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Abstract: Function-as-a-Service (FaaS) in cloud 
computing is a critical optimization problem that needs 
to be tackled, including cold start latency, resource 
inefficiency, state management, and more. While FaaS 
provides obvious scalability and lower cost benefits, the 
lack of availability of resources and the problem of cold 
starts to prevent it from being used for high-
performance applications. Pre-warming, snapshotting, 
and on-demand instantiation with lightweight runtimes, 
such as WebAssembly, are other ways to minimize cold 
start delays. It also benchmarks major FaaS platforms 
(AWS Lambda, Google Cloud Functions, Azure 
Functions, and OpenFaaS) and measures latency, 
throughput, and scalability metrics. The study also 
considers how to manage the resource, for instance, 
using auto-scaling, memory allocation, and request 
batching to enhance cost efficiency and performance. 
The study covers security challenges in multi-tenant 
environments and solutions for stateful applications in 
usually stateless serverless architectures with Faast.js, 
Knative, and OpenWhisk. Another area of research is 
edge computing and architectures for multiple clouds to 
improve the deployment of FaaS. Incorporating the 
lessons from this study gives it enough flexibility to 
adjust functions as applications in a real-world 
enterprise environment, especially in high-performance 
and data-sensitive applications. The study also provides 
security practices like function isolation and encryption 
to secure data in multi-tenancy environments for 
reliable, secure, and efficient serverless computing. The 
contribution to FaaS optimization and security for 
various use cases is achieved. 

 

Keywords: FaaS, cold start optimization, performance 
benchmarking, serverless security, stateful serverless, 
multi-cloud architecture. 
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Introduction: Serverless computing is the cloud model 
that removes infrastructure management from the 
server and allows the developers to focus on llo of code 
writing and application development. Responsible for 
provisioning and scaling the resource and 
infrastructure management, the cloud provides 
greater flexibility, efficiency, and cost efficiency for 
applications with unpredictable demand. 
Organizations pay only for the actual compute time 
through the pay-per-use model, eliminating the 
requirement for over-provisioned infrastructure and 
ingested resources. Serverless architectures also make 
it possible to scale straight automatically; they have 
high availability and failover by spreading functions 
across multiple availability zones. Function as a Service 
(FaaS) is a big piece of serverless computing and 
enables running small event-driven functions without 
the management of the infrastructure. They are 
triggered on API calls, database changes, or file 
uploads. AWS Lambda, Google Cloud Functions, and 
Azure Functions dominate the FaaS market and offer 
different integrations and capabilities. FaaS allows the 
development of cloud-native applications using 
modular, scalable microservice architecture, reducing 
development cycles and improving agility. FaaS also 
supports the event-driven workflow, which fits well 
with the Internet of Things (IoT), data processing, and 
API-based applications, and there is a cost reduction 
since the pricing is paid based on usage. 

The use of FaaS in high-performance and enterprise 
environments is hindered by several challenges. Cold 
starts are one of the biggest problems, as functions 
experience delays when invoked for the first time or 
after being idle. These latencies can be detrimental to 
real-time applications and are often referred to as 
problem latencies. Dynamic resource allocation can 
lead to resource inefficiency, resulting in 
overprovisioning or underutilization and, therefore, 
inefficiencies and higher costs. Also, they are exposed 
to certain security risks in a multi-tenant environment, 
which may manifest as data leakage and unauthorized 
access, if the isolation between functions is 
insufficient. Although there are these challenges, FaaS 
continues to appeal to applications that can accept 
inherent trade-offs and benefit from scalability and 
flexibility. The first research objective is investigating 
optimization techniques to improve FaaS’s 
performance in enterprise environments. Cold start 
optimization techniques like pre-warming, 
snapshotting, and lightweight runtimes like 
WebAssembly are key areas. In the second part, 
performance benchmarking compares the efficiency 
and scalability of one of the major FaaS platforms: AWS 

Lambda, Google Cloud Functions, and Azure Functions. 
The impact of resource management strategies like 
auto-scaling, memory allocation, and request batching 
on cost efficiency and performance will be examined. 
Approaches to solving stateful applications in a stateless 
FaaS environment using frameworks such as Faast.js, 
Knative, and OpenWhisk for state persistence will also 
be explored. 

Identifying best practices to secure applications is 
necessary to address security challenges in FaaS, 
particularly for multi-tenant architectures. However, 
the research will also examine the feasibility of lowering 
latency through the use of edge computing to execute 
FaaS functions near end users, as well as the benefits 
and challenges of multi-cloud architectures for cross-
cloud FaaS deployments. Finally, optimization 
techniques for runtime performance optimization and 
lowering overhead will be investigated. 

 

2. Cold Start Optimization  

2.1 Understanding Cold Starts in FaaS 

Cold starts are invoked whenever a function is triggered 
for the first time or following an idle period, causing 
latency due to the time required for initializing the 
function in FaaS environments (Manner et al., 2018). 
Unlike traditional server-based applications, FaaS 
platforms dynamically schedule resources for each 
function's execution. The cloud provider must provision 
or provision the compute resources, load the function 
code, and set up the runtime environment when a 
function is first invoked or when it has been idle. The 
cold start occurs because when a function is initialized, 
it takes this delay. The cold starts of FaaS applications 
can greatly impact performance, especially in time 
budget-sensitive use cases like real-time data 
processing, gaming, financial applications, and 
interactive web services (Abid, 2022). Cold starts can 
introduce latency into a serverless application, and 
under certain circumstances, this can outweigh the 
benefits of a serverless system for latency-critical tasks. 
Since serverless functions are meant to scale up and 
down to meet demand, cold starts become more 
pronounced when functions are in use but on a stopping 
and starting basis, for example, when a function has 
cyclical usage patterns and is dormant during low traffic. 

There are several causes of cold, starting in the technical 
area. 

• Large provisioning and initialization delays: For 
example, a function that hasn't been invoked for a while 
has to provision compute resources like containers or 
VMs. Doing this will cause additional overhead, thus 
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further delaying. 

• The serverless platform allocates container(s) 
or micro VM(s) to run functions. However, suppose 
these resources are not already active. In that case, 
they should be created and initialized, which could 
take time, especially for functions dependent on other 
large functions or that have complex initialization 

processes. 

• Though, in some cases, the impact of cold starts 
on performance can be mitigated, cold starts are one of 
the main 

 challenges of serverless computing for real-time 
applications. 

 
Figure 1: Cold start latency mitigation mechanisms in serverless computing 

 

2.2 Pre-warming Strategies for Reducing Cold Start 
Latency 

A common strategy for reducing cold start latency in 
serverless computing is pre-warming, where a function 
is sometimes invoked even without real requests to 
keep it ‘warm (Bannon, 2022).’ By ensuring that the 
function is always up and running and that it must 
continue to allocate the cloud provider’s resources, the 
time required to execute a function goes down when 
there is actually a request coming in; generally 
speaking, the pre-warming approaches include periodic 
function running with a fixed interval; pre-activation, 
where the functions are pre-loaded and ready to serve 
a request at minimum delay. 

Pre-warming has benefits, such as faster starting and 
better user experience for real-time or interactive 
applications, but also disadvantages. Resource 
consumption is the most important drawback. 
However, it eliminates cold start latency, but it means 
the cloud resources during idle periods have to be 
maintained to be active, increasing operational costs. 
Pre-warming when the application has no traffic may 
lead to unnecessary expenses, with the cloud providers 
charging based on execution duration and resource 
usage. Consequently, while pre-warming improves the 
latency of the workloads, the impact of cost efficiency 
also has to be considered, especially for workloads with 
unpredictable usage patterns (Roy et al., 2022). 

 

Table 1: Cold Start Optimization Techniques and Trade-offs 

 

Technique Benefits Drawbacks 

Pre-warming 
Reduces cold start latency, ensures 

smooth user experience 

Increased resource consumption, higher 

operational costs 

Snapshotting 
Saves function state, avoids re-

initialization 

Implementation complexity, snapshot 

consistency management 
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Technique Benefits Drawbacks 

WebAssembly 
Fast execution, portability across 

platforms 

Not suitable for complex functions with 

large dependencies 

2.3 Snapshotting Techniques for Faster Function 
Initialization 

Snapshotting is a technique to improve the 
performance of the cold start by saving the state of 
function after the first execution (Silva et al., 2020). 
When the function is called, the cloud provides and 
takes a snapshot of the runtime environment, including 
the function's code, variables,s, and dependencies. The 
function saves this snapshot and can return quickly 
back to this snapshot upon the next invocation; there is 
no need to re-initialize it! Snapshotting differs from 
traditional warm start techniques, which are complex 
and require that an instance of the function be running 
continuously but use resources more efficiently by 
saving the execution state and allowing the function to 
be restarted immediately if called again. 

Snapshotting provides the appeal that the function's 
state is preserved across invocations compared to 

traditional warm-start methods (Li et al., 2022). That is, 
it cuts away the need to load and initialize resources 
and dependencies upon every request, which would 
lead to cold start latency. In other words, warm starting 
means that the function instance is actively running and 
will consume resources even when not processing 
requests. This approach can become inefficient, 
particularly in cases of low traffic. Nevertheless, 
snapshotting is itself a challenge. When scaling up, 
snapshot management across all instances of the 
function, including managing consistency, can be 
challenging. Finally, snapshots must be updated when 
any change happens in the function's code or 
dependencies, which increases the overhead of 
maintaining such a system. However, despite all these 
challenges, snapshotting continues to be a very useful 
tool in alleviating cold start latency and improving 
resource utilization in serverless environments. 

 

 

Figure 2: A survey on the cold start latency approaches in serverless computing 

 

2.4 WebAssembly-based Lightweight Runtimes 

WebAssembly (Wasm) is an isolated runtime 
environment designed to run code anywhere quickly, 
allowing the porting of already written code across 
platforms (Hoffman, 2019). The chief advantage is its 
capacity to drastically cut cold start latency, enabling 
serverless functions to run with minimal initialization. 
WebAssembly is a binary instruction set, meaning it can 
get instructions interpreted very fast, almost at instant 
speed, without going through the overhead often 

associated with traditional programming 
environments. As WebAssembly is portable, its code 
can run across platforms: on browsers, edge devices, 
and serverless environments, making it perfect for 
multi-cloud and edge computing scenarios. As the 
WebAssembly modules are precompiled ahead of time 
and run inside a standardized environment, the cold 
start times are almost minimized. 

Although WebAssembly is nice, it is not suitable for all 
use cases. It is great for dealing with simple, small, and 
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lightweight functions (Hilbig et al., 2021). Still, it may 
fail to have the broader functionality required in 
complex applications heavily based on libraries and 
custom runtime environments. Managing 
dependencies can also be tough. WebAssembly is 
designed to run simpler, self-contained code and may 
not be fully compatible with functions that rely on huge 
libraries or complex dependencies. On the other hand, 
pre-warming and snapshotting are cold start 
optimization techniques that provide different 
tradeoffs tradeoffs. It helps increase resource 
consumption and operational costs. Yet, pre-warming 
can further put the device into cold start latency 
depending on the degree of activation and the 
application's traffic patterns. Snapshotting is faster 
than response as it preserves the function state after 
the first execution; however, snapshotting has intrinsic 
complexity of state consistency management and 
preparation of snapshot updates. 

WebAssembly is fast and portable for smaller, simpler 
functions, but the workloads need a huge set of 
dependencies and are not suited for those. Pushing 
warmer servers into line and snapshotting code can 
reduce cold start latency by as much as 70%, faster than 
WebAssembly runtimes, which can initialize instantly. 
However, only the actual performance improvements 
vary with function complexity and resource 
requirements. As a result, developers should 
thoroughly assess these tradeoffs and choose the most 
appropriate optimization solution according to the 
application needs and the traffic pattern, as well as the 
availability of resources in the serverless environment. 

 

3. Performance Benchmarking of FaaS Platforms. 

3.1 Overview of Popular FaaS Providers: AWS Lambda, 
Google Cloud Functions, Azure Functions, OpenFaaS 

One of the most widely adopted Function-as-a-service 
(FaaS) platforms, AWS Lambda offers a very flexible and 
scalable environment to run some code without 
needing to provision or manage servers. Lambda is a 
fully integrated service with other AWS services like API 
Gateway, DynamoDB, S3, and more to build cloud 
applications. It makes sense to be able to automatically 
scale up to mark hundreds of millions of requests per 
day in the face of a variety of use cases, from real-time 
data processing to web application backends. It is a 
multi-lingual platform supporting Node.js, Python, Java 
and Go at the same time so that developers in various 
ecosystems can make use of this. This adds up to 
thousands of ns for API gateway function time and can 

be a hindrance to real-time applications since function 
calls are very low, or needs cold start latency. 

Google Cloud Functions uses event-driven architecture 
best, especially for applications requiring real-time 
processing of data from events. Being Google Cloud 
services ready, it can be a very strong choice for the 
sake of serverless applications in the Google Cloud 
ecosystem. Low latency tasks particularly in real-time 
event-driven applications such as IoT and stream 
processing are what Google Cloud Functions is 
intended for. Based on demand, It scales automatically, 
giving peak performance at any given load level. It 
supports multiple languages such as JavaScript, Python, 
Go, etc. High cold start time is a well-known ability of 
Google Cloud Functions, but it is less feature-rich when 
compared to AWS Lambda, particularly in more 
complex multi-service application environments 
(George et al., 2020). 

For an enterprise already using some of the Azure 
services, Azure Functions is incredibly well integrated 
into the Microsoft Azure ecosystem. Azure Functions 
natively supports HTTP Triggers, Timer Triggers, and 
Service Bus Trigger. It can be used to run either short-
lived or long-lived functions, possessing rich support for 
durable functions that deal with elaborate workflows 
with multiple steps. In addition, Azure Functions 
enables users to manage and scale resources more 
finely if controlled workloads are predictable. Its 
capabilities also support languages such as C#, 
JavaScript and Python to make further it attractive 
among enterprise users. In contrast, if there are 
additional concerns with cold start times for Azure 
Functions, one reason they may not meet certain 
requirements is that they are higher than those of 
Google Cloud Functions for ultra-low latency use cases 
(Palumbo et al., 2021). It is an open-source serverless 
framework for Kubernetes-based deployments that is 
known as OpenFaaS. It enables organizations to run 
serverless functions in cloud platforms besides their on-
premises infrastructure. The thing I like most about 
OpenFaaS is that it offers great flexibility for developers 
to deploy the function in a self-managed environment 
which is beneficial for organizations that want to get 
more control on the serverless infrastructure. It is well 
integrated with Kubernetes so organizations can 
continue to reap the benefits of their container 
orchestration platform. That said, OpenFaaS requires 
more management and configuration than a fully 
managed service, such as AWS Lambda or Azure 
Functions and scaling will not be as smooth unless 
OpenFaaS runs on a solid Kubernetes infrastructure. 
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Figure 3: OpenFaaS for AWS Lambda 

 

3.2 Benchmarking Methodology for Performance 
Evaluation 

When benchmarking FaaS platforms, it is critical to 
identify metrics that are easily measurable across 
different platforms. Latency, throughput, scalability: 
This is what the primary performance metrics shall be 
(Aslanpour et al., 2020). Latency is the period between 
a function is invoked and when the response is 
returned. Time sensitive applications like financial 
transactions, gaming, and real time analytics require 
low latency as it makes all the difference from the user 
experience as minor delays may ruin the end product. 
On the other hand, for a given number of requests 
through a platform can handle requests per second. 
Applications that process large quantities of data need 
high throughput such as streaming platforms or high 
traffic web applications where the capability in case of 
processing many requests at once without degrading is 
an important performance factor. Scalability is how the 
platform behaves under higher traffic without any 
performance degrading. One of the main reasons that 
make FaaS so attractive is that they are able to scale 
automatically and efficiently with varying workloads, 
but it is essential to test how each platform behaves 

under stress, especially when the demand is in spike 
and the traffic increases. 

But in order to do a proper benchmarking, platforms 
like Apache JMeter or Artillery are typically used to 
simulate such a real world load (Gortázar et al., 2022). 
They use these tools to generate traffic which simulates 
several concurrent requests and checks how system is 
performing under these conditions. These tools also 
simulate different traffic patterns to evaluate how the 
platform responds under various load conditions, its 
capacity to scale, resource utilization, etc. Besides 
these, cloud-native monitoring tools like AWS 
CloudWatch, Google Stackdriver, or Azure Monitor 
provide useful insights on real-time metrics such as 
response time, function execution time, error rates, 
and resource usage. These are the tools that can help 
developers and system administrators to see the 
serverless functions performance in real time, identify 
the bottlenecks, and gather data to improve it further. 
By combining these benchmarking tools with 
monitoring platforms, organizations gain a holistic view 
of platform performance, enabling data-driven 
decisions on whether to spin up or deploy their FaaS 
infrastructures 
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Figure 4: Conceptual Model of Cloud Performance Metrics 

 

3.3 Performance Metrics to Consider: Latency, 
Throughput, Scalability 

Latency, throughput, and scalability are performance 
metrics that weigh heavily when choosing a Function-
as-a-Service (FaaS) platform for different use cases 
(Raza et al., 2021). Latency is crucial for applications 
involving real-time performance, such as live financial 
trading platforms and multiplayer games. Cold start 
latency especially affects users if they are not using a 
popular service with extremely predictable or 
nonexistent traffic. Latency can be minimized via pre-
warming, caching, or tweaking function code and 
dependencies. Applications must process enormous 
volumes of data at high speeds. Data streaming, video 
processing, high-volume high-volume APIs, and so 
forth, and therefore, throughputs are vital. The 
platform can handle many requests simultaneously, 
and high throughput means that the platform can 
maintain performance even during peak usage. 
However, scalability refers to the capacity of a platform 
to up or marginally boost the load it has to handle 
without bringing down its performance. Especially in 
the context of e-commerce websites, the traffic of 
consumer-facing applications, and IoT systems, this is 
important. 

The application is different, and the meaning of each 
metric is quite different for various applications (Hossin 
& Sulaiman, 2015. For instance, when low latency is not 
as essential, an application that needs high throughput 
canprioritizebility over rover cold start time. 

Performance benchmarks for AWS Lambda, Google 
Cloud Functions, Azure Functions, and OpenFaaS give 
valuable perspectives on each product’s strengths. 
Lable to handle millions of daily requests, but 
complicated by high cold start latency in languages like 
Java or .NET. Google Cloud Functions is great at 
handling real-time events with low cold start latency 
and is a perfect fit for IoT and real-time data processing. 
However, AWS Lambda may be more scalable than 
Lambda under heavy demand scenarios. Enterprise 
workloads can be well integrated with Azure Functions, 
but cold start latency is higher under some conditions. 
Flexibility to work in a self-managed environment 
complements Kubernetes nicely but is easier to 
configure and watch over (Weyns & Gerostathopoulos, 
2022). 

3.4 Case Studies on Real-World Workloads and 
Performance Analysis 

A few real-world case studies are then used to 
demonstrate the behavior of the FaaS platforms under 
different workloads. Many e-commerce platforms use 
AWS Lambda to deal with transaction requests, 
especially during peak sales seasons. With scalable 
architecture, Lambda can still process millions of 
concurrent requests without compromising 
performance, making it a great match for high-traffic 
events such as Black Friday sales. While that makes 
sense for a fast-growing app, cold start latency is much 
more noticeable during low-traffic times; a fast 
response is critical during high-frequency, high-
frequency transactions. As this shows, AWS Lambda is 
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an excellent choice for scalability. Still, it is not 
completely solved for the cold start problem in the 
described use cases behind an arguably even more 
important performance attribute: low and consistent 
latency. 

In the case of IoT applications, Google Cloud Functions 
is useful for real-time data processing, particularly 
where low latency is essential (Díaz et al., 2016). For 
example, an IoT system that uses Google Cloud 
Functions processes data from thousands of devices in 
real time to make quick decisions every second based 
on data streaming. Google Cloud Functions bring many 

benefits, such as fast cold start times and seamless 
integration with other Google Cloud services like 
Pub/Sub, and it further improves performance when 
used for event-driven, real-time systems. Specifically, 
these case studies demonstrate that by optimizing pre-
warming, auto-scaling, and caching strategies, real-
world applications can achieve performance gains; 
however, the choice of platform is primarily 
determined by which combination of application needs 
satisfies, latency sensitivity, scale requirements, and 
integrations with other services. 

4. Resource Management and Cost Optimization 

 

Table 2: Resource Management Strategies for FaaS 

 

Strategy Description Potential Impact on Cost and Performance 

Auto-scaling 
Automatically adjusts the number of 

function instances 

Ensures optimal resource utilization during varying 

load, reduces costs 

Memory Allocation 

Tuning 
Fine-tunes memory allocation for functions 

Balances performance with cost, prevents resource 

over-provisioning 

Request Batching 
Groups multiple requests into one batch for 

processing 

Reduces overhead, increases throughput, optimizes 

cost 

4.1 Auto-Scaling Techniques in FaaS Environments 

Serverless computing is distinguished by auto-scaling, 
where the application automatically increases or 
decreases the number of resources used as required. In 
FaaS, auto-scaling ensures that function instances are 
dynamically increased or decreased based on incoming 
request traffic. Elasticity is the core idea of auto-scaling 
in serverless computing—when system demand or load 
is high, it allocates more resources to process extra 
traffic and reduces costs when demand decreases. The 
process of handling this is handled by FaaS platforms 
without any manual intervention. For instance, AWS 

Lambda will scale the number of live function instances 
automatically as per the incoming request. The cloud 
provider manages this automatic scaling, and the 
operation never stops without the need for extra 
hardware or virtual machines to be provisioned. It is 
also scalable for the applications where the traffic is 
fluctuating and hence, resources are allocated only 
when required thus trying to reduce the costs incurred 
on the resources which are idle. Nevertheless, auto-
scaling is managed by developers who need to watch 
resource usage, understand traffic patterns, and need 
scaling limits on the platform to match their 
application's needs. 

 

Figure 5: Auto-scaling mechanisms in serverless computing
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4.2 Memory Allocation and Fine-Tuning Function 
Performance 

Optimizing FaaS performance is based on memory 
allocation. How fast the function runs and how 
expensive to run the function is dependent upon the 
amount of memory it’s been given (Mvondo et al., 
2021). On most FaaS platforms, such as AWS Lambda, 
the amount of memory allocated has direct impact on 
the amount of CPU power and network bandwidth the 
function can utilize, and more often than not, more 
memory correlates with better performance. 

Memory allocation optimization is a balancing between 
resource efficiency and cost-effectiveness (Nyati, 
2018). Unless there is a specific reason for allocating 
more or less than the minimum required by the callee, 
excessive allocation can lead to unnecessary costs, 
while insufficient allocation may slow down function 
execution or cause resource starvation. Memory 
benchmarking can fine-tune memory allocation to 
ensure the function runs at the lowest possible cost. 
Execution time also matters for performance 
optimization. More resources are consumed and more 
cost is incurred when they run longer. To gain optimal 
performance without overspending, the memory 
configuration and execution time of a function 
developed by the developers should be optimized. 

4.3 Request Batching and Its Impact on Efficiency 

One of the hallmarks of serverless computing is auto-
scaling. It can respond to and scale data requirements 
based on demand. In FaaS, auto-scaling ensures that 
function instances are dynamically increased or 
decreased based on incoming request traffic. Elasticity 
is the core idea of auto-scaling in serverless 
computing—if system demand or load is high, then it 
presents more resources to process extra traffic. It 
saves money when the demand is reduced. FaaS 
platforms handle this process without any manual 
intervention. For instance, AWS Lambda will 
automatically scale the number of live function 
instances per the incoming request. The cloud provider 
manages this automatic scaling, and the operation 
never stops without needing extra hardware or virtual 
machines to be provisioned. It is also scalable for 
applications with fluctuating traffic. Hence, resources 
are allocated only when required, thus reducing the 
costs incurred on idle resources (Shojafar et al., 2016). 
Nevertheless, auto-scaling is managed by developers 
who need to watch resource usage, understand traffic 
patterns, and set scaling limits on the platform to match 
their application's needs. 

4.2 Memory Allocation and Fine-Tuning Function 

Performance 

Optimizing FaaS performance is based on memory 
allocation. How fast the function runs and how 
expensive it is depends on how much memory it's been 
given. On most FaaS platforms, such as AWS Lambda, 
the amount of memory allocated directly impacts the 
amount of CPU power and network bandwidth the 
function can utilize, and more often than not, more 
memory correlates with better performance. Memory 
allocation optimization balances resource efficiency 
and cost-effectiveness. Unless there is a specific reason 
for allocating more or less than the minimum required 
by the callee, excessive allocation can lead to 
unnecessary costs, while insufficient allocation may 
slow down function execution or cause resource 
starvation. Memory benchmarking can fine-tune 
memory allocation to ensure the function runs at the 
lowest possible cost. Execution time also matters a lot 
in performance optimization. When functions run 
longer, more resources are consumed, and more costs 
are incurred. To gain optimal performance without 
overspending, the memory configuration and 
execution time of a function developed by the 
developers should be optimized (Cordingly et al., 2022). 

 

5. FaaS for Stateful Applications  

5.1 Challenges with Stateless Nature of Traditional 
FaaS 

Statelessness is inherent to traditional Function-as-a-
service (FaaS) platforms. In other words, the context or 
information about a previous invocation is not 
inherited by it. This additional characteristic simplifies 
function execution but causes problems, especially in 
applications requiring continuity, such as session 
persistence, data consistency, and long-running 
processes. Stateless FaaS is limited, the primary 
limitation being the inability to manage the state. This 
is because each function invocation is done in a clean 
state, and there is no knowledge of previous executions 
for user session management, interactions tracking, 
and any complex workflow management, among other 
things. For instance, when building an e-commerce 
platform, it is essential to keep a record of user sessions 
interacting with several function calls to track shopping 
cart data or user preferences. Such applications require 
external data storage systems, complicating 
development and increasing latency due to data 
retrieval bottlenecks. Meanwhile, applications that 
require maintaining intermediate states across function 
invocations, like batch processing or complex data 
transformations, need a functioning job that runs for 
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extended periods. While stateless functions, by nature, 
are not fit for this work application, the work requires 
additional infra mirror and overhead to support this. 
The stateless model of the traditional FaaS is a limiting 

factor in modern applications where session 
persistence and data consistency are key to 
functionality, resulting in an urgent need to cater to 
stateful operations (de Souza Junior, 2022). 

 

Figure 6: Function as a Service (FaaS): 

 

5.2 Solutions for Stateful Workloads: Faast.js, Knative, 
OpenWhisk 

To address statelessness challenges, stateful projects 
have been created based on stateful platforms that 
promote state utility in FaaS. Such platforms to 
maintain the state in serverless environments are, for 
instance, Faast.js, Knative, and OpenWhisk. 

• Faast.js— Faast.js is a framework that enables 
building stateful workflows on top of serverless 
environments. It uses traditional server-side state 
management techniques, like session persistence and 
database integration, to enable FaaS applications to 
perform stateful operations. Since state data can be 
accessed and modified by serverless functions, Faast.js 
is ideal for serverless tasks requiring sessions, 
transactions, and/or continuous data processing. 

• Knative: Knative is a framework for running 
serverless workloads within Kubernetes. It adds 
persistent storage and service abstractions for stateful 
workloads to the stateless nature of traditional FaaS. 

Knative supports long running applications by letting 
state be set across multiple function invocations. This 
also plays well with Kubernetes and other cloud-native 
tools and works well for organizations with Kubernetes 
for orchestration. 

• A second is OpenWhisk, which offers 
decentralized stateful function execution with 
integration of other databases or file systems. To 
handle a state outside the serverless environment, 
OpenWhisk offers mechanisms to save the state in the 
serverless environment so that it is not lost after 
function invocations. OpenWhisk allows functions to 
link to external data stores, making it possible to keep 
an external state across a distributed system while 
using the serverless architecture advantages. 

• These solutions demonstrate that it is possible 
to bring more of the stateful nature of today's 
applications to FaaS, closing the gap between the 
stateless FaaS tradition and the need for context 
retention from function-to-function execution 

 

Table 3: Comparison of Stateful FaaS Solutions 

 

Solution Description Benefits Limitations 

Faast.js Framework for building Provides session Requires traditional state 
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Solution Description Benefits Limitations 

stateful workflows on serverless 

environments 

persistence, supports 

transactions 

management techniques, complex 

integration 

Knative 

Adds persistent storage 

and service abstractions for 

stateful workloads 

Enables long-

running applications, 

integrates with Kubernetes 

Requires Kubernetes, 

complexity in managing states 

across multiple invocations 

OpenWhisk 

Serverless platform with 

external state management 

capabilities 

Supports 

decentralized state, integrates 

with external data stores 

Complexity in managing 

state across distributed systems 

5.3 Architecture Design for Stateful Serverless 
Applications 

Storage and state management across multiple 
function invocations in stateful serverless applications 
is a Wrestle ingredient because it requires much 
greater care when designing (Eryurek et al., 2021). The 
challenge's crux will be how to store and fetch state to 
achieve data consistency and performance. Most 
serverless applications store state in external databases 
such as DynamoDB, Redis, and Cassandra. Exposing 
things like state persistence and querying during 
execution can be done easily through these databases, 
which are fast and reliable and can also persist the 
state. In particular, DynamoDB stores session data or 
transaction information used by functions that can 
access the state during execution, thanks to AWS 

Lambda integration. Developers often use architectural 
patterns like Event Sourcing and CQRS (Command 
Query Responsibility Segregation) to manage the state 
properly while executing several functions. Event 
Sourcing is the practice of every change in the 
application state being captured in some way as an 
immutable event, and the application can rebuild the 
state by replaying the events. This is a convenient 
pattern for very high transaction loads because a full 
history of changes is required. Using CQRS allows read 
and write operations to be separated into two different 
models so that they do not interfere with each other in 
terms of performance. With these storage systems and 
architectural patterns at hand, serverless application 
architects can create serverless applications that 
persist data while still delivering the scalability and 
flexibility of serverless computing. 

 

Figure 7: Stateless and Stateful Systems in System Design 

5.4 Use Cases for Stateful FaaS in Enterprise and Large-
Scale Applications 

FaaS offers stateful operation that is especially useful 
to enterprise applications that rely on having session 
information available or ensuring data consistency 
across invocations (Bocci et al., 2021). In the context of 
FaaS, use cases of stateful applications include session 
management for web apps or real-time data processing 

for IoT & analytics. Session data often plays a major role 
in how many web applications track user interactions. 
For example, an online banking application must log 
user sessions on different requests. On a stateless 
model, it means retrieving session data from the 
external source every time, which would increase 
latency. With stateful FaaS, session management is also 
much more effective, regardless of a decreased 
overhead. Frequent sensor data collection or running 
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analytics platforms on large amounts of data in real-
time require consistent states across function calls. 
Taking the smart home system as an example, stateful 
FaaS can track the status of devices (such as lights, 
temperature sensors, and security cameras) as data 
streams from different sources. However, the challenge 
of managing the state in a serverless environment 
brings the issue of scalability and performance. The 
reasons why syncing states across such instances can 
get quite hard when functions are distributed across 
multiple instances or regions. However, this makes it 
more likely that there is extra latency and operational 
overhead for consistency. In addition, there are robust 
transaction and data update management approaches 
to ensure consistency of data across function 
invocations and different parts of the system for the 
high frequency of transactions or failures. Given these 
challenges, avoiding mistakes and relying on 
appropriate state management strategies and design is 
crucial to make them work. 

5.5 Performance and Scalability of Stateful Serverless 
Architectures 

The state management system and underlying data 
stores greatly impact the scalability and performance of 
stateful FaaS architectures. Performance and resource 
utilization benchmarks between FaaS stateful and FaaS 
stateless systems differ: Generally speaking, stateful 
systems operate at a higher latency than stateless 
systems because of the additional workload to prepare 
and retrieve states from external databases or another 
form of storage. Extra time is incurred with each 
function call because the state might need to be 
retrieved from or stored in a database. On the other 
hand, stateless systems do not require interacting with 
external storage during execution, resulting in speed 
improvement, especially for functions that do not rely 
that do not rely on the long-term persistence of the 
state. 

But with stateful systems, this latency can be reduced 
by optimizing databases, using caching mechanisms 
(Redis, for example), and using distributed data stores 
that scale very efficiently under heavy load. This could 
be demonstrated by using DynamoDB Global Tables to 
facilitate states between regions to improve read and 
write performance by replicating data to various 
locations, thus offering low-latency access for global 

users. Other optimizations include integrating stateful 
workflows, which allows functions to carry context 
across multiple invocations to avoid recreating or 
reloading state. For stateful applications, one can also 
optimize performance using databases such as 
Cassandra for writing to them or Redis for retrieving 
state quickly. The serverless architecture decision must 
tradeoff between stateless and stateful architectures 
based on balanced latency and the complexity of 
maintaining a consistent state across the application. 
Stateful FaaS can provide the best Serverless 
computing with appropriate optimizations and 
architecture choices to solve state-related issues. 

 

6. Serverless Security Challenges  

6.1 Multi-Tenancy Risks in Serverless Environments 

In serverless environments, one of the major concerns 
is the multiple tenancy risk. When multiple users or 
organizations share the same physical resources 
(virtual machines or containers), referred to as a multi-
tenant environment, it can introduce many security 
risks (Turhan et al., 2021). There is a huge data leakage 
issue, as sensitive data might be leaked between 
tenants in the shared infrastructure without proper 
isolation mechanisms. One of the risks is privilege 
escalation, in which an attacker could exploit 
vulnerabilities inside a serverless environment, gain 
elevated privileges, and thus be able to access the other 
tenants’ function or their data. Furthermore, when one 
tenant’s application consumes too many resources, 
overloading the resources affects the performance or 
availability of other tenant services, such that they 
experience denial of service or degraded performance. 
To reduce these risks, cloud providers put a great deal 
of security in place, including function isolation, strict 
access controls, and data encryption. This helps us 
isolate functions in separate containers or microbes so 
that no interference exists with tenants. Function 
invoking and modification can only be done by 
authorized users or services, and access control 
mechanisms block unauthorized access. Data 
encryption is also utilized to make sure that sensitive 
information at rest and in transit is safe from breaches 
to protect it. 
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Figure 8: Security vulnerabilities in a multi-tenant cloud environment 

 

6.2 Function-Level Security Policies for Serverless 
Functions 

Function-specific security should be implemented to 
protect FaaS applications each serverless function 
needs to be virtualized to ensure that it access control 
state who can invoke a fruit legally perforator (RBAC) 
and allows administrators to spec if permissions and 
specify permissionsitted can access or alter functions. 
In addition, function permissions can be fine-tuned to 
allow or disallow certain actions (e.g., read, write, 
execute) and increase security. Developers should 
implement strong authentication mechanisms like 
OAuth or API keys to manage access control and secure 
APIs to protect data while executing functions. This 
prevents anyone from accessing the function or its 
processed data. 

6.3 Runtime Isolation Mechanisms in FaaS 

Runtime isolation is an important capability for 
securing serverless environments. Isolating functions 
from one another is a common approach used by FaaS 
platforms to isolate functions from other functions, in 

that a security breach to one function would not affect 
other functions. Besides containerization, FaaS 
providers use memory isolation to prevent the data and 
execution environments of different functions from 
mixing in. Trustee execution environments (TEEs), 
which separate the code and data more than from the 
host operating system, are one of the best practices for 
securing runtime environments. Secure boot processes 
also make sure (of functions being launched in a trusted 
and verified environment) to avoid code injection or 
tampering. 

6.4 Secure Deployment Strategies for Serverless 
Applications 

The security of the serverless application is a key 
concern that needs to be considered during secure 
deployment. This means that a secure CI/CD pipeline 
should be implemented so that the code can be tested 
for vulnerabilities before it is deployed to production by 
the developers. Security checks can be automated to 
scan the code for possible flaws or vulnerabilities, and 
vulnerability scanning tools detect vulnerabilities in 
third-party dependencies (Hsu, 2019). 

Table 4:  FaaS Security Best Practices 

 

Security Practice Description Benefits 

Function Isolation 
Isolating functions in separate containers 

or microVMs to avoid interference 

Enhances security by 

preventing cross-function breaches 

Role-Based Access 

Control (RBAC) 

Restricts function access based on user 

roles 

Ensures only authorized users 

can invoke or modify functions 

Encryption 
Encrypting data at rest and in transit to 

protect sensitive information 

Safeguards data from 

unauthorized access and breaches 

Vulnerability 

Scanning & Audits 

Regular audits and scanning for 

vulnerabilities in the codebase and dependencies 

Detects security issues early, 

prevents breaches 
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6.5 Case Studies on FaaS Security Breaches and Best 
Practices 

FaaS security breaches occur in real-world incidents. 
For instance, a misconfiguration within AWS Lambda, 
wherein improper settings of IAM roles permitted an 
attacker to access sensitive data through unauthorized 
means. Another happened when a FaaS function 
leaking through open APIs was vulnerable to data 
leakage. Lessons from this incident are to have regular 
audits, encrypt data, and use a zero-trust security 
model (Paul & Rao, 2022). Function configuration and 
access policies have regular audits done, and if it 
detects detects a vulnerability, it must be discovered 
early on. In a zero-trust model, everyone inside the 
network, even the administrator, is assumed to be 
untrusted until proven otherwise, and the operation of 
virtually every function should require rigorous identity 
verification. 

 

7. FaaS in Edge Computing  

7.1 Introduction to Edge Computing and Its Relevance 
to FaaS 

Edge computing is a distributed computing model that 
brings computation and data storage close to where 
the data is required, typically closer to the data source, 
such as IoT devices and sensors, rather than relying on 
a single, centralized cloud server. This proximity 

enables reducing latency and can fasten data 
processing and real-time decision-making with higher 
reliability; this trait makes them especially perfect for 
latency-sensitive applications. Applications like 
autonomous vehicles, real-time IoT systems, smart 
cities, and augmented reality all fall under edge 
computing, where quick processing and instant 
response are necessary. 

Function as a Service (FaaS) is integrated into the edge 
computing environment, leveraging the benefits of 
serverless computing to allow functions to be executed 
on the edge near the data generation place. For real-
time processing, this integration brings the round-trip 
data latency to and from centralized cloud servers 
down, allowing it to be an appropriate integration for 
such applications. Edge computing can allow smart 
devices, for example, to send the sensor data to the 
cloud server for processing. Still, the edge may execute 
the functions in a device place or sometimes on the 
edge server nearby, reducing the reliance on the cloud 
infrastructure and increasing the response time (Hong 
& Varghese, 2019). With FaaS at the edge, developers 
can deploy lightweight functions to improve the 
performance of distributed applications. It allows edge 
devices to perform computation without a constant 
connection with the cloud, which in turn leads to 
improving resource utilization on the edge and 
enhancing system scalability in a distributed system.  

 

 

Figure 9: Edge Computing 

 

7.2 Latency and Performance Challenges in Edge 
Computing 

There are several unique challenges in running FaaS in 
edge computing environments: latency, resource 
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constraints, and network connection. Many times, edge 
devices have severely limited processing power, 
storage, and memory and, as a result, are handicapped 
when it comes to running more complex functions. 
These constraints lead to difficulty in the edge 
regarding data-intensive or resource-intensive 
operations. Even with edge computing, latency is 
reduced due to the process of data happening locally, 
but it is still influenced by network instability and 
variable connectivity. The characteristic of being 
geographically dispersed and having inconsistent 
function performance due to network speeds that can 
fluctuate makes the edge devices functionally 
unreliable or unable to perform in real-time. 

7.3. Optimization Techniques for FaaS in Low-Latency 
Environments 

Several approaches can be involved. Several methods 
can be used to improve the performance of Function-
as-a-Service (FaaS) in an edge environment (Ascigil et 
al., 2021). The most important way to reduce data 
retrieval time is storing the data near the point of the 
edge function execution. It minimizes the data coming 
to centralized cloud servers, significantly decreasing 
latency. Furthermore, it can also help to optimize 
function execution to reduce execution time and 
resource usage. It can be done by lowering 
dependencies, optimizing algorithms, and using well-
compacted programming languages like go or Web 
Assembly with smaller memory footprints and startup 
times (Nyati, 2018). Thus, it also enables Content 
Delivery Networks (CDNs) to cache frequently accessed 
data at the edge, reducing repeated requests to the 
centralized servers and improving response time and 
availability. Additionally, local caches are used by edge 
caching so that data can be accessed faster and the 
calculations do not have to be repeated; a good use 
case is applications that work with sensor data or 
images. 

FaaS has a handful of applications for real-time at the 

edge of both IoT and event-driven use cases. In such IoT 
systems, devices for smart thermostats, industry 
sensors, etc., produce large data volumes that require 
immediate processing. Running the FaaS at the edge 
allows for real-time analytics that enable speedier 
decision-making. For example, industrial IoT systems 
can process machine data in real-time to find potential 
faults and take activities to maintain without the 
support of the cloud. Like most other application 
classloads, monitoring video feeds from security 
cameras and analyzing health data from wearable 
devices benefits from FaaS at the edge to take 
immediate actions such as sending alerts or responses 
by its devices. By appending FaaS with edge computing, 
real-time analytics, such as analyzing traffic data from 
smart city sensors, can be processed immediately, for 
example, by using traffic light adjustments or notifying 
commuters about congestion. 

Integrating FaaS with edge computing comes with two 
main pros and cons. Edge computing is much faster 
than cloud computing and would greatly reduce latency 
and response time; it is critical to real-time decisions, 
such as autonomous driving or healthcare, in situations 
requiring control over seconds, minutes, hours, and 
days. Furthermore, it allows local data processing to 
ensure data privacy and keep up with data sovereignty 
practices. However, edge devices generally have less 
available processing power, storage, and memory, 
limiting the complexity of functions that can be 
executed. Relying on a distributed network of edge 
devices also increases the complexity of managing a 
complex assembly of these devices in terms of efficient 
orchestration and monitoring. Unresolved challenges 
include network connectivity, especially in areas that 
may experience disconnects from the internet, which 
can interfere with function execution. However, FaaS at 
the edge presents a worthwhile solution for 
applications that need to process data locally, run fast, 
and have milliseconds response times 
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Figure 10:  Edge computing architecture. 

 

8. Hybrid and Multi-Cloud Serverless Architectures  

8.1 Importance of Multi-Cloud Deployments in FaaS 

Serverless applications thrive in Multi-cloud 
environments with different cloud environments to 
host our application and its data. Resilience, fault 
tolerance, and reduced vendor lock-in are improved in 
these environments. By incorporating redundancy into 
a multi-cloud architecture, one key benefit is that if one 
cloud were to go down, the system would not be 
completely unavailable for the game. When functions 
are spread over several cloud providers, an outage in 
one can cause the application to fail over another 
without impacting the outcome — keeping the 
application up and running. For mission-critical 
applications requiring high availability, redundancy is 
essential. 

In multi-cloud settings, fault tolerance is increased. 

Once workloads are spread across different cloud 
platforms, applications can work despite a failure 
within one cloud provider’s infrastructure. This is 
because systems that cannot operate in case of 
disruptions must continue functioning despite 
individual provider failures. Also, the multi-cloud is a 
strategy for escaping vendor lock-in, in that numerous 
cloud companies can be used as solutions and will help 
improve the risks associated with vendor lock-in. So 
that it maintains it removes the restrictions of using just 
a single cloud supplier, and it is better to tailor its cloud 
method to satisfy particular organization needs. 
Multicloud setups are useful for serverless 
environments that allow landing workloads within 
different providers so that simplicity will again optimize 
an application’s availability and performance (Sangapu 
et al., 2022). 

 

Table 5: Performance Metrics in Multi-Cloud FaaS Deployments 

 

Metric Description Impact on Multi-Cloud Deployment 

Redundancy 
The ability to replicate functions across 

multiple cloud platforms 

Enhances availability and fault tolerance 

in case of a provider failure 

Fault 

Tolerance 

Ability to continue functioning despite 

failure in one cloud provider 

Ensures business continuity by 

maintaining operations during outages 

Vendor Lock-

in 

Reduces dependency on a single cloud 

provider 

Increases flexibility and optimizes cloud 

costs 

8.2 Kubernetes-Based FaaS Frameworks (Knative, 
OpenFaaS) for Cross-Cloud Portability 

Kubernetes is an open-source container orchestration 
platform that efficiently manages containerized 

workloads across multiple environments. Within multi-
cloud Function as a Service (FaaS) settings, Kubernetes 
provides organizations with a way to enhance the cross-
cloud portability of functions that run consistently from 
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one provider to the next. Of the many frameworks built 
on top of Kubernetes, Knative enhances serverless 
capabilities by extending Kubernetes. With automatic 
scaling, event-driven execution, and functional runtime 
across clouds, Knative simplifies function deployment 
and runtime management at any scale. It is an 
especially good solution for organizations with Jenkins 
pipelines that want to ensure portability across Clouds 
since Knative can deploy and scale serverless functions 
across Kubernetes clusters. There is another framework 
to follow, OpenFaaS, which is built atop Kubernetes but 
has a developer-facing API upon which functions can be 

deployed to a Kubernetes environment as containers. 
This provides full control over the lifecycle and scaling 
of functions. By running OpenFaaS on a simple 
Kubernetes platform, it supports multi-cloud 
architecture and, at the same time, can also be run on 
any given Kubernetes platform, which makes OpenFaaS 
a perfect choice for organizations with apps to run on 
their FaaS across multiple clouds. Knative and 
OpenFaaS provide serverless portability, allowing these 
applications to be moved and scaled across different 
cloud providers without disruption.  

 

 

 

Figure 11: OpenFunction: Build a Modern Cloud-Native Serverless Computing Platform 

 

8.3 Design and Architecture Considerations for Hybrid 
Cloud Serverless Solutions 

Like any application design, carefully planning 
serverless applications run in hybrid cloud 
environments (on-prem and cloud resources running 
together) is necessary. Organizations can optimize 
performance and be flexible by leveraging on-premises 
and cloud resources using hybrid architectures. With 
serverless, functions run in the cloud based on on-
premise data stores or interact with legacy systems. A 
well-designed API management, secure data transfers, 
and synchronization mechanisms are needed to ensure 
a seamless integration. Fault tolerance, load balancing, 
and resource allocation must be considered when 
designing hybrid cloud serverless architectures. 
However, it has to have proper orchestration tools and 
monitoring solutions to be resilient and responsive to 
demand changes. 

Distributed functions through the multiple cloud 
providers in a multi-cloud FaaS architecture promote 

resilience. Building on this approach provides 
advantages of load balancing, failover strategy, and 
data redundancy to guarantee data availability even in 
the case of provider failure. There are real-world 
examples of such multi-cloud strategies like AWS 
Lambda and Google Cloud Functions being used to 
achieve global availability on a worldwide e-commerce 
platform. Likewise, a healthcare company uses 
OpenFaaS across AWS and Azure to utilize data locality 
and fulfill data sovereignty requirements. The 
discussions in these case studies show how the multi-
cloud approach benefits serverless applications in 
optimizing vendor lock-in, scalability, and reliability 
(Fatahi Baarzi, 2021). 

 

9. Optimization Techniques for FaaS  

9.1 Pre-Execution and Runtime Optimizations 

To optimize the performance of FaaS functions, pre-
execution and runtime strategies must be optimized to 
achieve lower latency, faster execution speed, and 
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greater efficiency throughout the function’s lifecycle 
(Chen et al., 2016). The lazy loading is one of the 
effective pre-execution optimization technique in 
which a function loads only specific components or 
dependencies when needed rather than loading all of 
them in upfront. This decreases the initial load time and 
memory usage so that the execution is light and quick. 
In the case of a function meant for data analysis, a 
library suite of analytical tools is only loaded while 
needed per the current task instead of an entire suite 
of such tools. The next optimization of the note is 
caching, which can be done at execution time or even 
ahead of time. When queries or data requests from the 
database/external API are frequent, storing that 
commonly used data in fast-access memory such as 
Redis or in-memory caching can improve performance.  

This improves the overall performance by a great deal 

because it greatly decreases such metrics as data 
retrieval latency and external dependency call 
overhead. For example, functions that query the 
database and locate the user profiles can store the data 
most commonly requested in their cache to avoid 
having to keep querying the database and reducing 
response time. In addition, they are beneficial in 
minimizing what parts of the serverless function 
deployment are deployed when loading them and 
quickly loading them. The libraries and frameworks 
included in the function deployment should be 
minimized to avoid unnecessary or oversized libraries 
regarding cold start time and execution overhead. 
Using such pre-execution and runtime optimizations, 
FaaS applications can be made more efficient, and 
faster, more responsive serverless solutions are 
provided. 

 

 

Figure 12: Latency and resource consumption analysis for serverless edge analytics 

 

9.2 Managing Scaling and Load Balancing for FaaS 

Scaling and load balancing must work well, as this is 
only possible with FaaS applications to handle high-
demand operations without degrading performance 
(Sharma, 2016). Unlike traditional server-based 
computing, FaaS platforms automatically scale 
functions to meet incoming traffic but should be as 
flexible as possible in this scaling process. For example, 
horizontal scaling refers to increasing the number of 
function instances to support higher traffic volumes. 
Since these platforms automatically manage scaling, 
developers can fine-tune scaling parameters to achieve 
optimal results with minimal effort. Since it is horizontal 
scaling and the number of instances depends on traffic 
load, when such spikes occur in applications, additional 

function instances will get added to meet the traffic 
load. Auto-scaling groups can control the number of 
function instances based on demand for all but the 
most basic configurations. These groups can be set up 
with pre-defined rules that monitor traffic and create 
additional cases when the level of requests exceeds a 
set limit. It helps sustain the performance to an 
optimum without over-provision, reducing costs. 
Function routing is also another important strategy. 
The concept involves routing incoming requests to 
appropriate function instances thanks to certain 
conditions, such as location, request type, or resource 
availability. By function routing, function requests that 
require a quick response, or are otherwise priority 
requests, are routed to the most responsive, or 
available of function instances. From the point of 
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maintaining FaaS application load balancing and 
preventing the application from degrading because of 
their high traffic load, this approach improves load 
balancing. It ensures that FaaS applications continue to 
function efficiently. Organizations can protect 
themselves from unexpected loads and keep the FaaS 
applications responsive and scalable while allowing 
them to be both responsive and cost-effective by 
effectively balancing load and scaling. 

9.3 Techniques for Reducing Overheads in Serverless 
Architectures 

Optimal performance in serverless architectures is 
realized by minimizing overhead. Techniques include 
memory management, which allocates enough (or too 
little) memory to eliminate unnecessary costs and 
executes efficiently. Developers should analyze the 
function performance to find the most suitable 
memory configuration. It also includes eliminating 
redundant processing by fetching and re-calculating 
similar data for multiple inputs. Developers speed 
things up by caching results or pre-processing data by 
leveling off the need for redundant tasks. In particular, 
reducing overhead related to initialization is also 
important for functions with large dependencies. 
Smaller, modular units split the larger functions and 
load only the required dependencies, which minimizes 
the time it takes for the function to initialize and run 
faster. 

Fast Function as a Service (FaaS) also helps to integrate 

CI and CD pipelines to improve development, testing, 
and deployment processes. Testing is automated to 
check for its functionality, performance, and scalability 
immediately if there is any change in codebase. For 
FaaS, this means testing whether the functions respond 
within an acceptable time and how they scale under 
load. Automated deployment takes this one bigger step 
and guarantees that new or updated functions are 
deployed to the production without us doing anything 
to make codebase up to date. CI/CD pipelines also 
automate the auto-scaling part, ensuring the functions 
will scale themselves automatically to satisfy the 
normal traffic load and always deliver the highest 
performance and availability (Wu, 2015). 

Benchmarking is needed to evaluate the performance 
of optimization techniques in FaaS. Apache JMeter or 
Artillery can perform performance testing to determine 
increased resource usage, latency, and scalability 
improvements. Thus, resource utilization optimization 
can be achieved in various ways, including resource 
tuning (memory, caching, or lazy loading) and reducing 
costs. Caching and pre-execution optimizations can be 
used to minimize latency, while the system can be 
tested to determine its scalability by measurement of 
scale-up and scale-out capabilities. With a serverless 
provider, the insights provided in this article add value 
to organizations’ ability to keep serverless applications 
cost-effective, high-performing, and scalable. 

 

Figure 13: Optimizing Costs in Serverless Computing: Strategies and Best Practices 

 

10. Best Practices 

Deploying, optimizing, and securing function-as-a-
service (FaaS) applications is the highest level of 
operations in software development. Best practices 

have been found in various development areas to make 
FaaS deployments effective and efficient. 

10.1 FaaS Deployment Best Practices 

Regarding cloud services, one of the most important 



The American Journal of Engineering and Technology 36 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

best practices is reducing the cold start, which can be 
particularly killer for latency-sensitive users. Therefore, 
functions can be warmed up to mitigate cold start 
latency by regularly calling these functions. Moreover, 
related to reducing the time to initialize a function, 
tasks that are likely to be triggered in a coordinated 
manner can be deployed into the same instance. 
Reducing cold starts can also be achieved via smaller 
function sizes, with deploying multiple lightweight 
functions typically more efficient than deploying one 
big monolithic function. Managing a maximum number 
of instances is another important deployment practice. 
The number of cases must not surpass the demand; 
hence, it should be limited to prevent overbooking 
resources. This ensures that resources are not wasted 
and performance bottlenecks are avoided.  Real-time 
processes like AWS Cloudwatch or Google Stack driver 
monitoring resource usage, invocation frequency, and 
basic bottlenecks can be optimized for performance 
and cost. Finally, FaaS is the best fit for microservices 
architectures. They help scale large monolith systems 
by separating them into smaller manageable bits. It 
allows each function to scale independently, increasing 
flexibility and recovery from failure. 

10.2 FaaS Optimization Best Practices 

Attention to resource allocation is required to optimize 
function performance in FaaS environments. 
Performance and cost are very dependent on the 
allocation of memory and CPU. To determine the 
amount of memory and CPU required for function 
execution, it's essential to allocate resources 
appropriately. Allocating too many resources can be 
unnecessary, leading to increased costs, while too few 
resources can result in slower performance and 
resource starvation, negatively affecting the function's 
execution. Proper resource allocation involves 
analyzing the function's performance and 
understanding the workload's requirements, 
optimizing the memory and CPU configuration to 
ensure efficient operation and cost-effectiveness. Also, 
choosing the correct programming language is part of 
function optimization. Some more popular FaaS 
platforms have multiple programming languages, but 
most take longer than Node.js or Go with Java or .NET. 
For this reason, one should choose the appropriate 
language given the workload. The next optimization 
practice is to use as few external dependencies as 
possible. Init time and cold start latency are lowered 
because of a few external dependencies.  

10.3 FaaS Security Best Practices 

Isolating functions is critical to security; unauthorized 
access or interference with functions should be 

prevented. Each function should be containerized or 
run in microVMs, ensuring that no other function in the 
multi-tenant architecture can be affected by any 
vulnerability in one function. One key security practice 
is Role-Based Access Control (RBAC), which allows the 
invocation of functions only by authorized users. This 
limits access to the resources that each function needs 
and prevents unauthorized actors from accessing 
sensitive data or system resources. The security of FaaS 
also includes encryption. Regardless of the amount of 
information processed, if the data is sensitive, it should 
be encrypted both in transit and at rest. Encryption 
serves as a crucial layer of security against data 
breaches. Additionally, FaaS configurations must be 
regularly scanned for weaknesses and audited to 
identify vulnerabilities. Automated vulnerability 
scanning tools can detect issues in third-party libraries 
and unpatched vulnerabilities, which could pose risks if 
left unaddressed. 

 

11. Future Considerations 

Since Function-as-a-Service (FaaS) is undergoing its 
development, some areas need attention for future 
optimization and further development (Pedone & 
Mezgár, 2018). Appropriately, one significant area is 
integrating serverless machine learning, as the role of 
machine learning and artificial intelligence confounds 
the limits of FaaS capabilities. The serverless platforms 
improve the scalability of machine learning models 
without manual provisioning. However, serverless 
machine learning requires advancements in model 
training, real-time data processing, and managing 
complex interdependencies. Additionally, edge 
computing integration is increasingly critical, especially 
with the rise of the Internet of Things (IoT) and real-
time processing needs. Integrating FaaS with edge 
computing will enhance performance while reducing 
latency and bandwidth usage. In practice, serverless 
applications are being deployed at the edge and in 
hybrid environments, necessitating innovation in 
distributed systems management and orchestration. 
Besides, as quantum computing moves forward, 
quantum capabilities might be integrated with FaaS, 
raising the possibility of achieving powerful 
computation in optimization and data-heavy 
workloads. While quantum FaaS is still rather new, the 
research could lead to new potential in serverless 
architectures. 

Another critical area of future development is improved 
optimization techniques. Although cold start problems 
have been mitigated, the predictive scaling and lazy 
loading mechanism remain to be explored (Kumar, 
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2019). Predicting when a function will be triggered and 
keeping certain functions 'warm' without going 
overboard regarding resources is still a key problem. 
Additionally, the performance metrics used to allocate 
resources to the cluster dynamically could be 
improved. Rather, resource consumption is monitored 
at the invocation point, which leads to less effective 
scaling solutions for resource use. Auto-scaling the 
resources using AI-driven AI improves the demand, is 
proactive, and adapts the resources, reducing overhead 
and maintaining performance (Qu et al., 2016). 

FaaS security frameworks also need to be developed. 
Implementing zero-trust security models within 
serverless environments is one promising way to 
approach the security of FaaS functions, as FaaS 
functions work with multiple services and external APIs. 
In a zero-trust architecture, every request, even from 
internal services, is assumed to be compromised, and 
security is strengthened by enforcing rigorous 
authentication and validation for any function. At the 
same time, as more organizations run those functions 
across multiple cloud providers, consistency and 
security of cross-cloud communication will be essential. 
Developing security frameworks that enable encrypted 
and secure communication between different cloud 
functions is a requisite for multi-cloud serverless 
applications. 

The future will depend on the evolution of multi-cloud 
and hybrid-cloud FaaS platforms. With serverless 
applications growing by the day, future FaaS platforms 
should be built in a way that is able to provide cross-
cloud portability to ensure that the serverless 
applications can be deployed across various cloud 
providers with minimal effort. This means defining the 
standards for enabling orchestration on multiple clouds 
so FaaS functions can easily be moved across the 
environments without losing functionality. Moreover, 
the hybrid cloud will continue emerging as a 
combination of on-premises infrastructure and cloud 
resources. Given the recent rise in popularity of 
serverless computing, serverless solutions need to cope 
with providing both private and public cloud support 
for enterprises to reap the benefits of such computing 
while preserving some control over their infrastructure 
elements. Future considerations indicate that further 
innovation in FaaS must be developed to enable its 
capabilities to reduce the future needs of developers 
and businesses. 

 

12. Potential Contributions of This Research 

It provides several high-value contributions to the 

academic community and industry practitioners based 
on this Function-as-a-Service (FaaS) optimization 
research. The key contribution is seeing to the 
benchmarking of the major FaaS platforms, such as 
AWS Lambda, Azure Functions, Google Cloud Functions 
and OpenFaaS. This research provides insights into 
metrics such as latencies, throughputs and scalability, 
allowing organizations to decide what platform best 
suits their needs. The benchmarking results offer 
practical guidance for choosing the right platform to 
meet an application's exact needs, such that the 
respective organizations can get more out of their cloud 
infrastructure in terms of performance and costs. 

Beyond benchmarking, the research also offers 
practical guidance on how to optimize the performance 
of FaaS functions. Cold start latency is the problem with 
FaaS, which is one of the most pressing unless 
interested only in batch processing and don't need 
time-sensitive applications to become available in the 
first place. To tackle cold start, the research evaluates 
several optimization methods, such as pre-warming, 
snapshotting, and harnessing lightweight runtimes like 
WebAssembly. The first strategy is to reduce the time 
for function initialization to make them respond quickly 
to incoming requests. This leads to a reduced cold start 
latency, resulting in better and smoother user 
experience or simply the performance of real-time 
applications for enterprises. 

Besides the usual concerns of optimizing FaaS 
applications, such as resource utilization and scalability, 
additional considerations are making the problem 
extremely difficult. The research examines memory 
allocation tuning, pre-warming of computers, and the 
usage of intelligent auto-scaling mechanisms to 
enhance resource efficiency. By exploring how 
organizations allocate – and should allocate – resources 
for functions, organizations can save money while 
ensuring that things function as they should. The 
research also discusses the need to use often data 
caching, which can greatly reduce data retrieval and 
response times. When best practices of serverless 
resource management are in place, enterprises can 
build a more efficient and cheaper serverless 
architecture. 

The research also focuses on security, especially in 
multi-tenant FaaS environments. As physical resource 
sharing among multiple users is the case in multi-
tenancy, several security challenges arise, such as data 
leakage, unauthorized access, resource contention, etc. 
This research explores strategies to mitigate these risks, 
including function isolation, role-based access control 
(RBAC) and encryption. For cloud providers, it is 
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possible to prevent unauthorized access and abuse of 
sensitive data by isolating functions to secure 
containers or microbes. With encryption, the data is 
secure at rest and in transit and securing FaaS 
applications is further fortified. The security of 
deploying serverless applications in a multi-tenant 
context with extremely high levels of protection is 
critical to security for organizations deploying 
serverless applications. 

This research also shows real-world case studies of 
companies implementing FaaS in their production 
systems. The case studies discussed here highlight the 
challenges and successes in FaaS adoption among 
organizations. For instance, the research shows how e-
commerce platforms have utilized AWS Lambda to 
handle wave traffic during sales events, meaning using 
FaaS for scaling and cost optimization is possible. The 
study also looks at how Google Cloud functions are 
used in IoT applications for real-time data processing 
and discusses how low cold start latency and seamless 
chat with other Google Cloud services provide benefits. 
The case studies exemplify that FaaS is very flexible and 
can be applied to e-commerce, IoT, and real-time 
analytics use cases. This research significantly 
contributes to the literature on the optimization and 
security of FaaS applications. This research offers 
practical strategies for cloud architects, developers, 
and enterprises in deploying, optimizing, and securing 
FaaS applications in real-world environments by 
guiding them in using FaaS in cloud deployments. These 
findings also offer a roadmap for future research and 
development in mitigating cold start, resource 
allocation and serverless security. In the coming years, 
as FaaS evolves, the insights discussed in this research 
will be critical for organizations that want to capitalize 
on the scalability, flexibility, and cost-efficiency of 
serverless computing. 

 

CONCLUSION  

This research explores the evolution and optimization 
of Function-as-a-Service (FaaS) platforms in serverless 
computing environments, offering insights into how 
these platforms can be tuned to improve performance, 
scalability, and cost. The findings on the advantages 
include the fact that FaaS can scale very well, offers 
flexibility through having no restrictions, and helps cut 
costs because there is no management on the 
infrastructure. Nevertheless, this leads to cold starts, 
i.e., introducing latency when the functions are invoked 
after idle, making the scaling hard. The challenge of 
mitigating this problem was researched on several 
strategies: pre-warming, snapshotting, and 

WebAssembly-based runtimes that sacrificed either 
resource consumption, operational complexity, or 
performance. Investigation of performance 
benchmarking across major FaaS platforms, AWS 
Lambda, Google Cloud Functions, Azure Functions, and 
OpenFaaS, showed the different ways in which these 
platforms differ in cold start latency, throughput, and 
scalability, and how this can be used to select the right 
platform for the needs of the application. 

This research also analyzed the complexities of keeping 
a state in serverless environments where functions are 
usually stateless. Serverless applications can integrate 
stateful FaaS solutions such as Faast.js, Knative, and 
OpenWhisk to handle more use cases, such as 
managing cases requiring session data persistence or 
long-running tasks. However, the challenge of 
managing consistency and synchronization of states 
among distributed systems has yet to be fully 
addressed. It also talked about the security risks of 
multi-tenancy in serverless environments. It 
highlighted the need for strong isolation mechanisms, 
encryption, and access control to protect data and 
functions from unauthorized access or breaches. 

The future directions of FaaS optimization are to 
improve cold start mitigation techniques, optimize 
resource allocation efficiency, and further intelligent 
scaling mechanisms. FaaS, however, should be seeing 
its capabilities extend in correspondence to machine 
learning, edge computing, and quantum computing. 
Challenges regarding resource constraints in the server, 
network instability between server and wireline 
networks, and cold starts will need to be resolved to 
integrate FaaS with the edge computing environments, 
such as for real-time IoT and sensor data processing 
applications. However, the remedy here is to drastically 
reduce the latency. While FaaS itself is already 
developing rapidly, it may ultimately integrate with 
quantum computing to leverage its computational 
power to do workloads that are otherwise intractable 
by traditional computers in an early stage. There are 
opportunities for further research and development in 
these areas. 

This research’s findings have important ramifications 
for cloud architects, DevOps teams, and enterprises 
(Bass et al., 2015). With this knowledge, cloud 
architects can implement more efficient and less costly 
serverless applications according to business 
requirements. The insights about how to integrate the 
CI/CD pipeline with FaaS can be leveraged by DevOps 
teams to shorten the development, testing, and 
deployment lifecycle of the functions about 
performance and scalability. Adopting best practices in 
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resource management, security, and multi-cloud 
deployment reduces the probability of vendor lock-in 
and increases resilience across cloud environments 
enterprises. In the future, FaaS and serverless 
computing will become increasingly critical in modern 
cloud computing. Serverless computing represents an 
attractive model to sort from the enterprises’ recently 
increased need for agile, efficient, and scalable 
solutions hand in hand with the end-of-the-day 
technologies in machine learning, edge computing, and 
quantum computing. With the evolution of FaaS, it will 
continue to innovate and make application 
development in the cloud digital in the best way 
possible. With time, there will be more optimizations, 
even stronger security frameworks, and easy cross-
cloud deployments, leaving FaaS to remain one of the 
major parts of the modern cloud architecture. 
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