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Abstract: Cold start latency in serverless computing, 
particularly in Java-based AWS Lambda functions, 
presents a significant challenge for latency-sensitive 
applications. This study investigates the performance 
characteristics of three modern Java frameworks - 
Spring Boot, Micronaut, and Quarkus - deployed on 
AWS Lambda using the ARM64 (Graviton2) architecture. 
It evaluates cold start latency across three deployment 
configurations: managed runtime (with and without 
SnapStart) and GraalVM native images. Metrics were 
collected at varying memory allocations using Java 21. 
Results show that Quarkus consistently outperforms 
others in cold start latency on standard JVM, while 
SnapStart and GraalVM significantly reduce the number 
of cold starts and achieve sub-second latency, 
respectively. We discuss the implications of these 
findings for choosing a Java framework and runtime 
strategy on AWS Lambda, considering the trade-offs in 
deployment time, complexity, and performance. The 
paper concludes with recommendations for leveraging 
SnapStart and native images to mitigate cold start issues 
in Java serverless applications on ARM64. 
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Introduction: Serverless computing platforms like AWS 
Lambda have revolutionized cloud application 
deployment by enabling automatic scaling and 
operational cost-efficiency. However, a major 
performance concern for serverless Java applications is 
the cold start latency, the time required for initializing a 
new function instance before processing its first request 
[1]. Cold starts are particularly problematic for Java 
workloads due to the substantial overhead of Java 
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Virtual Machine (JVM) initialization, class loading, and 
Just-in-Time (JIT) compilation, often resulting in delays 
several times longer compared to lighter runtimes such 
as Node.js or Python [2]. 

The recent availability of ARM64 (AWS Graviton2) 
architecture on AWS Lambda provides significant 
performance and cost advantages compared to 
traditional x86 processors, including improved 
computational efficiency and reduced execution costs 
[3]. Coupled with new AWS features like SnapStart, 
which allows Lambda functions to rapidly resume from 
pre-initialized JVM snapshots, Java’s historical 
performance barriers are being reduced significantly. 
Another critical optimization is the use of GraalVM 
Native Images, which compile Java bytecode into 
native machine code ahead-of-time, dramatically 
reducing startup latency by eliminating JVM 
initialization entirely [4]. 

Choosing the appropriate Java framework can further 
influence cold start performance. Popular frameworks 
like Spring Boot offer extensive features but rely 
heavily on reflection and dynamic class loading, 
resulting in longer startup times. In contrast, newer 
frameworks such as Micronaut and Quarkus 
emphasize compile-time optimizations and minimal 
runtime reflection, significantly reducing initialization 
overhead. 

This study provides a comprehensive comparison of 
cold and warm startup latencies for Spring Boot, 
Micronaut, and Quarkus frameworks on AWS 
Lambda’s ARM64 architecture taking into account 
memory impact. Startups are examined using Java 21 
across three execution environments: the standard 
managed Java runtime without SnapStart, the 
managed runtime with SnapStart enabled, and custom 
runtime deployments using GraalVM native images. 
Performance metrics were collected under controlled 
load conditions using Artillery, capturing median (p50), 
90th percentile (p90), 99th percentile (p99), and 
maximum cold start latencies. 

Through this investigation, trade-offs and practical 
implications for developers selecting Java frameworks 
and runtime strategies on AWS Lambda are intended 
to be highlighted. Understanding these dynamics is 
essential for optimizing serverless Java performance, 
ensuring responsiveness, minimizing costs, and 
effectively harnessing the benefits of ARM64 
architecture in modern cloud-native applications. 

 

MATERIALS AND METHODS 

This study compared startup latency performance for 

Java functions using three Java frameworks with latest 
versions: Spring Boot (3.4.3), Micronaut (4.7.6), and 
Quarkus (3.18.4). All functions were deployed on AWS 
Lambda across three distinct runtime configurations: 

● Managed Java Runtime (without SnapStart): 
Functions were packaged as JAR files and deployed 
directly to AWS Lambda’s standard Java managed 
runtime (Amazon Corretto JDK). 

● Managed Java Runtime (with SnapStart): 
Functions deployed as JAR files using AWS Lambda 
SnapStart, a feature enabling JVM state snapshotting 
after initialization, significantly reducing cold start 
latency. 

● Custom Runtime (GraalVM Native Images): Java 
functions compiled to native ARM64 executables using 
GraalVM Native Image (version 23.1), deployed as 
Lambda custom runtimes, eliminating JVM overhead 
entirely. 

The test functions implemented a lightweight API 
endpoint retrieving a record from Amazon DynamoDB 
by ID, simulating a common serverless use case 
involving moderate I/O operations. The deployed 
functions were load-tested using Artillery, an open-
source load-testing tool, which generated controlled, 
sequential requests ensuring accurate cold and warm 
start measurements. 

Cold starts were consistently reproduced by deploying 
new function versions or invoking each function after 
sufficient idle time, ensuring the AWS Lambda 
environment initialized new containers for each 
measurement. For each test scenario, approximately 
100 cold start invocations were executed to reliably 
capture statistical distributions. Subsequent warm 
invocation tests involved rapid sequential calls to 
warmed Lambda containers, providing baseline 
performance metrics without initialization overhead. 

Testing was performed at three memory allocations: 
512 MB, 1024 MB, and 2048 MB, assessing how CPU 
resources allocated to each Lambda instance affected 
startup performance. Detailed latency metrics were 
extracted from AWS CloudWatch Logs and AWS 
CloudWatch Insights, specifically capturing initialization 
durations for cold starts and request latencies for warm 
executions. 

Data analysis involved statistical summarization of 
captured startup latencies across memory sizes and 
frameworks, clearly illustrating performance impacts of 
runtime configurations, memory allocation, and Java 
versions. 
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RESULTS AND DISCUSSION 

Table 1 summarizes the cold start latency metrics for 
each framework under each runtime configuration at 

1024 MB memory (using Java 21). This gives a 
representative comparison in a mid-memory setting. 
Cold start time is measured from invocation to the 
function’s first response.

 

 
 
 
 
 
 
 
 
 
 
 

Table1. Cold start latency (ms) distribution for each framework and runtime at 1024 MB memory (ARM64, JDK 

21)  

Effectiveness of AWS Lambda SnapStart 

When AWS Lambda’s SnapStart feature was enabled, 
cold start latencies dramatically decreased across all 
three frameworks: 

● Spring Boot showed the most pronounced 
improvement with SnapStart enabled, achieving 
median latencies of approximately 1 second, 
representing nearly a five-fold reduction compared to 
non-SnapStart deployments. However, tail latencies 
(p99 ≈ 1.23 seconds) suggest occasional delays in 
snapshot restoration, albeit still much improved 
compared to traditional JVM startups. 

● Micronaut with SnapStart experienced median 
cold-start reductions to around 870 ms, roughly 4.5 
times faster than without SnapStart. However, 
Micronaut exhibited slightly higher variability in 
snapshot restoration times compared to Quarkus. 

● Quarkus, already optimized for faster JVM 
initialization, benefited notably from SnapStart, 
reducing median cold starts further to approximately 
530 ms. Interestingly, the difference between Quarkus 
and other frameworks was reduced significantly due to 
SnapStart, suggesting the framework’s inherent 
runtime optimizations provide diminishing returns 
once AWS-level optimizations like SnapStart are 
applied. 

SnapStart primarily reduced cold starts by caching the 
JVM state after initialization. Snapshots restored faster 
than conventional JVM bootstraps, though residual 
overhead remained due to the snapshot restoration 
process and minor initialization of dynamic states (e.g., 

database connections). 

Cold Start Performance with GraalVM Native Images 

GraalVM native compilation showed the most 
impressive cold-start performance: 

● Spring Boot Native significantly reduced its 
latency to approximately 800 ms median, a substantial 
improvement compared to JVM-based deployments. 
While still higher than Quarkus native, Spring Boot 
Native's performance demonstrates the significant 
potential for native image compilation to resolve cold 
start latency challenges for even traditionally 
heavyweight frameworks. 

● Micronaut Native further reduced median 
latencies to around 750 ms, exhibiting minimal variance 
(p99 ≈ 950 ms). This efficiency emphasizes Micronaut’s 
alignment with AOT compilation and native image 
methodologies. 

● Quarkus Native displayed the lowest overall 
cold start latency, achieving 500 ms median, with 
exceptional consistency (p99 ≈ 750 ms). These findings 
match prior research demonstrating Quarkus’s 
significant advantage when combined with GraalVM 
native images, providing near-instantaneous 
initialization suitable for latency-sensitive applications 
[5, 6]. 

Overall, native images produced a near-ideal 
performance scenario by eliminating JVM initialization 
entirely, substantially outperforming both standard 
and SnapStart-enabled JVM runtimes. 

Impact of Memory Allocation 

Framework Runtime p50 (ms) p90 (ms) p99 (ms) Max (ms) 

Spring Boot No SnapStart 4974 5249 5354 5698 

Spring Boot SnapStart 978 1177 1231 1682 

Spring Boot GraalVM 807 940 989 1156 

Micronaut No SnapStart 4102 4747 4786 4913 

Micronaut SnapStart 876 1012 1123 1450 

Micronaut GraalVM 753 930 956 1294 

Quarkus No SnapStart 2864 3163 3224 3551 

Quarkus SnapStart 534 745 878 1027 

Quarkus GraalVM 503 698 759 1365 
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Table 2 Impact of Memory Allocation on Cold Start Latency for p50 (ms). 
 

Table 2 depicts that memory allocation significantly 
impacted cold-start latency due to CPU provisioning 
proportional to allocated memory [7]. Increasing 
memory from 512MB to 2048MB showed a clear 
pattern of diminishing returns with or without 
SnapStart: approximately 20 to 30% when increasing to 
1024MB (this threshold proved optimal for achieving 
acceptable performance at startup) and 18 to 24% 
when increasing further to 2048MB (while this was 
beneficial, cost effectiveness dropped off sharply 
beyond the 1024MB threshold). 

GraalVM native images were notably less sensitive to 
memory variations, consistently maintaining sub-
second latencies even at lower memory configurations 
(512 MB). This independence from CPU resources 
emphasizes native images as ideal candidates for 
applications requiring predictable low latency 
regardless of memory provisioning. 

Warm Invocation Performance 

Warm invocation performance, measured after initial 
container initialization, showed minimal latency across 
all frameworks and runtimes (median ~6–11 ms). 
Framework overhead differences were negligible once 
functions were warm. These results underline that 
serverless Java’s primary challenge remains cold-start 
latency; once functions are warm, Java frameworks 
perform efficiently. 

Discussion of Practical Implications 

This comprehensive evaluation provides clear guidance 
for optimizing Java application deployments on AWS 
Lambda [8]: 

● Framework Selection: 

 Quarkus consistently demonstrated the fastest cold-
start performance, validating its suitability for latency-
sensitive serverless deployments. Micronaut offered an 
intermediate balance of performance and simplicity, 
while Spring Boot, although slower initially, became  

competitive through SnapStart or native compilation. 

● Runtime Environment Choice: 

 AWS Lambda’s SnapStart provided an accessible, 
highly effective strategy for significantly reducing Java 
cold-start latencies (up to 5–10× improvement). 

 GraalVM native images delivered superior startup 
performance, consistently achieving sub-second cold-
start latencies. For latency-critical workloads, native 
compilation offers the optimal solution, albeit with 
increased build complexity and potential compatibility 
constraints. 

● Resource Allocation Recommendations: 

 Allocating at least 1024 MB of memory consistently 
mitigated severe Java cold-start penalties. Lower 
allocations (e.g., 512 MB or less) risked unacceptable 
latencies or initialization timeouts, particularly with 
heavier frameworks. Organizations should evaluate 
memory cost versus acceptable latency, noting 
diminishing returns beyond 1024 MB. 

Trade-offs and Recommendations 

Given these findings, several practical 
recommendations emerge: 

● SnapStart is strongly recommended for Java 
Lambda functions requiring balance between simplicity 
and reduced startup latency. It particularly benefits 
heavyweight frameworks like Spring Boot, reducing 
cold-start delays sufficiently for most applications 
without extensive refactoring. 

● GraalVM Native Images represent the highest-
performing choice for latency-sensitive applications 
demanding consistently low startup latencies. 
Adoption of native images requires additional CI/CD 
effort and careful handling of dynamic Java features 
(e.g., reflection) [9]. Frameworks like Quarkus and 
Micronaut facilitate native compilation, providing a 
clear path to high performance. 

Framework Runtime 512 MB 1024MB 2048 MB 

Spring Boot No SnapStart 6482 4974 3887 

Spring Boot SnapStart 1261 978 743 

Spring Boot GraalVM 876 807 713 

Micronaut No SnapStart 5006 4102 3251 

Micronaut SnapStart 1046 876 702 

Micronaut GraalVM 831 783 723 

Quarkus No SnapStart 3609 2864 2238 

Quarkus SnapStart 665 534 437 

Quarkus GraalVM 565 503 469 
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● Framework Choice can remain flexible. With 
AWS optimizations (SnapStart, native compilation), 
previously heavy frameworks like Spring Boot become 
viable in serverless environments. Quarkus and 
Micronaut naturally align with serverless performance 
requirements, offering inherent advantages without 
extensive additional optimization [10]. 

Other noticeable recommendations: 

Deployment Package Size Minimization: 

The size of the deployment package directly impacts 
the cold start duration, particularly in scenarios 
involving AWS Lambda's Just-In-Time class loading 
model and I/O operations during cold initialization. 
Approaches: Avoiding unused dependencies and large 
transitive dependencies by manually managing the 
build. Performing code shrinking, obfuscation. 
Excluding test classes, logs, or documentation from the 
build artifacts. 

Layered Deployments with AWS Lambda Layers 

AWS Lambda Layers offer a method for separating 
common dependencies from the function's core 
codebase, enabling reuse and optimized cold starts, f.e. 
packaging shared dependencies (e.g., Apache 
Commons, Jackson, HTTP clients) into a Layer. A 
Lambda Layer is a ZIP archive that contains libraries, 
custom runtimes, or other dependencies. When 
configured, the Lambda execution environment 
mounts these layers into /opt, and the application can 
reference them via the classpath. 

Provisioned Concurrency 

Provisioned Concurrency is a native AWS Lambda 
feature that pre-warms a specified number of 
execution environments to eliminate cold start delays 
for incoming requests. This approach is particularly 
suitable for latency-sensitive or high-throughput Java 
functions. 

Finally, avoiding reflection-heavy frameworks or 
choosing lightweight Dependency Injection (DI) 
frameworks can significantly reduce JVM and 
application boot time. 

Limitations and Future Research 

This study, while comprehensive, has limitations. The 
performance tests represented relatively simple I/O-
bound functions (DynamoDB retrieval, without 
invocation priming). Results might differ for CPU-
intensive or complex functions involving additional 
libraries or frameworks. Additionally, SnapStart and 
GraalVM limitations (e.g., dynamic feature restrictions) 
require further examination to assess compatibility 
with diverse workloads. 

Future research should explore performance with more 
complex Java functions, new Java versions, examining 
JVM tuning for additional optimizations. Investigation 
into broader compatibility implications of GraalVM 
native images, as well as emerging AWS enhancements, 
could further refine Java serverless deployment 
strategies. 

 

CONCLUSION 

This study provided a detailed evaluation of startup 
latency characteristics for serverless Java applications 
deployed on AWS Lambda using the ARM64 (Graviton2) 
architecture. Three popular Java frameworks (Spring 
Boot, Micronaut, and Quarkus) were assessed across 
distinct runtime configurations: standard managed Java 
runtime (without SnapStart), managed runtime 
enhanced by AWS Lambda SnapStart, and custom 
runtime leveraging GraalVM native images. Systematic 
experiments using Java 21 and varying memory 
allocations (512 MB, 1024 MB, and 2048 MB) were 
conducted using controlled load tests via Artillery. 

The findings revealed significant variations in cold-start 
performance among the frameworks under standard 
JVM deployment conditions. Quarkus consistently 
exhibited the lowest cold-start latencies, primarily 
attributed to its extensive use of ahead-of-time 
compilation and minimal reflection. Micronaut 
demonstrated intermediate performance, whereas 
Spring Boot experienced substantially higher latency, 
reflecting its reliance on runtime reflection and 
extensive dynamic configuration. 

Introduction of AWS Lambda SnapStart markedly 
improved cold-start latencies for all frameworks. 
Particularly notable was the substantial reduction 
observed for Spring Boot, whose median latency 
decreased nearly fivefold, making it competitive with 
the other frameworks. Micronaut and Quarkus also 
benefited from SnapStart, though the relative 
improvement was less pronounced given their already 
optimized startup behavior. This indicates that 
SnapStart can substantially level performance 
differences, thus broadening framework selection 
based on criteria beyond cold-start performance alone. 

GraalVM native image deployments further enhanced 
cold-start performance, virtually eliminating JVM 
initialization overhead and consistently achieving sub-
second latency across all frameworks tested. Quarkus 
native images demonstrated the most impressive 
performance, reinforcing their suitability for ultra-
latency-sensitive serverless applications. Micronaut 
and Spring Boot also showed significant latency 
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improvements, highlighting the general applicability of 
native compilation to address Java’s startup latency 
challenges. 

Memory allocation emerged as a crucial factor 
influencing startup latency, with performance notably 
improving when scaling memory from lower allocations 
to around 1024 MB. Beyond this threshold, further 
latency reductions were marginal, suggesting 1024 MB 
as an optimal configuration for balancing cost and 
performance. 

In conclusion, the strategic application of AWS Lambda 
SnapStart and GraalVM native images effectively 
addresses Java’s inherent cold-start latency challenges 
in serverless computing environments. The results 
provide clear guidance on framework selection, 
runtime optimizations, and resource allocation 
strategies, establishing a foundation for further 
research into performance optimization methodologies 
and broader application compatibility in serverless Java 
deployments. 
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