
The American Journal of Engineering and Technology 16 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 16-21

DOI 10.37547/tajet/Volume07Issue04-03

OPEN ACCESS

SUBMITED 23 February 2025

ACCEPTED 25 March 2025

PUBLISHED 04 April 2025

VOLUME Vol.07 Issue04 2025

CITATION

Maksimov Viacheslav Yurievich. (2025). Startup Latency Analysis in Java
Frameworks for Serverless AWS Lambda Deployments. The American
Journal of Engineering and Technology, 7(04), 16–21.
https://doi.org/10.37547/tajet/Volume07Issue04-03

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Startup Latency Analysis in

Java Frameworks for

Serverless AWS Lambda

Deployments.

Maksimov Viacheslav Yurievich

Senior Software Engineer at AUTO1 IT Services SE & Co. KG, Germany,

Berlin

Abstract: Cold start latency in serverless computing,
particularly in Java-based AWS Lambda functions,
presents a significant challenge for latency-sensitive
applications. This study investigates the performance
characteristics of three modern Java frameworks -
Spring Boot, Micronaut, and Quarkus - deployed on
AWS Lambda using the ARM64 (Graviton2) architecture.
It evaluates cold start latency across three deployment
configurations: managed runtime (with and without
SnapStart) and GraalVM native images. Metrics were
collected at varying memory allocations using Java 21.
Results show that Quarkus consistently outperforms
others in cold start latency on standard JVM, while
SnapStart and GraalVM significantly reduce the number
of cold starts and achieve sub-second latency,
respectively. We discuss the implications of these
findings for choosing a Java framework and runtime
strategy on AWS Lambda, considering the trade-offs in
deployment time, complexity, and performance. The
paper concludes with recommendations for leveraging
SnapStart and native images to mitigate cold start issues
in Java serverless applications on ARM64.

Keywords: AWS Lambda, Cold start, SnapStart,
GraalVM, ARM64, Java, Micronaut, Quarkus, Spring.

Introduction: Serverless computing platforms like AWS
Lambda have revolutionized cloud application
deployment by enabling automatic scaling and
operational cost-efficiency. However, a major
performance concern for serverless Java applications is
the cold start latency, the time required for initializing a
new function instance before processing its first request
[1]. Cold starts are particularly problematic for Java
workloads due to the substantial overhead of Java

https://doi.org/10.37547/tajet/Volume07Issue04-03
https://doi.org/10.37547/tajet/Volume07Issue04-03

The American Journal of Engineering and Technology 17 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Virtual Machine (JVM) initialization, class loading, and
Just-in-Time (JIT) compilation, often resulting in delays
several times longer compared to lighter runtimes such
as Node.js or Python [2].

The recent availability of ARM64 (AWS Graviton2)
architecture on AWS Lambda provides significant
performance and cost advantages compared to
traditional x86 processors, including improved
computational efficiency and reduced execution costs
[3]. Coupled with new AWS features like SnapStart,
which allows Lambda functions to rapidly resume from
pre-initialized JVM snapshots, Java’s historical
performance barriers are being reduced significantly.
Another critical optimization is the use of GraalVM
Native Images, which compile Java bytecode into
native machine code ahead-of-time, dramatically
reducing startup latency by eliminating JVM
initialization entirely [4].

Choosing the appropriate Java framework can further
influence cold start performance. Popular frameworks
like Spring Boot offer extensive features but rely
heavily on reflection and dynamic class loading,
resulting in longer startup times. In contrast, newer
frameworks such as Micronaut and Quarkus
emphasize compile-time optimizations and minimal
runtime reflection, significantly reducing initialization
overhead.

This study provides a comprehensive comparison of
cold and warm startup latencies for Spring Boot,
Micronaut, and Quarkus frameworks on AWS
Lambda’s ARM64 architecture taking into account
memory impact. Startups are examined using Java 21
across three execution environments: the standard
managed Java runtime without SnapStart, the
managed runtime with SnapStart enabled, and custom
runtime deployments using GraalVM native images.
Performance metrics were collected under controlled
load conditions using Artillery, capturing median (p50),
90th percentile (p90), 99th percentile (p99), and
maximum cold start latencies.

Through this investigation, trade-offs and practical
implications for developers selecting Java frameworks
and runtime strategies on AWS Lambda are intended
to be highlighted. Understanding these dynamics is
essential for optimizing serverless Java performance,
ensuring responsiveness, minimizing costs, and
effectively harnessing the benefits of ARM64
architecture in modern cloud-native applications.

MATERIALS AND METHODS

This study compared startup latency performance for

Java functions using three Java frameworks with latest
versions: Spring Boot (3.4.3), Micronaut (4.7.6), and
Quarkus (3.18.4). All functions were deployed on AWS
Lambda across three distinct runtime configurations:

● Managed Java Runtime (without SnapStart):
Functions were packaged as JAR files and deployed
directly to AWS Lambda’s standard Java managed
runtime (Amazon Corretto JDK).

● Managed Java Runtime (with SnapStart):
Functions deployed as JAR files using AWS Lambda
SnapStart, a feature enabling JVM state snapshotting
after initialization, significantly reducing cold start
latency.

● Custom Runtime (GraalVM Native Images): Java
functions compiled to native ARM64 executables using
GraalVM Native Image (version 23.1), deployed as
Lambda custom runtimes, eliminating JVM overhead
entirely.

The test functions implemented a lightweight API
endpoint retrieving a record from Amazon DynamoDB
by ID, simulating a common serverless use case
involving moderate I/O operations. The deployed
functions were load-tested using Artillery, an open-
source load-testing tool, which generated controlled,
sequential requests ensuring accurate cold and warm
start measurements.

Cold starts were consistently reproduced by deploying
new function versions or invoking each function after
sufficient idle time, ensuring the AWS Lambda
environment initialized new containers for each
measurement. For each test scenario, approximately
100 cold start invocations were executed to reliably
capture statistical distributions. Subsequent warm
invocation tests involved rapid sequential calls to
warmed Lambda containers, providing baseline
performance metrics without initialization overhead.

Testing was performed at three memory allocations:
512 MB, 1024 MB, and 2048 MB, assessing how CPU
resources allocated to each Lambda instance affected
startup performance. Detailed latency metrics were
extracted from AWS CloudWatch Logs and AWS
CloudWatch Insights, specifically capturing initialization
durations for cold starts and request latencies for warm
executions.

Data analysis involved statistical summarization of
captured startup latencies across memory sizes and
frameworks, clearly illustrating performance impacts of
runtime configurations, memory allocation, and Java
versions.

The American Journal of Engineering and Technology 18 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

RESULTS AND DISCUSSION

Table 1 summarizes the cold start latency metrics for
each framework under each runtime configuration at

1024 MB memory (using Java 21). This gives a
representative comparison in a mid-memory setting.
Cold start time is measured from invocation to the
function’s first response.

Table1. Cold start latency (ms) distribution for each framework and runtime at 1024 MB memory (ARM64, JDK

21)

Effectiveness of AWS Lambda SnapStart

When AWS Lambda’s SnapStart feature was enabled,
cold start latencies dramatically decreased across all
three frameworks:

● Spring Boot showed the most pronounced
improvement with SnapStart enabled, achieving
median latencies of approximately 1 second,
representing nearly a five-fold reduction compared to
non-SnapStart deployments. However, tail latencies
(p99 ≈ 1.23 seconds) suggest occasional delays in
snapshot restoration, albeit still much improved
compared to traditional JVM startups.

● Micronaut with SnapStart experienced median
cold-start reductions to around 870 ms, roughly 4.5
times faster than without SnapStart. However,
Micronaut exhibited slightly higher variability in
snapshot restoration times compared to Quarkus.

● Quarkus, already optimized for faster JVM
initialization, benefited notably from SnapStart,
reducing median cold starts further to approximately
530 ms. Interestingly, the difference between Quarkus
and other frameworks was reduced significantly due to
SnapStart, suggesting the framework’s inherent
runtime optimizations provide diminishing returns
once AWS-level optimizations like SnapStart are
applied.

SnapStart primarily reduced cold starts by caching the
JVM state after initialization. Snapshots restored faster
than conventional JVM bootstraps, though residual
overhead remained due to the snapshot restoration
process and minor initialization of dynamic states (e.g.,

database connections).

Cold Start Performance with GraalVM Native Images

GraalVM native compilation showed the most
impressive cold-start performance:

● Spring Boot Native significantly reduced its
latency to approximately 800 ms median, a substantial
improvement compared to JVM-based deployments.
While still higher than Quarkus native, Spring Boot
Native's performance demonstrates the significant
potential for native image compilation to resolve cold
start latency challenges for even traditionally
heavyweight frameworks.

● Micronaut Native further reduced median
latencies to around 750 ms, exhibiting minimal variance
(p99 ≈ 950 ms). This efficiency emphasizes Micronaut’s
alignment with AOT compilation and native image
methodologies.

● Quarkus Native displayed the lowest overall
cold start latency, achieving 500 ms median, with
exceptional consistency (p99 ≈ 750 ms). These findings
match prior research demonstrating Quarkus’s
significant advantage when combined with GraalVM
native images, providing near-instantaneous
initialization suitable for latency-sensitive applications
[5, 6].

Overall, native images produced a near-ideal
performance scenario by eliminating JVM initialization
entirely, substantially outperforming both standard
and SnapStart-enabled JVM runtimes.

Impact of Memory Allocation

Framework Runtime p50 (ms) p90 (ms) p99 (ms) Max (ms)

Spring Boot No SnapStart 4974 5249 5354 5698

Spring Boot SnapStart 978 1177 1231 1682

Spring Boot GraalVM 807 940 989 1156

Micronaut No SnapStart 4102 4747 4786 4913

Micronaut SnapStart 876 1012 1123 1450

Micronaut GraalVM 753 930 956 1294

Quarkus No SnapStart 2864 3163 3224 3551

Quarkus SnapStart 534 745 878 1027

Quarkus GraalVM 503 698 759 1365

The American Journal of Engineering and Technology 19 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Table 2 Impact of Memory Allocation on Cold Start Latency for p50 (ms).

Table 2 depicts that memory allocation significantly
impacted cold-start latency due to CPU provisioning
proportional to allocated memory [7]. Increasing
memory from 512MB to 2048MB showed a clear
pattern of diminishing returns with or without
SnapStart: approximately 20 to 30% when increasing to
1024MB (this threshold proved optimal for achieving
acceptable performance at startup) and 18 to 24%
when increasing further to 2048MB (while this was
beneficial, cost effectiveness dropped off sharply
beyond the 1024MB threshold).

GraalVM native images were notably less sensitive to
memory variations, consistently maintaining sub-
second latencies even at lower memory configurations
(512 MB). This independence from CPU resources
emphasizes native images as ideal candidates for
applications requiring predictable low latency
regardless of memory provisioning.

Warm Invocation Performance

Warm invocation performance, measured after initial
container initialization, showed minimal latency across
all frameworks and runtimes (median ~6–11 ms).
Framework overhead differences were negligible once
functions were warm. These results underline that
serverless Java’s primary challenge remains cold-start
latency; once functions are warm, Java frameworks
perform efficiently.

Discussion of Practical Implications

This comprehensive evaluation provides clear guidance
for optimizing Java application deployments on AWS
Lambda [8]:

● Framework Selection:

 Quarkus consistently demonstrated the fastest cold-
start performance, validating its suitability for latency-
sensitive serverless deployments. Micronaut offered an
intermediate balance of performance and simplicity,
while Spring Boot, although slower initially, became

competitive through SnapStart or native compilation.

● Runtime Environment Choice:

 AWS Lambda’s SnapStart provided an accessible,
highly effective strategy for significantly reducing Java
cold-start latencies (up to 5–10× improvement).

 GraalVM native images delivered superior startup
performance, consistently achieving sub-second cold-
start latencies. For latency-critical workloads, native
compilation offers the optimal solution, albeit with
increased build complexity and potential compatibility
constraints.

● Resource Allocation Recommendations:

 Allocating at least 1024 MB of memory consistently
mitigated severe Java cold-start penalties. Lower
allocations (e.g., 512 MB or less) risked unacceptable
latencies or initialization timeouts, particularly with
heavier frameworks. Organizations should evaluate
memory cost versus acceptable latency, noting
diminishing returns beyond 1024 MB.

Trade-offs and Recommendations

Given these findings, several practical
recommendations emerge:

● SnapStart is strongly recommended for Java
Lambda functions requiring balance between simplicity
and reduced startup latency. It particularly benefits
heavyweight frameworks like Spring Boot, reducing
cold-start delays sufficiently for most applications
without extensive refactoring.

● GraalVM Native Images represent the highest-
performing choice for latency-sensitive applications
demanding consistently low startup latencies.
Adoption of native images requires additional CI/CD
effort and careful handling of dynamic Java features
(e.g., reflection) [9]. Frameworks like Quarkus and
Micronaut facilitate native compilation, providing a
clear path to high performance.

Framework Runtime 512 MB 1024MB 2048 MB

Spring Boot No SnapStart 6482 4974 3887

Spring Boot SnapStart 1261 978 743

Spring Boot GraalVM 876 807 713

Micronaut No SnapStart 5006 4102 3251

Micronaut SnapStart 1046 876 702

Micronaut GraalVM 831 783 723

Quarkus No SnapStart 3609 2864 2238

Quarkus SnapStart 665 534 437

Quarkus GraalVM 565 503 469

The American Journal of Engineering and Technology 20 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

● Framework Choice can remain flexible. With
AWS optimizations (SnapStart, native compilation),
previously heavy frameworks like Spring Boot become
viable in serverless environments. Quarkus and
Micronaut naturally align with serverless performance
requirements, offering inherent advantages without
extensive additional optimization [10].

Other noticeable recommendations:

Deployment Package Size Minimization:

The size of the deployment package directly impacts
the cold start duration, particularly in scenarios
involving AWS Lambda's Just-In-Time class loading
model and I/O operations during cold initialization.
Approaches: Avoiding unused dependencies and large
transitive dependencies by manually managing the
build. Performing code shrinking, obfuscation.
Excluding test classes, logs, or documentation from the
build artifacts.

Layered Deployments with AWS Lambda Layers

AWS Lambda Layers offer a method for separating
common dependencies from the function's core
codebase, enabling reuse and optimized cold starts, f.e.
packaging shared dependencies (e.g., Apache
Commons, Jackson, HTTP clients) into a Layer. A
Lambda Layer is a ZIP archive that contains libraries,
custom runtimes, or other dependencies. When
configured, the Lambda execution environment
mounts these layers into /opt, and the application can
reference them via the classpath.

Provisioned Concurrency

Provisioned Concurrency is a native AWS Lambda
feature that pre-warms a specified number of
execution environments to eliminate cold start delays
for incoming requests. This approach is particularly
suitable for latency-sensitive or high-throughput Java
functions.

Finally, avoiding reflection-heavy frameworks or
choosing lightweight Dependency Injection (DI)
frameworks can significantly reduce JVM and
application boot time.

Limitations and Future Research

This study, while comprehensive, has limitations. The
performance tests represented relatively simple I/O-
bound functions (DynamoDB retrieval, without
invocation priming). Results might differ for CPU-
intensive or complex functions involving additional
libraries or frameworks. Additionally, SnapStart and
GraalVM limitations (e.g., dynamic feature restrictions)
require further examination to assess compatibility
with diverse workloads.

Future research should explore performance with more
complex Java functions, new Java versions, examining
JVM tuning for additional optimizations. Investigation
into broader compatibility implications of GraalVM
native images, as well as emerging AWS enhancements,
could further refine Java serverless deployment
strategies.

CONCLUSION

This study provided a detailed evaluation of startup
latency characteristics for serverless Java applications
deployed on AWS Lambda using the ARM64 (Graviton2)
architecture. Three popular Java frameworks (Spring
Boot, Micronaut, and Quarkus) were assessed across
distinct runtime configurations: standard managed Java
runtime (without SnapStart), managed runtime
enhanced by AWS Lambda SnapStart, and custom
runtime leveraging GraalVM native images. Systematic
experiments using Java 21 and varying memory
allocations (512 MB, 1024 MB, and 2048 MB) were
conducted using controlled load tests via Artillery.

The findings revealed significant variations in cold-start
performance among the frameworks under standard
JVM deployment conditions. Quarkus consistently
exhibited the lowest cold-start latencies, primarily
attributed to its extensive use of ahead-of-time
compilation and minimal reflection. Micronaut
demonstrated intermediate performance, whereas
Spring Boot experienced substantially higher latency,
reflecting its reliance on runtime reflection and
extensive dynamic configuration.

Introduction of AWS Lambda SnapStart markedly
improved cold-start latencies for all frameworks.
Particularly notable was the substantial reduction
observed for Spring Boot, whose median latency
decreased nearly fivefold, making it competitive with
the other frameworks. Micronaut and Quarkus also
benefited from SnapStart, though the relative
improvement was less pronounced given their already
optimized startup behavior. This indicates that
SnapStart can substantially level performance
differences, thus broadening framework selection
based on criteria beyond cold-start performance alone.

GraalVM native image deployments further enhanced
cold-start performance, virtually eliminating JVM
initialization overhead and consistently achieving sub-
second latency across all frameworks tested. Quarkus
native images demonstrated the most impressive
performance, reinforcing their suitability for ultra-
latency-sensitive serverless applications. Micronaut
and Spring Boot also showed significant latency

The American Journal of Engineering and Technology 21 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

improvements, highlighting the general applicability of
native compilation to address Java’s startup latency
challenges.

Memory allocation emerged as a crucial factor
influencing startup latency, with performance notably
improving when scaling memory from lower allocations
to around 1024 MB. Beyond this threshold, further
latency reductions were marginal, suggesting 1024 MB
as an optimal configuration for balancing cost and
performance.

In conclusion, the strategic application of AWS Lambda
SnapStart and GraalVM native images effectively
addresses Java’s inherent cold-start latency challenges
in serverless computing environments. The results
provide clear guidance on framework selection,
runtime optimizations, and resource allocation
strategies, establishing a foundation for further
research into performance optimization methodologies
and broader application compatibility in serverless Java
deployments.

REFERENCES

Dittakavi, R.S.S. (2023). Cold Start Latency in Serverless
Computing: Current Trends and Mitigation Techniques.
Eduzone Journal, 12(2), 134-145.
Golec, M., Walia, G. K., Kumar, M., Cuadrado, F., Gill, S.
S., & Uhlig, S. (2023). Cold Start Latency in Serverless
Computing: A Systematic Review, Taxonomy, and Future
Directions. Journal of the ACM, 37(4), Article 111.
Poccia, D. (2021). AWS Lambda Functions Powered by
AWS Graviton2 Processor.
https://aws.amazon.com/blogs/aws/aws-lambda-
functions-powered-by-aws-graviton2-processor-run-
your-functions-on-arm-and-get-up-to-34-better-price-
performance (Accessed 24 March 2025).
Kieselhorst, D, Schellhorn M. Serverless Architecture
Conference (2024). Serverless Functions with GraalVM
on AWS Lambda. https://serverless-
architecture.io/blog/serverless_functions_with_graalvm
_on_aws_lambda (Accessed 24 March 2025).
Hebbar, R., Chandran, M., and Sudevan, S. (2021).
Enhancing Performance of Cloud-based Software
Applications with GraalVM and Quarkus. Journal of Cloud
Computing Advances, Systems and Applications, 10(1),
pp. 1-15.
Minic, B. (2021). Improving Cold Start Times of Java AWS
Lambda Functions Using GraalVM.
https://shinesolutions.com/blog/aws-lambda-graalvm-
cold-start (Accessed 24 March 2025).
Smith, C. (2021). Optimizing Java Applications for
Serverless Deployments. International Journal of
Advanced Software Engineering, 25(3), pp. 155-170.

Pérez, D., Gómez, J., and Silva, M. (2023). Performance
Best Practices Using Java and AWS Lambda. International
Journal of Cloud Computing, 12(2), pp. 110-125.
Wang, S. (2021). Thin Serverless Functions with GraalVM
Native Image. Serverless Computing Advances, 5(2), pp.
99-110.

Rao, R. (2024). AWS Lambda Cold Starts Explained:
What They Are & How to Mitigate Them. Cloud
Builder's Journal.
https://www.ranthebuilder.cloud/post/is-aws-
lambda-cold-start-still-an-issue-in-2024 (Accessed 24
March 2025).

https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/

