONCLUSION

Automated software testing techniques have advanced

significantly as a result of machine learning. The area

has advanced from early attempts to use AI for defect

prediction and test generation to a wide range of ML-

driven techniques that are used in many parts of the

testing lifecycle. Our analysis of current research from

2021 to 2025 demonstrates that ML-driven testing

techniques have advanced to the point where they can

provide real advantages in practice: they can decrease

the amount of manual labor required to create and

choose tests, increase test coverage, and identify flaws

that conventional techniques might overlook. By

learning from previous project data, supervised

learning models—in particular—have become widely

used in tasks such as test case prioritization, where they

consistently outperform simple heuristics.

Simultaneously, the frontier of research is expanding

into massive language models, deep learning, and

reinforcement learning, creating new opportunities to

automate intricate testing situations and even produce

test logic that is human-like.

According to a comparative analysis, ML-driven testing

has significant benefits when used properly but is not a

panacea. Although traditional testing methods, which

are based on human knowledge and simple automation

scripts, are frequently transparent and dependable,

they are unable to keep up with the complexity and

quick speed of contemporary software development.

These issues are resolved by ML-driven approaches,

which use learning to manage scale and complexity.

For instance, as was mentioned, an ML-based test

prioritizer can quickly and meaningfully rearrange

thousands of tests following each code change,

something that is impossible to accomplish by hand for

every commit. Similarly, whereas a human test suite

may not keep up with changes, tools that use machine

learning to produce test cases may quickly adjust to

new features or patterns in the code. Studies have

quantitatively shown gains like increased fault

detection rates early in testing cycles or notable time

savings (around 20–30% in some industrial trials) as a

result of more intelligent test selection.

However, there are obstacles and ramifications for

software engineering if ML-driven testing is to be

successfully implemented in practice. As part of their

QA infrastructure, teams need to get or hone the skills

necessary to administer and maintain ML components.

This entails not just training models at first but also

tracking their performance over time, much like one

would track automation failures or test flaws.

Important data concerns also include the necessity of

gathering and selecting high-quality training data (such

as test results, code modifications, and coverage data)

to feed the algorithms. Setting up this data pipeline is

a requirement that costs money in many businesses.

The change in test engineers' roles and culture is

another impact. The function of a tester increasingly

takes on the responsibilities of a test strategy and

machine learning supervisor when routine test design

becomes automated. Test engineers might need to

comprehend how the machine learning models decide,

analyze their results, and step in when needed (for

example, overriding a model's choices if it's missing

The American Journal of Engineering and Technology 99 https://www.theamericanjournals.com/index.php/tajet

something crucial). To effectively use AI-assisted tools,

organizations may need to teach test teams on

fundamental data science or machine learning ideas.

Positively, removing humans from mundane duties

might improve the testing process by allowing testers

to concentrate on intricate, innovative scenarios while

leaving the repetitive tasks to the robots.

The incorporation of machine learning (ML) into testing

necessitates strong validation of these AI components

from a quality and safety perspective. Evidence that an

AI-driven testing technique is at least as effective as

conventional approaches and does not increase

unacceptable risk (for example, by overlooking errors)

may be needed in safety-critical areas (financial,

healthcare, automotive, etc.). Guidelines for applying

machine learning (ML) to the verification and validation

process will probably be incorporated into software

regulatory frameworks and standards, which are just

starting to take AI into account. It makes sense to

anticipate the creation of best practices or standards

for "ML in QA" in order to guarantee that the

advantages are realized without sacrificing

dependability.

In the future, it appears that automated testing

incorporating machine learning will continue to

advance at an accelerated rate. A future where testing

adjusts to software changes on its own is hinted at by

emerging techniques like generative testing, which

uses generative models to construct complex test

scenarios, and self-healing tests, which automatically

update themselves as code changes and use machine

learning to modify expected outcomes. An AI agent

that observes every commit, determines how to test it

on its own, learns from the results, and even enhances

the test suite by adding additional tests it finds

beneficial might greatly support the DevOps concept of

continuous testing. With the current direction of

research, such a concept is becoming more and more

attainable.

In the end, automated testing has evolved from a

primarily human scripting endeavor to a data-driven,

intelligent process thanks to machine learning.

Although there have been some new difficulties along

the way, testing has clearly improved in terms of

efficiency and efficacy. ML-driven testing is in a strong

condition right now: methods for many common

testing requirements are available and verified, and

new tools are being developed to make them

accessible. A major theme for the future will be

handling this complexity in a morally sound manner as

the software being tested and the testing methods

grow increasingly complicated (with AI on both sides).

AI engineering concepts must be incorporated into

software engineering as a discipline in order to ensure

quality. The combination of human and machine

intelligence in testing has the potential to produce

software with much greater quality in less time.

Software teams can more successfully integrate

machine learning into their testing procedures and

produce more dependable software systems with

confidence by taking note of the limitations and

achievements covered in this article.

REFERENCES

Ajorloo, S., Jamarani, A., Kashfi, M., Kashani, M. H., &

Najafizadeh, A. (2024). A Systematic Review of Machine

Learning Methods in Software Testing. Applied Soft

Computing, 162, 111805.

https://doi.org/10.1016/j.asoc.2024.111805

Boukhlif, M., Hanine, M., & Kharmoum, N. (2023). A

Decade of Intelligent Software Testing Research: A

Bibliometric Analysis. Electronics, 12(9), 2109.

https://doi.org/10.3390/electronics12092109

Esnaashari, M., & Damia, A. H. (2021). Automation of

Software Test Data Generation Using Genetic

Algorithm and Reinforcement Learning. Expert Systems

with Applications, 183, 115446.

https://doi.org/10.1016/j.eswa.2021.115446

Last, M., Kandel, A., Bunke, H. (2004). Artificial

Intelligence Methods in Software Testing Series in

Machine Perception and Artificial Intelligence, Volume

56, 2004. World Scientific Publishing Co.

Mehmood, A., Ilyas, Q. M., Ahmad, M., & Shi, Z. (2024).

Test Suite Optimization Using Machine Learning

Techniques: A Comprehensive Study. IEEE Access, 12,

168645–168671.

https://doi.org/10.1109/ACCESS.2024.3490453

Obreja, D. M., Rughiniș, R., & Rosner, D. (2024).

Mapping the conceptual structure of innovation in

artificial intelligence research: A bibliometric analysis

and systematic literature review. Journal of Innovation

& Knowledge, 9(1), 100465.

https://doi.org/10.1016/j.asoc.2024.111805
https://doi.org/10.1016/j.asoc.2024.111805
https://doi.org/10.1016/j.asoc.2024.111805
https://doi.org/10.3390/electronics12092109
https://doi.org/10.3390/electronics12092109
https://doi.org/10.3390/electronics12092109
https://doi.org/10.1016/j.eswa.2021.115446
https://doi.org/10.1016/j.eswa.2021.115446
https://doi.org/10.1016/j.eswa.2021.115446
https://doi.org/10.1109/ACCESS.2024.3490453
https://doi.org/10.1109/ACCESS.2024.3490453
https://doi.org/10.1109/ACCESS.2024.3490453

The American Journal of Engineering and Technology 100 https://www.theamericanjournals.com/index.php/tajet

https://doi.org/10.1016/j.jik.2024.100465

Openja, M., Khomh, F., Foundjem, A., Jiang, Z. M., Abidi,

M., & Hassan, A. E. (2024). An empirical study of testing

machine learning in the wild. ACM Transactions on

Software Engineering and Methodology, 34(1), 1-63.

Pan, R., Ghaleb, T. A., Bagherzadeh, M., & Briand, L.

(2022). Test Case Selection and Prioritization Using

Machine Learning: A Systematic Literature Review.

Empirical Software Engineering, 27, 81.

https://doi.org/10.1007/s10664-021-10066-6

 Sebastian, A., Naseem, H., & Catal, C. (2024).

Unsupervised Machine Learning Approaches for Test

Suite Reduction: A Systematic Mapping Study. Applied

Artificial Intelligence, 38(4), 310–330.

https://doi.org/10.1080/08839514.2024.2322336

Wahono, R. S. (2015). A systematic literature review of

software defect prediction. Journal of software

engineering, 1(1), 1-16.

Zardari, S., Alam, S., Al Salem, H. A., Al Reshan, M. S.,

Shaikh, A., Rehman, M. M. u., & Mouratidis, H. (2022).

A Comprehensive Bibliometric Assessment on Software

Testing (2016–2021). Electronics, 11(13), 1984.

https://doi.org/10.3390/electronics11131984

https://doi.org/10.1016/j.jik.2024.100465
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1080/08839514.2024.2322336
https://doi.org/10.1080/08839514.2024.2322336
https://doi.org/10.1080/08839514.2024.2322336
https://doi.org/10.3390/electronics11131984
https://doi.org/10.3390/electronics11131984
https://doi.org/10.3390/electronics11131984

