
The American Journal of Engineering and Technology 97 https://www.theamericanjournals.com/index.php/tajet  

TYPE Original Research 

PAGE NO. 97-104 

DOI 10.37547/tajet/Volume07Issue04-13 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

OPEN ACCESS 

SUBMITED 24 February 2025 

ACCEPTED 27 March 2025 

PUBLISHED 21 April 2025 

VOLUME Vol.07 Issue 04 2025 
 

CITATION 

Kishore Jeeri. (2024). Approaches to Automating Ci/Cd Processes in 
Distributed Teams. The American Journal of Engineering and Technology, 
7(04), 75–82. https://doi.org/10.37547/tajet/Volume07Issue04-13 

COPYRIGHT 

© 2025 Original content from this work may be used under the terms 

of the creative commons attributes 4.0 License. 

Approaches to Automating 

Ci/Cd Processes in 

Distributed Teams 

Kishore Jeeri 

Senior Engineering Manager - Oakton Technologies (Financial Service 

Client) New Jersey, USA 
 

 

Abstract: This article explores methods for automating 
continuous integration processes in the context of 
distributed teams. With the rise of remote work and 
globalization, development process optimization has 
become a crucial factor in the success of modern 
projects. The objective of this study is to analyze 
approaches to automation that enhance collaboration 
among remote team members, reduce testing and 
deployment time, improve system stability, and 
enhance the overall quality of the final product. 

The methodology involves a comparative analysis of 
scientific publications available in open sources. The 
article examines the capabilities of various tools in the 
context of remote work and identifies challenges teams 
face during implementation. It discusses key principles 
of CI/CD pipeline creation, including test automation, 
deployment, and monitoring strategies. 

The results indicate that configuring and integrating 
CI/CD tools significantly reduce development time, 
improve code quality, and minimize human errors in 
testing and deployment. A critical aspect is the 
establishment of infrastructure that ensures workflow 
continuity in distributed teams while addressing 
synchronization and communication challenges. 

The material will be useful for IT project managers, 
DevOps engineers, automation specialists, and technical 
managers working in distributed teams. The conclusion 
highlights the necessity of a comprehensive approach to 
CI/CD automation. 

 

Keywords: CI/CD, automation, distributed teams, 
DevOps tools, process implementation, remote work, 
testing, deployment. 

 

Introduction: The use of automated systems reduces 
the time required for testing and deployment while 

 

https://doi.org/10.37547/tajet/Volume07Issue04-13
https://doi.org/10.37547/tajet/Volume07Issue04-13


The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

minimizing errors caused by human factors. The 
growing importance of CI/CD is evident, as 50% of 
developers currently report regular use of CI/CD tools, 
with a notable 25% having adopted a new tool within 
the past year. This surge in popularity has led to a vast 
selection of CI/CD tools on the market, making it 
increasingly difficult to find one that perfectly aligns 
with the unique requirements of a team [9]. 

Collaboration tools for source code management are 
the most widely used, with 82% of respondents 
incorporating them into their workflows. Task tracking 
and project management systems rank second at 62%, 
highlighting the critical role of efficient workflow 
management. CI/CD automation tools are utilized by 
50% of users, indicating a significant adoption of 
continuous integration and delivery practices. Tools for 
static code analysis (16%) and code review (15%) are 
the least in demand. 

The literature on CI/CD process automation in 
distributed teams covers various aspects, each 
requiring thorough examination. The study by G. Gujar 
and S. Patil [1] outlines approaches that enhance 
efficiency. Parallel build task processing divides the 
compilation process into multiple threads, reducing 
execution time. Dependency caching prevents 
redundant downloads of unchanged components, 
accelerating subsequent builds. Incremental builds 
limit recompilation to modified modules, which is 
crucial for large projects with numerous components. 
Rollback mechanisms enable reverting to a stable 
version in case of failure, enhancing system reliability. 

The work by Donca I. C. et al. [5] explores the use of 
containerization technologies such as Docker and 
orchestration with Kubernetes. Automating pipeline 
creation through generators accelerates process 
adaptation for Agile teams. 

Sushma D. et al. [7] emphasize the importance of Snyk, 
a tool that scans code, containers, and dependencies 
for vulnerabilities. This is particularly critical for 
distributed teams, where even minor security issues 
can impact overall system stability. Ho-Dac H. and Vo 
V. [9] discuss the integration of open-source security 
tools into CI/CD pipelines, enabling the early detection 
of vulnerabilities and minimizing remediation costs. A 
key challenge remains the need to tailor tools to the 
specific workflows of each team. 

Some studies propose specialized CI/CD models 
tailored to the needs of specific industries. Samira Z. et 
al. [3] developed a model for small and medium-sized 
enterprises, simplifying testing and monitoring while 

considering the resource constraints of such 
organizations. This approach facilitates the prompt 
identification of issues affecting system stability, 
including those in high-load services. Gridin V., Vasilev 
S., Anisimov V. [8] examine the use of CI/CD in 
embedded systems development, emphasizing 
performance improvements and application stability, 
where operational precision is crucial. 

Shanmukhi B. [2] describes challenges teams face when 
implementing CI/CD, including interdepartmental 
collaboration, test automation, and version control 
management. A key factor is the creation of a unified 
information environment that streamlines coordination 
among distributed teams. For university information 
systems, Indriyanto R., Purnama D. G. [4] propose a 
deployment automation solution that enhances 
infrastructure reliability and reduces maintenance time. 

The study by Sushma D. et al. [7] highlights several 
critical aspects. Microservices orchestration enhances 
the interaction between distributed system 
components. Process monitoring enables tracking the 
pipeline’s state at all stages of operation. Automation 
accelerates the implementation of changes, minimizing 
risks associated with human error. These approaches 
are essential for organizations seeking to improve 
development efficiency within DevOps frameworks. 

The objective of this study is to analyze approaches to 
automation implementation aimed at enhancing 
collaboration among distributed team members, 
reducing testing and deployment time, increasing 
stability, and improving the overall quality of the final 
product. 

The hypothesis is based on the assumption that 
automation of integration and delivery processes in 
distributed teams can be achieved through the adoption 
of new tools. 

The methodology involves conducting a comparative 
analysis of scientific studies available in open sources. 

 

RESEARCH RESULTS 

Establishing an automated infrastructure for CI/CD 
requires not only selecting the appropriate tools but 
also ensuring a well-structured workflow across all 
stages, from development to deployment. Table 1 
presents a comparative analysis of commonly used CI 
tools. The criteria used for this comparison reflect 
factors influencing the efficiency and accessibility of CI 
tools in distributed development environments. 

 



The American Journal of Engineering and Technology 99 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

Table 1. Comparison of CI Tools [9] 

 

CI Tools Open 

Data 

Hosting Free 

Versio

n 

Pricing Platforms 

Jenkins Yes Self-

hosted 

Yes Free Linux, 

Windows, and 

macOS 

GitHub 

Actions 

No Cloud-

based 

Yes Execution units included in all plans. 

Additional agent hosting minutes 

start at $0.008 (for Linux). 

Linux, 

Windows, and 

macOS 

GitLab CI No Cloud 

and 

self-

hosted 

Yes Build units included in all plans. 

Additional execution units for shared 

pipelines start at $10 per 1,000 

minutes. 

Linux, 

Windows, 

macOS, and 

Docker 

Azure 

DevOps 

No Cloud 

and 

self-

hosted 

Yes 1 pipeline included for free. 

Additional pipelines start at $15 per 

month (self-hosted) or $40 per 

month (cloud-based). 

Linux, 

Windows, and 

macOS 

Bitbucket 

Pipelines 

No Cloud-

based 

Yes Build minutes included in all plans. 

Additional minutes start at $10 per 

month for 1,000 minutes. 

Linux, 

Windows, and 

macOS 

JetBrains 

TeamCity 

No Cloud 

and 

self-

hosted 

Yes TeamCity Pipelines: Starting at $15 

per month for 3 developers. 

Linux, 

Windows, 

macOS, and 

Docker 

AWS 

CodePipeli

ne / 

Codestar 

No Cloud-

based 

Yes Pricing per pipeline. Storage on 

AWS incurs additional costs. 

Linux, 

Windows, and 

macOS 

CircleCI No Cloud 

and 

self-

hosted 

Yes Build minutes included in all plans. 

Credits can be exchanged for build 

minutes, users, additional 

networking, and storage. 

Linux, macOS, 

Windows, 

GPU, ARM, 

and Docker 

Atlassian 

Bamboo 

No Self-

hosted 

Yes 1 remote agent included in the base 

price. Pricing for 5 agents starts at 

$640 per agent per year. 

Linux, 

Windows, 

macOS, and 

Solaris 

Travis CI No Cloud 

and 

self-

hosted 

No Concurrent job limits depend on the 

pricing plan. Unlimited build 

minutes in any plan. 

Linux, macOS, 

and iOS 



The American Journal of Engineering and Technology 100 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

Google 

Cloud Build 

No Cloud-

based 

Yes Serverless platform with pay-per-

minute build pricing. 

Docker 

The use of cloud platforms providing centralized 
control over build, testing, and deployment processes 
is a key component of an effective approach in 
distributed teams. Tools such as GitHub Actions, GitLab 
CI, CircleCI, Azure DevOps, and Jenkins X offer a unified 
platform where team members can configure and 
execute build, testing, and deployment processes from 
a single access point. These solutions are scalable, 
allowing resources to be adjusted based on 

requirements. Cloud technologies ensure 24/7 
availability of all processes, regardless of time zones and 
the location of team members. 

Containerization and orchestration are essential for 
automation. Orchestration automates routine tasks 
such as deploying new application versions, monitoring 
container status, managing resources, and load 
balancing. The orchestration tools are demonstrated in 
Figure 1. 

 

 

 

Fig.1. Registration components [1]. 

 

Containerization eliminates incompatibilities between 
development and production environments, while 
orchestration with Kubernetes automates container 
management. As a result, build and deployment 

processes are accelerated, and infrastructure stability is 
improved [1]. 

For teams using a microservices architecture, it is 
necessary to separate CI/CD processes for each service. 



The American Journal of Engineering and Technology 101 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

This approach speeds up the implementation of new 
features and fixes, as each automated build, testing, 
and deployment process is configured for a specific 
component. The implementation of incremental 
deployments reduces downtime and accelerates the 
rollout of changes. 

Test automation in distributed teams is crucial. The use 
of parallel tests, including load and integration tests, 
accelerates defect detection. Cloud environments 
enable the simulation of operational conditions and 
the automation of testing across different versions and 
configurations of the system. This approach reduces 
the time required for multiple verification checks, 
providing developers with rapid feedback. 

To respond effectively to changes in CI/CD and testing 
processes, notification and monitoring systems should 
be configured. Integration with messaging platforms 
such as Slack, Microsoft Teams, and Telegram enables 
real-time tracking of build, testing, and deployment 
progress. This allows for quick resolution of errors and 
infrastructure issues. Notifications should be directed 
to relevant channels so that all team members can 
monitor the process and intervene promptly when 
necessary [5, 7]. 

Data and code security are critical aspects of CI/CD 
automation. To protect sensitive information such as 
passwords and API keys, encryption tools should be 
used. Security testing tools such as Snyk, SonarQube, 
and OWASP ZAP should also be integrated to identify 
vulnerabilities before application deployment. 

Version control and branching standards such as Git 
Flow and GitOps provide clear version management, 
minimizing conflicts and errors. GitOps, in particular, 
enables automated infrastructure management 
through Git repositories, simplifying change tracking 
and maintaining system stability. 

The use of shared cloud services and remote 
repositories increases the vulnerability of CI/CD 
systems. Misconfigured access settings, data leaks, and 
a lack of proper security controls can lead to 
information compromise or the introduction of 
malicious code. Access management, proper account 
configuration, and continuous infrastructure 
monitoring become critical security measures. 

Distributed teams employ various tools to perform 
local tasks. While this enhances efficiency within 
individual specialists' workflows, it also introduces 
challenges in integrating these tools into a unified 
process. Such inconsistencies lead to compatibility 

issues and complicate system maintenance [9]. 

To ensure process consistency, centralized CI/CD 
platforms should be used. The application of modular 
pipeline architectures enhances flexibility and 
scalability. Tools such as Jenkins, GitHub Actions, and 
GitLab CI/CD allow pipelines to be divided into 
independent blocks that can be configured for specific 
tasks and reused. Dynamic triggers based on metadata, 
such as commit tags or branch names, help avoid 
unnecessary builds while maintaining system 
responsiveness. 

The use of Infrastructure as Code (IaC) enables 
infrastructure to be described in code, ensuring 
consistency across development, testing, and 
production environments. Integrating tools such as 
Terraform or AWS CDK synchronizes code and 
infrastructure changes, minimizing configuration errors. 

Containerization with Docker isolates dependencies, 
eliminating compatibility issues between environments. 
Orchestration platforms like Kubernetes provide 
automatic scaling, failure recovery, and zero-downtime 
deployments. In combination with Helm for deployment 
templating and ArgoCD for delivery, managing 
deployments across multi-cluster and hybrid cloud 
environments becomes more streamlined and efficient 
[2]. 

The use of feature flags allows new functionality to be 
introduced gradually. Platforms such as LaunchDarkly 
and Flipper enable phased activation of changes while 
tracking system responses. This approach helps control 
the availability of new features while considering 
performance and user feedback. Canary deployments 
and metric collection facilitate informed decision-
making while minimizing risks. 

Monitoring systems such as Grafana and Elastic Stack 
enable performance analysis of pipelines. This helps 
identify bottlenecks and address them before they 
cause failures, improving overall process efficiency. 
Integration of notifications through platforms such as 
Slack and Microsoft Teams informs team members 
about build, test, and deployment statuses. 

Failure prediction based on data analysis and self-
healing systems will enhance the reliability of 
distributed teams. The implementation of technologies 
for automated pipeline optimization will reduce the 
need for human intervention, improving overall process 
stability [2, 8]. Table 2 below presents different 
approaches to CI/CD process automation. 

 

 



The American Journal of Engineering and Technology 102 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

Table 2. Approaches to automation of CI/CD processes [2,4,7,9]. 

 

Approach Description Advantag

es 

Disadvanta

ges 

Tools Usage 

Recommendat

ions 

Notes 

Cloud-based 

solutions 

Use of cloud 

services for 

CI/CD (e.g., 

GitHub 

Actions, 

GitLab CI, 

CircleCI) 

Scalability, 

integration 

with cloud 

services, 

minimal 

setup 

Dependenc

y on internet 

connection, 

potential 

security 

limitations 

GitHub 

Actions, 

GitLab 

CI, 

CircleCI 

Ideal for small 

and medium-

sized teams, 

suitable for 

agile 

development 

Well-

suited for 

high-

efficiency 

and 

rapidly 

evolving 

processes 

On-Premise 

Servers 

Hosting 

CI/CD 

servers in 

private data 

centers or 

virtual 

machines 

Full 

control, 

enhanced 

security, 

customizat

ion 

High setup 

and 

maintenanc

e costs 

Jenkins, 

TeamCit

y, 

Bamboo 

Suitable for 

large 

organizations 

with high-

security 

requirements 

Requires 

technical 

expertise 

for setup 

and 

maintenan

ce 

DevOps 

Platform 

Integration 

Comprehen

sive use of 

tools for 

developmen

t, testing, 

and 

deployment 

within a 

DevOps 

stack 

Centralize

d system 

for all 

developme

nt and 

delivery 

stages, 

improved 

coordinati

on 

May require 

time for 

adoption 

and team 

training 

Azure 

DevOps, 

Atlassian

, GitLab 

Recommended 

for large 

distributed 

teams with 

diverse tasks 

Works 

well in 

conjunctio

n with 

other 

DevOps 

systems 

Containeriza

tion & 

Orchestratio

n 

Automation 

of 

deployment 

using 

containers 

(e.g., 

Docker, 

Kubernetes) 

Standardiz

ed 

environme

nts, 

scalability, 

process 

isolation 

Requires 

additional 

training, 

complexity 

in setup and 

maintenanc

e 

Docker, 

Kubernet

es, 

OpenShi

ft 

Suitable for 

distributed 

teams using 

microservices 

architecture 

Simplifies 

testing in 

different 

environme

nts and 

accelerate

s 

deployme

nt 

Pipeline as 

Code (PaC) 

Storing 

pipeline 

configuratio

ns as code in 

repositories 

for 

versioning 

and 

Ease of 

configurati

on 

changes, 

version 

control 

May 

complicate 

processes 

for 

beginners, 

requires 

experience 

Jenkinsfi

le, 

GitLab 

CI 

YAML, 

Azure 

Pipelines 

YAML 

Suitable for 

teams heavily 

utilizing 

repositories and 

infrastructure 

as code 

Excellent 

for CI/CD 

focused on 

rapid 

change 

and 

automatio

n 



The American Journal of Engineering and Technology 103 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

modificatio

n 

Continuous 

Testing & 

Monitoring 

Automating 

testing and 

monitoring 

at each 

CI/CD stage 

to ensure 

code quality 

Continuou

s feedback, 

improved 

code 

quality 

May add 

additional 

setup costs 

Selenium

, JUnit, 

SonarQu

be, 

Prometh

eus 

Use when 

ensuring high 

code quality 

and minimizing 

defects is the 

goal 

Essential 

for teams 

working 

on large-

scale, 

high-load 

projects 

CI/CD automation in distributed teams requires a 
comprehensive approach. The implementation of 
modular architectures, infrastructure as code, 
containerization, and secure automation processes 
helps address challenges while allowing for flexible 
adaptation to changes in development environments. 

 

CONCLUSION 

The automation of CI/CD processes in distributed 
development teams enhances software quality in 
remote work environments. The analysis 
demonstrated that the successful integration of 
automation tools requires a comprehensive approach, 
encompassing both the selection of technologies and 
organizational changes in team interactions. 

The implementation of CI/CD in distributed teams 
necessitates not only the appropriate choice of 
technologies but also the creation of an infrastructure 
that ensures seamless collaboration among all 
development participants. The findings indicate that 
CI/CD automation demands a well-structured 
approach that integrates technologies, improves 
communication, and optimizes workflows. Applying 
these methods enhances development stability, 
accelerates processes, reduces errors, and decreases 
the time required for software deployment and 
testing. 

 

REFERENCES  

Gujar S.,  Patil S. Continuous Integration and 
Continuous Deployment (CI/CD) Optimization // 
International Journal of Innovative Science and 
Research Technology (IJISRT). - 2024. - pp.1-7, 

Shanmukhi B. Implementing and Using CI/CD: 
Addressing Key Challenges Faced by Software 
Developers. // Interantional journal of scientific 
research in engineering and management. - 2024. - 
Vol.8 (8). - pp. 1-8. 

Samira Z. et al. Comprehensive data security and 
compliance framework for SMEs //Magna Scientia 
Advanced Research and Reviews. – 2024. – Т. 12. – №. 
1. – pp. 43-55. 

Indriyanto R., Purnama D. G. CI/CD Implementation 
Application Deployment Process Academic Information 
System (Case Study Of Paramadina University) //Jurnal 
Indonesia Sosial Teknologi. – 2023. – Т. 4. – №. 9. – pp. 
1503-1516. 

Donca I. C. et al. Method for continuous integration and 
deployment using a pipeline generator for agile 
software projects //Sensors. – 2022. – Т. 22. – №. 12. – 
pp. 4637. 

Fedoryshyn B. Strategies for implementing or 
strengthening the DevOps approach in organizations: 
Analysis and examples //Bulletin of Cherkasy State 
Technological University. Technical Sciences. – 2024. – 
T. 29. – No. 2. – pp. 57-69. 

Sushma D. et al. To Detect and Mitigate the Risk in 
Continuous Integration and Continues Deployments 
(CI/CD) Pipelines in Supply Chain Using Snyk tool //2023 
7th International Conference on Computation System 
and Information Technology for Sustainable Solutions 
(CSITSS). – IEEE, 2023. – pp. 1-10. 

Gridin V., Vasilev S., Anisimov V. Improving the 
performance and fault tolerance of circuit CAD systems 
based on the methods of diacoptics and automation of 
managing multi-tenant components // Journal of Radio 
Electronics. - 2023. - pp. 1-9. 

Ho-Dac H., Vo V. An Approach to Enhance CI/CD Pipeline 
with Open-Source Security Tools // European Modern 
Studies Journal. - 2024. Vol.8 (3). - pp. 408-413. 

Best Continuous Integration Tools for 2025 ‒ Survey 
Results. [Electronic resource] Access mode: 



The American Journal of Engineering and Technology 104 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

https://blog.jetbrains.com/teamcity/2023/07/best-ci-
tools / (date of access: 01/25/2025). 


