
The American Journal of Engineering and Technology 82 https://www.theamericanjournals.com/index.php/tajet

 TYPE Original Research

PAGE NO. 82-90

DOI 10.37547/tajet/Volume07Issue02-11

OPEN ACCESS

SUBMITED 24 December 2024

ACCEPTED 26 January 2025

PUBLISHED 28 February 2025

VOLUME Vol.07 Issue02 2025

CITATION

Maksim Zemskov. (2025). Methodology for rapid error detection in web
applications. The American Journal of Engineering and Technology, 7(02),
82–90. https://doi.org/10.37547/tajet/Volume07Issue02-11

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Methodology for rapid

error detection in web

applications

Maksim Zemskov

Lead Software Engineer, Yandex, Serbia, Belgrade

Abstract: The article is aimed at researching and
describing effective approaches and methods for
quickly detecting and identifying errors in web
applications while operating in production
environments. This, in turn, is due to the fact that in
modern conditions, the speed of detection and
elimination of defects is important to ensure reliable
operation of web applications.

The relevance of this topic is driven by the increasing
transition of business processes to the online space. As
more companies and human activities become
dependent on software reliability, defects in
commercial software products can lead to significant
financial losses, reputational risks, and loss of user base.
The growing complexity of web applications and their
increasing role in critical business operations further
emphasizes the importance of robust error detection
methodologies. Therefore, timely detection and
elimination of errors has become a vital business
necessity.

The methodology described in this article represents a
promising approach to rapid error detection in web
applications, offering a systematic framework for
monitoring and managing software errors in real-time.
The methodology includes detailed recommendations
and practices for identifying errors efficiently, even in
software products handling high-volume error streams
with substantial user loads.

The article will be useful for software developers,
engineering managers, DevOps specialists, and
researchers in the field of analysis and diagnostics of
web applications. It provides a description of the
techniques and tools used to improve the efficiency of
working with web applications and improve their quality
and security.

https://doi.org/10.37547/tajet/Volume07Issue02-11
https://doi.org/10.37547/tajet/Volume07Issue02-11
https://doi.org/10.37547/tajet/Volume07Issue02-11
https://doi.org/10.37547/tajet/Volume07Issue02-11
https://doi.org/10.37547/tajet/Volume07Issue02-11

The American Journal of Engineering and Technology 83 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Keywords: Error monitoring, web applications,
software reliability, javascript, error classification,
error logging, error prioritization, real-time
monitoring.

Introduction: In recent years, the development of web
applications has become a key area of technology,
encompassing a wide range of industries. These
applications play a critical role in business, education,
healthcare, and other sectors by providing access to
services and information via the Internet. As software
complexity and functionality increase, the likelihood of
errors and defects also grows, negatively impacting
system reliability, user experience and security.

The relevance of the topic lies in the need to ensure
the reliable operation of web applications. Modern
applications are often complex, multi-component
systems interacting with various external services and
databases. In such conditions, errors may occur in
unexpected areas under specific operating scenarios.
These errors can manifest in various forms: from
syntax violations and runtime exceptions to logical
errors in program execution. Timely detection of such
defects is a critical task for developers and reliability
engineers.

A particular challenge lies in the fact that under real
operational conditions, especially under high load, web
applications often experience a significant volume of
errors that can reach thousands of errors per second.
The frequency and severity of these errors directly
depend on various factors, including the number of
active users, architectural features, and the degree of
integration with external systems.

The purpose of this article is to develop and analyze a
methodology for the effective detection and
prioritization of errors in web applications. The study
focuses on exploring various approaches and tools that
enable efficient and timely error identification, thereby
improving the reliability and security of applications.

METHODS

In the study by Zhong H., Wang X., Mei H. [1], the
author proposed a method that analyzes partial code
corrections to identify bugs. This approach accelerates
the error detection process without requiring a full
analysis of the source code.

A similar method to improve the efficiency of bug
detection was proposed in the work by Amankwah R.
et al. [2], where a rapid defect detection algorithm was
developed. It optimizes processing time and enhances
the accuracy of static analysis, which is critical for large
software systems. This algorithm identifies potential
vulnerabilities and reduces the time spent on code

review.

Kosińska J. et al. [3] describe approaches to
observability in cloud systems, emphasizing the
necessity of detailed monitoring and logging for timely
error detection. The study examines tools embedded
within cloud platform architectures, including
distributed request tracing and microservices metrics. In
a similar field, Sarika P. K. et al. [9] analyze the
automation of failure diagnostics in microservices
environments using Kubernetes cluster logs. The
authors demonstrate how machine learning methods
combined with log analysis enable failure cause
identification, accelerating troubleshooting.

Camilli M., Janes A., and Russo B. [10] propose a
methodology for training and validating performance
models of microservices architectures through
automated testing. This approach facilitates error
detection during development and allows for the
prediction of potential performance issues, reducing the
likelihood of failures in production.

Samal U. and Kumar A. [7] present a model for assessing
the reliability of software solutions, illustrating how
development stages and release characteristics
influence system resilience. Dhaka R., Pachauri B., and
Jain A. [8] propose a two-dimensional model
incorporating environmental variability and predictive
analytics. This method helps evaluate failure
probabilities, which is particularly relevant for web
applications with dynamic architectures.

Mukwevho M. A. and Celik T. [4] examine strategies for
enhancing fault tolerance in cloud environments. The
study describes mechanisms such as data replication,
dynamic load redistribution, and automated failure
recovery. Herath J. D., Yang P., and Yan G. [11] analyze
attack types targeting anomaly detection systems based
on deep learning algorithms. The article discusses how
adversaries bypass failure detection mechanisms,
posing a threat to the stability of web applications.

Cheung G. W. et al. [12] focus on verifying the reliability
and validity of models through structural equation
modeling. Yagemann C. et al. [5] introduce a method
utilizing symbolic state analysis to detect software
errors. This approach accurately identifies root causes,
which is critical for complex, multi-component systems.

Rathnayake R. M. D. S., Kumara B. T. G. S., and
Ekanayake E. B. [6] apply deep learning to analyze bug
reports and predict the severity of errors, enabling
developers to respond promptly and prioritize issues
effectively.

The reviewed studies present diverse approaches to
error detection and monitoring in web applications.
However, they provide limited coverage of integrating

The American Journal of Engineering and Technology 84 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

error classification systems with real-time monitoring
in high-load environments. Additionally, there is
insufficient analysis of how error detection
methodologies perform across different architectural
patterns, particularly in distributed systems and
microservices-based applications where error
propagation patterns can be complex.

RESULTS AND DISCUSSION

Errors in web applications extend far beyond simple
syntax violations. These applications frequently
encounter issues associated with user interactions,
asynchronous processes, network instability, security
vulnerabilities, and failures of infrastructure
components. Furthermore, errors are often contingent
upon the specific execution environments, which
include web browsers, operating systems, hardware
specifications, or system load conditions at the time of
occurrence. Such defects might remain undetected
within controlled testing environments but emerge as
significant problems under actual operational

scenarios or during periods of elevated load. This
situation imposes specific requirements on error
monitoring methodologies [1].

Within the field of software development, an error is
characterized as any deviation from the anticipated
behavior that prevents the program from performing its
intended function. Errors can manifest in various forms,
ranging from syntax violations and runtime exceptions
to logical errors within program execution.

To address these challenges, programming languages
offer a variety of mechanisms for error handling and
exception management. These mechanisms serve as the
fundamental framework for error management within
an application's codebase and simultaneously provide
the essential components for developing
comprehensive error monitoring strategies [7,8]. Figure
1 illustrates the error handling features provided by the
JavaScript and TypeScript programming languages.

Figure 1. JavaScript Error Handling Components (compiled by the author)

While these built-in mechanisms form a solid
foundation, they prove insufficient for effective error
monitoring in modern web applications. Within the
operational paradigm of real-world environments,

especially under conditions of high load, web
applications are often subjected to substantial error
volumes, which may reach the order of thousands per
second. The frequency and severity of these errors are

The American Journal of Engineering and Technology 85 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

directly influenced by various factors including, but not
limited to, the number of active users engaging with
the application, the specific architectural framework
employed, and the extent of integration with external
systems.

A high error rate is, to a certain degree, an anticipated
attribute of web applications due to external variables
beyond the application's control. These variables
encompass network reliability, the availability of
infrastructure service providers, and hardware
reliability issues. The distributed architecture of web
applications inherently exposes them to numerous
environmental influences capable of precipitating
errors [3,9].

The primary challenge associated with error
monitoring is not merely the detection of errors but
rather the effective management and prioritization of
these errors. Different types of errors have varying

implications for system functionality and user
experience. Attempting to investigate and respond to
each individual error becomes impractical and
sometimes impossible, especially when dealing with
thousands of errors per second. Such an approach
would consume excessive resources and potentially
overlook critical issues.

Therefore, a crucial aspect of effective error monitoring
is the identification and prioritization of errors that
denote significant system malfunctions necessitating
immediate intervention. This requires implementing
sophisticated error classification and analysis
methodologies that can distinguish between routine
errors and those that pose significant risks to application
functionality or user experience [12]. Figure 2 outlines
the components required for implementing a
comprehensive error monitoring strategy.

Figure 2. Components of Error Monitoring (compiled by the author)

A fundamental element of effective error monitoring
involves the categorization of errors into two principal
types: programmatic errors and operational errors.

Programmatic errors represent unexpected behavior
within the application code itself. These errors should

not occur under normal conditions and are typically
indicative of faults or oversights in the coding process,
necessitating immediate corrective measures. Examples
of such errors include improper passing of function
parameters or receiving unexpected data formats

The American Journal of Engineering and Technology 86 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

within application components.

In contrast, operational errors originate from external
factors affecting application functionality. These errors
occur regularly during normal operation and are often
related to infrastructure, network conditions, or user
system configurations. Typical instances of operational
errors encompass issues with network connectivity or
incompatibility with certain web browser versions.

The importance of this classification becomes
apparent when considering the practical aspects of

error monitoring in high-load web applications.
Operational errors generally constitute a persistent,
underlying stream of issues that correlates with the
level of application load. While these errors are
expected and normal within certain thresholds, without
proper separation and monitoring, they can obscure
more serious programmatic errors [2,5].

To illustrate this classification system, consider the
following JavaScript implementation:

// Programmatic Error Example

class ProgrammaticError extends Error {

 constructor(message) {

 super(message);

 this.name = 'ProgrammaticError';

 }

}

// Operational Error Example

class OperationalError extends Error {

 constructor(message) {

 super(message);

 this.name = 'OperationalError';

 }

}

// Error Handling Example

try {

 // Application logic

} catch (error) {

 if (error instanceof ProgrammaticError) {

 // Log and alert immediately

 console.error(error);

 } else if (error instanceof OperationalError) {

 // Log but alert with different strategy

 console.warn(error);

 }

}

This separation allows development teams and
reliability engineers to maintain different sensitivity
thresholds for different types of errors, ensuring that
significant issues are not overshadowed by the routine
operational failures. It provides a structured approach

to error monitoring that aligns with the operational
realities of modern web applications. Figure 3 illustrates
the error class structure suitable for a typical web
application.

The American Journal of Engineering and Technology 87 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Figure 3. Example Error Class Hierarchy (compiled by the author)

Another fundamental component of proficient error
monitoring is the provision of exhaustive error logging
coverage. Although error classification establishes a
resilient system for managing diverse error types, its

effectiveness is entirely dependent on whether errors
are actually being captured and logged within the

monitoring system.

An example of code where errors could be silently
caught and suppressed without proper logging:

try {

 // Application logic

} catch (error) {

 // Error is caught but not logged

 displayErrorToUser();

}

The American Journal of Engineering and Technology 88 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

In the current scenario, although the error is detected,
it does not yield any meaningful diagnostic information
to the monitoring system. A more effective approach
involves implementing centralized error logging
facilitated by a specialized logging component. This
approach ensures that errors are systematically

recorded in a central repository, enabling
comprehensive analysis and identification of underlying
issues [11].

An example of code where errors are correctly handled:

import { errorLogger } from '#error-logger';

try {

 // Application logic

} catch (error) {

 displayErrorToUser();

 // Option 1: Log error through centralized logger

 errorLogger.logError(error);

 // Option 2: re-throw to maintain error propagation

 throw error;

}

Building on the foundation of these logging practices,
the next crucial aspect of error monitoring involves the
systematic analysis of error stream data. Two primary
methodologies have proven particularly effective in
this domain: threshold-based alerts and trend-based
alerts [4,10].

Threshold-based alerts are activated when a
monitored metric exceeds a specified threshold value.

This mechanism is particularly valuable for monitoring
programmatic errors because it facilitates the
establishment of error budgets. These budgets play a
crucial role in maintaining precise control over critical
error metrics within the application, thereby ensuring
operational integrity and stability.

Figure 4. Threshold-Based Alert Mechanism (compiled by the author)

Trend-based alerts are activated when the value of a
specified metric exhibits significant alteration over a
temporal span, as compared to established historical
patterns. For instance, a weekly comparison interval
allows for the analysis of error quantities from the
current timeframe against that from the same interval
in the preceding week. This approach effectively
accounts for seasonal variabilities in error rates, which
may manifest differently across weekdays, weekends,

and various times of the day.

This method is particularly effective for monitoring
operational errors. By tailoring the sensitivity of
monitoring mechanisms to accommodate both seasonal
fluctuations and variations in application load, it
effectively mitigates the occurrence of both false
positives and false negatives.

The American Journal of Engineering and Technology 89 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Figure 5. Trend-Based Alert Mechanism (compiled by the author)

By implementing both threshold-based and trend-
based alerts, organizations can establish a
comprehensive monitoring system that addresses
various types of errors effectively [6]. Table 1 presents

a four-tier alert system that offers a balanced approach

to error detection, addressing both programmatic and
operational errors.

Table 1. Four-Tier Alert System [1,3,7,9]

Alert Example Use case

Threshold alert for new

programmatic errors.

Primary alert that enables quick

response to new errors appearing in the

system.

When a new deployment introduces a critical error,

threshold alerts quickly detect the issue, enabling

teams to roll back to a stable version and minimize

user impact.

Trend alert for known program

errors.

Detects sharp increases in known errors

that developers have analyzed but

haven't fixed yet. Signals when issues

become more critical and may need

urgent attention.

When an application has known minor defects and

a new deployment causes one defect's frequency to

spike, the trend-based monitoring system will detect

this increase even when threshold alerts don't

trigger. This allows the team to quickly roll back or

prioritize a fix.

User impact threshold alert.

Quickly identifies mass errors affecting

large numbers of users, even if all errors

were previously known.

When previously identified errors affect a

substantial portion of users, even without new errors

or frequency changes, the system triggers an

immediate alert due to the high user impact rate.

Operational errors trend alert.

Identifies changes in operational error

frequencies to detect mass issues

quickly.

Network-related errors typically have a baseline

level due to ISP issues. A significant spike in error

rates across multiple users often indicates

underlying problems with infrastructure or critical

services. This alert efficiently identifies these

abnormal patterns and enables quick emergency

response.

The American Journal of Engineering and Technology 90 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

The results demonstrate that effective error
monitoring in web applications requires a multi-
faceted approach combining sophisticated error
classification, comprehensive logging practices, and
intelligent alert mechanisms. This methodology
enables development teams to maintain high software
quality while efficiently managing resources through
prioritized error monitoring.

CONCLUSION

The analysis presented in this paper demonstrates the
critical importance of implementing advanced error
monitoring systems in modern web applications. While
programming languages provide basic error handling
mechanisms like try-catch blocks and error objects,
these standard tools are insufficient for effective error
monitoring in production environments. Through the
systematic classification of errors into programmatic
and operational categories, organizations can
effectively prioritize and manage the high rate of errors
that occur in high-load environments. This
classification serves as a foundation for developing
targeted response strategies.

The emphasis on exhaustive error logging and
centralized monitoring systems highlights the
importance of maintaining detailed error records, thus
facilitating in-depth analysis and continuous
improvement. By implementing proper error handling
practices and utilizing sophisticated monitoring tools
that go beyond standard language features,
organizations can significantly enhance their ability to
detect, analyze, and resolve issues within web

applications. This systematic approach not only
improves system reliability but also contributes to
better user experience and overall application stability
in production environments.

Furthermore, the proposed methodology, which
integrates both threshold-based and trend-based alert
mechanisms, establishes a comprehensive paradigm
for error detection and management. The
implementation of a four-tier alert system offers a
well-rounded approach to addressing disparate error
scenarios, ranging from critical programmatic errors
demanding immediate intervention to the gradual
progression of operational error patterns. This multi-
faceted approach ensures that development teams
can efficiently allocate resources while maintaining
high standards of software reliability.

REFERENCES

Zhong H., Wang H., Mei H. (2020). Defining error
signatures to detect real errors //IEEE Transactions on
Software Engineering. 48 (2), 571-584.

Amankwa R. et al. (2020). An algorithm for rapid error

detection to identify potential vulnerabilities in juliet
test cases //8th IEEE 2020 International Conference on
Smart City and Informatization (iSCI). pp. 89-94.

Kosińska J. et al. (2023). Toward the observability of
cloud-native applications: The overview of the state-of-
the-art //IEEE Access. 11, 73036-73052.

Mukwevho M. A., Celik T. (2018). Toward a smart cloud:
A review of fault-tolerance methods in cloud systems
//IEEE Transactions on Services Computing. 14 (2), 589-
605.

Jagemann S. et al. (2021). Automated error detection
using symbolic root cause analysis based on data
//Proceedings of the ACM SIGSAC 2021 Conference on
Computer and Communication Security, 320-336.

Ratnayake R. M. D. S., Kumara B. T. G. S., Ekanayake E.
B. (2021). Predicting the severity of error messages
based on CNN//2021 From Innovation to Result (FITI). 1,
1-6.

Samal U., Kumar A. (2024). A software reliability model
incorporating fault removal efficiency and it’s release
policy //Computational Statistics. 39 (6), 3137-3155.

Dhaka R., Pachauri B., Jain A. (2022). Two-dimensional
software reliability model with considering the
uncertainty in operating environment and predictive
analysis //Data Engineering for Smart Systems:
Proceedings of SSIC 2021. – Springer Singapore. 57-69.

Sarika P. K. et al. (2023). Automating Microservices Test
Failure Analysis using Kubernetes Cluster Logs
//Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering.
192-195.

Camilli M., Janes A., Russo B.(2022). Automated test-
based learning and verification of performance models
for microservices systems //Journal of Systems and
Software,187.1-10..

Herath J. D., Yang P., Yan G. (2021). Real-time evasion
attacks against deep learning-based anomaly detection
from distributed system logs //Proceedings of the
Eleventh ACM Conference on Data and Application
Security and Privacy. 29-40.

Cheung G. W. et al. (2024). Reporting reliability,
convergent and discriminant validity with structural
equation modeling: A review and best-practice
recommendations //Asia Pacific Journal of
Management. 41 (2),745-783.

