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Abstract: This paper examines the integration of causal 
analysis (causality) and machine learning methods to 
accurately predict the effects of interventions. The first 
part introduces the rationale for the importance of the 
causal approach when classical statistical models and 
purely associative ML methods face problems of hidden 
factors and incorrect extrapolation of results. The 
second part discusses the basic theoretical concepts of 
causal graphs, do-operator, intervening and 
counterfactual distributions, and the role of 
identifiability assumptions in the presence of 
unobserved confounders. Next, methods for 
integrating causality and machine learning - causal 
supervised learning (to deal with spurious correlations 
and increase robustness to distributional shifts), causal 
generative modeling (with a focus on generating 
counterfactual data), and other state-of-the-art 
approaches (causal model explanation, causal fairness, 
causal reinforcement learning) - are discussed in detail. 
It is shown how such methods can better account for 
the real-world structure of the data and produce more 
reliable predictions, especially in heterogeneous 
environments. The results can be applied to medicine, 
economics, social sciences, and other fields where it is 
important to accurately predict the effects of potential 
interventions. 

 

Keywords: causal analysis, machine learning, causal 
graphs, hidden confounders, interventions, 
counterfactual reasoning, invariant risk minimization, 
causal data generation. 

 

Introduction: Over the past decade, there has been a 
rapid rise in interest in combining causal inference 
(causality) with machine learning (ML) methods to build 
predictive models for interventional effects [6, 12]. 
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Conventional statistical approaches, which rely 
predominantly on correlation, often encounter 
challenges when trying to isolate genuine causal 
mechanisms or reliably extrapolate results to new 
conditions [14]. This becomes particularly evident in 
tasks where the data distribution can shift significantly: 
in such cases, predictions grounded in purely 
associative patterns tend to perform poorly in new 
environments [1]. 

Classical statistical methods—those based on 
conditional probabilities and linear regression—
commonly overlook intricate structural (causal) 
relationships among variables [12]. For example, in 
evaluating how a medical therapy affects different 
patient groups, hidden confounding may arise, where 
unmeasured factors distort the true effect of an 
intervention [6]. Similar constraints are found in purely 
associative (or “black-box”) ML models, where 
algorithms attempt to “fit” dependencies between 
features and the outcome variable without 
distinguishing genuine causal factors from spurious 
correlations [2]. Consequently, such models are at risk 
when transferred to new, out-of-sample conditions 
[15]. 

Meanwhile, methods from causal inference offer tools 
for formally identifying and estimating causal effects, 
enabling a clearer interpretation of observed data and 
stronger predictions for potential interventions. As a 
result, there is growing demand to integrate ML 
approaches with causal models. The aim of this article 
is to demonstrate how such integration improves the 
accuracy and robustness of predictions, especially 
when data are heterogeneous or external conditions 
vary significantly. This is particularly relevant in 
medicine, socio-economic analysis, and applied 
research, where the task is not just to predict an 
outcome but to understand how that outcome might 
change under an intervention (e.g., modifying the 
dosage of a drug or adjusting social policy). 

In the literature on causal modeling, one finds a wide 
range of methods—spanning from Bayesian networks 
and structural equation approaches [12, 14] to cutting-
edge hybrid techniques that merge deep neural 
networks with elements of causality [10]. Some studies 
focus on theoretical foundations, highlighting the do-
operator, counterfactual reasoning, and identifiability 
issues [6, 12]. Others present practical applications in 
medicine, economics, and the social sciences [2, 15]. 

A particularly comprehensive overview of current 
developments in this field highlights several key 
directions: 

● Causal supervised learning: Pursuit of 
invariant features and stable models that better handle 
distributional shifts in the data [1]. 

● Causal generative modeling: 
Generating data in a way that accounts for causal 
mechanisms, which enables realistic counterfactual 
examples and strategies for mitigating “spurious” 
patterns. 

● Causal explanations: Interpreting 
complex ML models by pinpointing causally significant 
factors. 

● Causal reinforcement learning: 
Enhancing reinforcement learning through structural 
(causal) dependencies. 

● Causal fairness: Defining fairness in 
causal terms to prevent discrimination in automated 
decisions. 

According to these overviews, there remain 
various open challenges—for instance, detecting 
hidden confounders, limited avenues to test causal 
hypotheses using real-world data, and the difficulty of 
integrating powerful neural networks with explicit 
causal graphs [7]. There is also a lack of benchmark 
datasets for validating causal models in different 
applied fields [15]. 

The novel contribution of this paper lies in an 
attempt to systematize contemporary solutions, bring 
them in line with the existing body of work on causal 
inference, and illustrate their practical use. First, we 
clarify and extend known methods for effect estimation 
by leveraging the potential of structural causal models 
(SCMs). Second, we synthesize progress in the domain 
of generative counterfactual techniques, which offer a 
deeper understanding of how possible interventions 
can influence outcomes [10]. To our knowledge, this is 
the first work to comprehensively review and unify 
these diverse threads of causal and machine learning 
research with an eye towards intervention outcome 
prediction. 

 

1. Theoretical Foundations of Causal Inference and 
Machine Learning 

Causal inference (causality) is closely interwoven with 
both classical and modern machine learning (ML) 
methods, enriching them with tools for uncovering not 
just associative but genuinely causal relationships in 
data [7, 12]. Below is a concise overview of the key 
concepts needed to understand and develop predictive 
models for interventional effects. 

We begin by examining the basics of Bayesian networks 
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and causal graphs. A Bayesian network is defined by a 
directed acyclic graph (DAG), where each node 𝑋𝑖  is 
connected to its parent nodes 𝑃𝑎(𝑋𝑖), encoding a 
factorization of the joint distribution: 

𝑝(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏

𝑛

𝑖=1

𝑝(𝑋𝑖 ∣ 𝑃𝑎(𝑋𝑖)) 

where 𝑋1, 𝑋2, … , 𝑋𝑛 are the model variables and 
𝑃𝑎(𝑋𝑖) is the set of parents of Xi in the graph. However, 
such a graph often captures only the structure of 
conditional dependencies, without guaranteeing a 
causal interpretation [14]. To move toward causal 
graphs, one adopts the perspective of structural causal 
models (SCMs) [12], in which each variable 𝑋𝑖  is 
generated not only by 𝑃𝑎(𝑋𝑖) but also by its own 
“noise” (exogenous) factor εi. This framework helps 
describe the “mechanisms” of data generation by 
assuming that each node—either deterministically or 
stochastically—follows an equation of the form 

𝑋𝑖 = 𝑓𝑖(𝑃𝑎(𝑋𝑖), 𝜀𝑖) 

A focal concept in causal analysis is the so-called do-
operator, which enables modeling of interventions. If 
𝑝(𝑦 ∣ 𝑥) denotes the observational distribution of an 

outcome Y given 𝑋 = 𝑥, then 𝑝(𝑦 ∣ 𝑑𝑜(𝑥)) is 

interpreted as the result of “forcibly” fixing X to the 
value x, removing any links by which X depends on 
other nodes in the graph [12]. In practice, this allows us 
to address questions like “what happens if we 
intervene and alter X?” and thereby distinguish causal 
effects from mere correlations [6]. In ML, where the 
objective is to predict outcomes under “new scenarios” 
(i.e., changing one or more factors), failing to 
incorporate this operator can lead to confusion 
between genuine causal impacts and indirect 
associations [2]. 

Closely tied to the intervention concept is 
counterfactual reasoning. Counterfactuals answer 
questions like “what if we changed X to x′, even though 
in reality X took another value x?” [12]. Such 

counterfactuals involve holding the “noise” terms εi 
constant exactly as in the actual scenario but altering 
certain structural equations. In ML, this perspective is 
useful, for example, in generating counterfactual 
examples that help interpret decisions by complex 
models or test how robust an algorithm is to changes in 
context [7]. 

It is critically important to distinguish observational 

distributions, 𝑝(𝑦 ∣ 𝑥), from interventional ones, 𝑝(𝑦 ∣

𝑑𝑜(𝑥)). The former essentially captures patterns 

gleaned from data in the absence of external 
manipulation, whereas the latter models a scenario 
where X is forcibly set to a given value [12, 14]. If the 
model contains hidden factors, then correlation 
between X and Y may be misleading: the simple 
conditional distribution 𝑝(𝑦 ∣ 𝑥) can deviate 

substantially from the “true” causal effect 𝑝(𝑦 ∣

𝑑𝑜(𝑥)) [7]. In predictive tasks such as “what is the 

outcome if X changes?” these discrepancies may yield 
incorrect conclusions and problematic decisions, 
essentially because changing X can influence other 
variables in the system [2]. 

A fundamental challenge in causal inference is posed by 
hidden (unobserved) confounders. A confounder is a 
variable that affects both X and Y but remains 
unobserved by the researcher [6]. If such a factor is not 
accounted for, observational analyses or standard ML 
models can produce spurious associations and mislabel 
them as “causal.” To correctly estimate effects, one 
typically assumes identifiability: either all critical 
variables are observable, or the researcher has access 
to extra information (e.g., instrumental variables or 
known graph structure) that helps “untangle” paths 
from the hidden node [11]. 

Table 1 below summarizes several core distinctions 
between observational, interventional, and 
counterfactual distributions in the context of 
evaluating interventional effects and outcome 
prediction. 

 

Table 1. Comparing Distribution Types in Causal Analysis 

 

Type Definition Example Question 

Observational 𝑝(𝑦 ∣ 𝑥)  The distribution derived from data 

without any external manipulation (all 

natural connections remain). 

“If we observe that 

patient A took drug X, 

what is the probability of 

improvement Y?” 

Interventional 𝑝(𝑦 ∣ The distribution modeling the outcome “If we make patient A 
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Type Definition Example Question 

𝑑𝑜(𝑥)) of forcefully setting X = x, disabling 

any paths that would normally affect X. 

take drug X, what is the 

probability of 

improvement Y?” 

Counterfactual A hypothetical distribution that 

assesses Y given a different scenario 

for X, while holding exogenous factors 

consistent with the actual history. 

“Had patient A (who in 

reality took X) nottaken 

it, while keeping all else 

equal, what would have 

happened to Y?” 

From a practical standpoint, knowing precisely which 
type of distribution we aim to capture—observational, 
interventional, or counterfactual—is critical when 
designing predictive models. Observationally, we might 
see that patients who chose to exercise had better 
health outcomes. But interventionally, if we force 
someone to exercise (controlling for other factors), 
what is the effect? A counterfactual question would be: 
for a specific patient who did not exercise and got ill, 
would they have stayed healthy had they exercised 
(keeping their other characteristics the same)? In 
traditional ML approaches devoid of causal insights, 
one typically learns an approximation for 𝑝(𝑦 ∣ 𝑥) or 
𝑓(𝑥) ≈ 𝐸[𝑌 ∣ 𝑋 = 𝑥], which often suffices for 
predictive tasks under the same conditions as those in 
the training data [12]. Yet when one needs to evaluate 

the effect of an intervention, 𝛥 = 𝑝(𝑦 ∣ 𝑑𝑜(𝑥 = 1)) −

𝑝(𝑦 ∣ 𝑑𝑜(𝑥 = 0)), or answer “how exactly should we 

alter X to achieve a desired outcome Y?,” only a causal 
model provides the appropriate framework [6, 7]. 

Accordingly, to achieve highly accurate and robust 
predictions under heterogeneous data or genuine 
manipulations of variables, it becomes essential to 
embed causal machinery into ML—whether through 
constructing causal graphs, reflecting the parent–child 
dependency, or using the do-operator when selecting 
predictors [1]. Otherwise, modeling may remain 
trapped by spurious correlations, especially when 
hidden confounders hinder a correct interpretation of 
the dependencies. 

 

2. Methods for Integrating Causality and ML for Effect 
Prediction 

A crucial path toward improving the reliability of 
predictions under changing conditions is to account for 
the causal structure of data in both classical and 
modern machine learning (ML) algorithms [7, 12]. 
Below, we consider three primary directions for 

integrating causality and ML. 

In the first area, causal supervised learning addresses 
the problem of eliminating spurious correlations that 
arise from distribution shifts. In conventional ML, when 
training regression, decision trees, or neural networks, 
we typically minimize some empirical risk 𝐿(𝑓(𝑥), 𝑦) 
over a dataset, ignoring the possibility that certain 
features may be “spurious”—i.e., only conditionally 
relevant under a specific, “local” distribution [2]. Under 
a new distribution, such features either become 
unhelpful or even detrimental. To tackle this, 
researchers have proposed methods that exploit causal 
invariants. One of the best-known approaches is 
invariant risk minimization (IRM) [1]. It assumes there 
exists a subsystem of “invariant” characteristics 
(features) that drive the causal link to the target 
variable. To detect them, the method uses data from 
multiple “environments,” each with a different 
distribution, and seeks to learn a representation Ф(𝑥) 
for which the optimal linear (or similar) model is the 
same across all environments. Formally, this can be 
expressed as solving 

𝑚𝑖𝑛Ф ∑

𝑒∈𝐸

𝑅𝑒(Ф) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑒
∗

∈  𝑎𝑟𝑔  𝑚𝑖𝑛𝑤𝑅𝑒(𝑤 ∘ 𝛷)∀𝑒 

where 𝑅𝑒 is the risk in environment e, and 𝑤𝑒
∗ 

denotes the same (or practically identical) classifier. In 
doing so, IRM aims to exclude “env-specific” 
correlations and retain only robust patterns [1, 11]. In 
practice, this yields benefits under severe shifts in 
distribution, as the model learns to focus on genuine 
causal drivers [2]. 

The availability of multi-environment data is of 
particular importance. As noted in [7], when all samples 
are collected from a single setting, uncovering causally 
invariant features is extremely difficult: it is often 
“easier” for the algorithm to learn a superficial, yet 
purely correlational, dependence. However, having 
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multiple datasets where the external context varies 
(different hospitals, seasons, or regions, for example) 
introduces the chance to distinguish “global” (invariant) 
dependencies from “local” (spurious) ones in a 
statistically rigorous way. Such ideas pervade many 
modern methods in causal supervised learning, 
enabling more accurate, long-term effect prediction 
when real interventions are performed on variables 
affecting the outcome [6]. 

The second area, causal generative modeling, 
emphasizes the generation of “causally plausible” data. 
If classical GANs (generative adversarial networks) [5] 
or variational autoencoders (VAEs) [8] produce samples 
by reproducing the overall statistics of the original data, 
then the causal version requires explicitly separating 
“content”—causally significant factors—from “style”, 
i.e. contextual or background-dependent attributes [7, 
10]. This separation allows the model architecture to 
incorporate causal constraints, eliminating undesirable 
correlations and yielding more accurate simulations of 
interventions. 

One of the most striking outcomes of causal generative 
models is counterfactual generation. Suppose we have 
a complex neural network trained to forecast a certain 
variable Y based on inputs X. We might ask, “What if X 
differed in some critical component while all other 
details remained fixed?” [12]. Generative methods 
make this scenario possible: we can “fix” the exogenous 
noise and modify only selected causal variables 
(content), leaving “style” unchanged. Comparing the 
original sample to a counterfactual one provides 
valuable information as to whether altering that factor 
truly affects Y, or whether it was merely an illusion [10]. 
Recent work has proposed frameworks like CausalGAN 
that integrate DAG constraints into GAN training, or 
variational autoencoders that infer latent causal 
factors. These approaches ensure that generated 
samples obey certain causal relationships from the 
data, rather than just any statistical relationships. This 
is extremely useful in scenarios where real 
interventions are expensive or unethical; one can 
simulate counterfactual populations (e.g., what if we 

treat vs. don’t treat a patient) to predict outcomes and 
variability, thus aiding decision-making. In a stricter ML 
context, counterfactual samples let us check, for 
instance, “What is the minimal feature shift required to 
change an instance’s category?”—improving model 
interpretability and facilitating debugging. 

A third group of other contemporary 
approaches examines the role of causality in 
interpretation (causal explanations), reinforcement 
learning (RL), and fairness in algorithms. For 
interpretation (and explainability), the “counterfactual 
explanation” concept is often invoked, pinpointing 
which input component actually caused the model’s 
decision [13]. For instance, in a loan approval model, a 
causal counterfactual explanation might say: ‘Had the 
applicant’s income been $5,000 higher (with all else the 
same), the loan would have been approved.’ This 
identifies a causal factor in the model’s decision. In 
causal RL [3], this framework helps an agent more 
quickly discern changes in the environment’s dynamics: 
the agent builds a structural model and can predict the 
effect of particular actions in a “new” state. In fairness, 
causal fairness methods focus on whether 
discrimination arises from direct causal pathways 
rather than any difference in a protected attribute: i.e., 
if we change a sensitive attribute (race, gender) in a 
person’s data while keeping all other attributes the 
same, a fair algorithm would produce the same 
outcome [9]. Causal methods help formalize this by 
explicitly modeling how sensitive attributes influence 
other variables. Finally, causal discovery algorithms 
[11, 14] aim to learn the causal graph from 
observational data. Incorporating such learned 
structures into ML models can improve effect 
prediction and even allow simulation of interventions 
in scenarios where the structure was not known a 
priori. This also opens the door to long-term 
forecasting under interventions, because once we trust 
the discovered causal model, we can propagate 
changes over time or across systems.. 

Table 2 summarizes some of the methods introduced in 
this section and the core tasks they address. 

 

Table 2. Overview of Methods Integrating Causality and ML 

 

Method / 

Approach 

Key Idea Typical Tasks 

Invariant Risk 

Minimization 

(IRM) [1] 

Identifying features invariant across 

different “environments,” removing 

spurious dependencies 

Reliable 

classification/regression under 

large distribution shifts 
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Method / 

Approach 

Key Idea Typical Tasks 

Causal Generative 

Modeling [5, 10] 

Separating style/content in data 

generation, incorporating structural 

constraints 

Generating realistic 

counterfactuals; synthetic data 

augmentation 

Counterfactual 

Explanations [13] 

Showing what must be changed in X to 

shift a classification to another category 

while keeping other aspects fixed 

Interpreting black-boxes 

(neural nets, GBMs), 

algorithmic audits 

Causal RL [3] Agent constructs a causal model of the 

environment and interventions, 

improving adaptation to new settings 

Adaptive control strategies; 

evaluating actions when 

environmental dynamics 

change 

Causal Fairness [9] Focuses on causal pathways of 

discrimination, distinguishing allowable 

vs. disallowed dependencies 

Fair candidate selection, risk 

assessment with attention to 

bias 

From the perspective of predicting interventional 
effects, this group of techniques expands the scope of 
conventional ML. Rather than being limited to 
correlational models, we gain instruments for analyzing 
causal mechanisms, accounting for shifts over time and 
space, and introducing additional constraints on which 
factors genuinely drive changes in the target variable 
[6, 12]. This is especially relevant in medicine 
(optimizing therapy choice), economics (policy 
evaluation), user behavior analysis, industrial control 
systems, and so on [7]. 

CONCLUSION 

The directions surveyed in this article underscore that 
traditional machine learning—fundamentally relying on 
associative pattern discovery—often remains 
vulnerable to distribution shifts and fails to offer 
reliable answers to “what if” questions. By contrast, the 
application of causal inference substantially extends 
the capabilities of ML. First, it provides a formal basis 
for assessing genuine interventional effects; second, it 
enhances model interpretability by distinguishing true 
causal drivers from mere correlates. Structural causal 
models, which enable the use of the do-operator and 
the construction of counterfactual scenarios, are key to 
this approach. Methods such as invariant risk 
minimization demonstrate how spurious correlations 
can be removed with multi-environment data, while 
causality-oriented generative models equip us to 
produce counterfactual samples and evaluate 
algorithmic behavior under new conditions. 

Hence, integrating machine learning with causal 
inference not only raises the accuracy of predictions 
but also makes them more robust to potential 
environmental changes, improves interpretability, and 
supports well-grounded recommendations in fields 
such as medicine, economics, and social planning. By 
systematizing current methods and linking them to 
established causal theory, this work provides 
researchers and practitioners with a clearer roadmap 
for incorporating causality into machine learning 
models for decision-making. Despite advancements in 
causal machine learning, unresolved challenges remain 
regarding the limited identifiability of hidden factors 
and the lack of universal benchmark datasets. 
Nevertheless, the ongoing development of integrative 
approaches to causal inference and ML continues to 
reveal new opportunities for more precise, 
transparent, and reliable modeling of complex systems. 
Future research should explore techniques for 
identifying or mitigating hidden confounders (perhaps 
via advanced instrumentation or causal discovery), and 
develop standardized benchmarks to evaluate causal 
ML models across domains. Such efforts would 
accelerate progress in this field. In conclusion, as 
machine learning systems are increasingly used for 
critical decision-making, embedding causal reasoning 
into these systems is not just a theoretical luxury but a 
practical necessity for robust, ethical, and reliable AI. 
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