
The American Journal of Engineering and Technology 30 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 30-36

DOI 10.37547/tajet/Volume07Issue02-06

OPEN ACCESS

SUBMITED 16 December 2024

ACCEPTED 18 January 2025

PUBLISHED 20 February 2025

VOLUME Vol.07 Issue02 2025

CITATION

Diana Kutsa. (2025). Building a fully automated serverless deployment
pipeline with Aws lambda, terraform, and github actions. The American
Journal of Engineering and Technology, 7(02), 30–36.
https://doi.org/10.37547/tajet/Volume07Issue02-06

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Building a fully automated

serverless deployment

pipeline with Aws lambda,

terraform, and GITHUB

actions

Diana Kutsa

Bachelor of Management in Ternopil National Economic University,

Crystal Lake IL, USA

Abstract: The paper discusses the process of building a
fully automated pipeline for serverless deployment
using AWS Lambda, Terraform and GitHub Actions.
These technologies allow developers to create
infrastructure without server management, manage it
as code, and automate CI/CD processes. The article
discusses the basic principles of using AWS Lambda to
perform functions in a serverless architecture,
Terraform for declarative infrastructure management,
and GitHub Actions for automating the deployment
process. The configuration steps are described,
including creating and configuring IAM roles, connecting
via API Gateway, and monitoring using AWS
CloudWatch. The main focus is on the automatic
scalability and flexibility of such solutions, as well as
problems related to debugging and testing. The work
highlights the benefits of integrating these tools to
improve DevOps processes and accelerate application
development.

Keywords: AWS Lambda, Terraform, GitHub Actions,
serverless deployment, automation, CI/CD, DevOps,
scalability, infrastructure as code.

Introduction: Modern IT infrastructures are rapidly
evolving, and one of the key trends in this field is the
shift toward serverless technologies. Serverless
architectures allow developers to focus on writing code,
eliminating the need to manage physical or virtual
servers. This leads to significant reductions in
infrastructure costs, while increasing the flexibility and

https://doi.org/10.37547/tajet/Volume07Issue02-06
https://doi.org/10.37547/tajet/Volume07Issue02-06
https://doi.org/10.37547/tajet/Volume07Issue02-06
https://doi.org/10.37547/tajet/Volume07Issue02-06

The American Journal of Engineering and Technology 31 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

scalability of applications. A crucial aspect of using such
technologies is the ability to automate deployment
and application management processes, which is
particularly relevant given the ever-increasing
demands for speed and quality in development.

One of the most popular platforms for implementing
serverless solutions is AWS Lambda, which enables
code execution without the need to manage servers.
Combined with infrastructure-as-code tools like
Terraform and CI/CD automation tools such as GitHub
Actions, developers can build a fully automated
deployment pipeline. This allows for the automation of
not only resource creation and management but also
testing and deployment, thereby enhancing the
efficiency of DevOps processes.

The relevance of this topic is driven by the growing
need to automate application development and
deployment processes. The integration of AWS
Lambda, Terraform, and GitHub Actions represents a
powerful solution that minimizes manual operations,
eliminates risks associated with human error, and
accelerates the implementation of changes in

applications. These technologies open new possibilities
for building efficient, flexible, and scalable solutions that
can quickly adapt to market and technology changes.

The purpose of this work is to explore the possibilities of
building a fully automated pipeline for serverless
deployment using AWS Lambda, Terraform, and GitHub
Actions. The work aims to demonstrate the key stages
and processes involved in creating such a pipeline, as
well as to identify the advantages and potential
challenges in its implementation.

1. Principles of Serverless Deployment with AWS
Lambda

Serverless Framework is an efficient tool designed to
simplify the process of deploying and managing
applications in serverless architectures across various
cloud providers, such as Amazon Web Services (AWS).
To begin, AWS account credentials must be input into
the AWS CLI configuration, enabling its use in
conjunction with Serverless Framework for resource
deployment. The following command can be used to
create the configuration file:

cat <<EOF > ~/.aws/credentials

 [default]

 aws_access_key_id = <YOUR_ACCESS_KEY>

 aws_secret_access_key = <YOUR_SECRET_KEY>

EOF

Similarly, a configuration file for the region and output

format can be created:

cat <<EOF > ~/.aws/config

 [default]

 region = eu-west-1

 output = json

EOF

In turn, Serverless Framework requires the presence of
an IAM role to deploy resources on AWS. The following

command creates this role:

aws iam create-role --role-name serverlessLabs --assume-role-policy-document '{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": "lambda.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

The American Journal of Engineering and Technology 32 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

]

}'

Next, the AWSLambdaBasicExecutionRole policy must

be attached to the created role:

aws iam attach-role-policy --role-name serverlessLabs --policy-arn

arn:aws:iam::aws:policy/AWSLambda_FullAccess

To verify the successful creation of the role, the

following command can be used:

aws iam get-role --role-name serverlessLabs

The final project will represent a Python function
deployed in AWS Lambda, connected to API Gateway

and monitored via CloudWatch. The Serverless
Framework can be installed with the following
command:

npm install -g serverless

For convenience in organizing the project, a ̀ functions` folder can be created to store the function:

mkdir functions

touch functions/__init__.py

This code defines a simple function that returns an
HTTP response with a status code of 200 and a
message in the response body. To define the Serverless

configuration, the `serverless.yaml` file must be opened
and the key parameters for deploying the function
configured:

service: serverless-lab

provider:

 name: aws

 runtime: python3.7

 region: eu-west-1

 timeout: 10

 role: arn:aws:iam::155318317806:role/serverlessLabs

 memorySize: 512

functions:

 first_function:

 handler: handler.first_function

 events:

 - http:

 path: first

 method: get

This configuration defines the service, provider (AWS),
function, and the parameters for invoking it through
API Gateway. The API can be tested using a browser or

tools such as cURL or Postman [1]. For example:

The American Journal of Engineering and Technology 33 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

curl https://your_address.execute-api.region.amazonaws.com/dev/first

Serverless web applications offer several significant
advantages over traditional server architectures or
cloud infrastructure. Such systems provide automatic
scalability, flexibility, and the ability to rapidly develop

and release products. Table 1 presents the main
advantages and challenges of these web applications.

Table 1. Advantages and challenges of serverless web applications [2].

Aspect Description

Advantages of serverless web applications

Automatic

scalability

Serverless architectures automatically adapt to changes in load, including an

increase in users and requests. This allows handling high loads, where traditional

server solutions might become overloaded.

Flexibility in

deployment

The lack of infrastructure requirements allows developers to quickly deploy

applications and release updates. This accelerates innovation processes and enables

adaptation to changing project requirements.

Fast time to

market

Serverless technologies reduce the time for development and product release,

enabling the phased upload and update of individual functions without stopping the

entire application. This simplifies updates and bug fixes, ensuring continuous

operation.

Challenges of serverless web applications

Testing and

debugging

difficulties

Testing and debugging serverless applications are complicated due to the

distributed nature of the application and the lack of centralized control over

processes. This makes it harder to identify and fix errors, reducing transparency in

the system's internal operations.

Process

duration

limitations

Serverless providers charge based on function execution time, making long-running

operations less economically viable.

Performance

impact

Serverless applications can experience delays during the initial launch of functions.

Infrequent function usage may lead to increased loading times, although regular

activity keeps the code ready for quick execution.

Vendor lock-in

The use of serverless technologies increases dependency on a specific provider, as

each platform offers unique features and interaction methods. Switching providers

can be challenging.

Scaling

serverless

applications

The main difficulties arise from the unpredictability of requests, making real-time

auto-scaling configuration difficult. Additionally, serverless technologies limit

control over resources, leading to challenges in ensuring stable performance under

high loads.

Connection

limits

To manage scalability, solutions such as Max Instances, Cloud Tasks for managing

task execution speed, or Redis for rate-limiting requests are used.

The American Journal of Engineering and Technology 34 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Thus, serverless architectures offer high flexibility and
scalability but require careful attention to testing,
debugging, and performance management.

2. Infrastructure as Code Using Terraform

Terraform is an infrastructure management tool
developed by HashiCorp, based on the concept of
"infrastructure as code." It allows defining and
describing resources and infrastructure elements in
human-readable declarative configuration files, and
efficiently manages their lifecycle. Terraform offers
several advantages over manual infrastructure
administration:

- Terraform can manage resources across multiple
cloud platforms.

- The Terraform configuration language is intuitive and
simplifies the process of writing infrastructure code.

- Terraform’s state mechanism allows tracking changes
to infrastructure resources throughout all deployment
cycles.

- Configurations can be stored in version control
systems, making collaboration on infrastructure easier.

Terraform uses plugins, known as providers, to interact
with various cloud platforms and services through
APIs. Currently, over a thousand providers have been
developed by the community and HashiCorp for
platforms such as Amazon Web Services (AWS), Azure,
Google Cloud Platform (GCP), Kubernetes, and others.
These plugins enable management of a wide range of
resources, including compute power, networks, and
monitoring services. The Terraform registry contains
all available providers, and if a needed one is missing,

custom providers can be created.

Each Terraform provider defines individual resources,
such as virtual machines or networks, and these
resources can be combined into modules for reuse. All
resource management is handled through a unified
process and language. Terraform uses a declarative
approach to configuration: one describes the desired
state of the infrastructure, rather than the sequence of

steps to achieve that state, as in traditional
programming languages. Terraform providers
automatically compute dependencies between
resources, ensuring that their deployment or deletion
occurs in the correct sequence.

The infrastructure deployment process involves several
steps:

- Defining the infrastructure required for the project.

- Writing a configuration that describes this
infrastructure.

- Initializing, during which Terraform downloads the
necessary plugins.

- Planning changes with a preview of the modifications
that will be made to the infrastructure.

- Applying these changes to update the infrastructure
according to the configuration [3].

Terraform allows the same infrastructure to be
described in various ways. Consider the following
example, where an EC2 instance with an attached EBS
volume is described differently, but the result remains
the same:

resource "aws_instance" "example" {

 ami = "ami-2757f631"

 instance_type = "t2.micro"

}

resource "aws_ebs_volume" "example-volume" {

 availability_zone = "${aws_instance.example.availability_zone}"

 type = "gp2"

 size = 100

}

resource "aws_volume_attachment" "example-volume-attachment" {

 device_name = "/dev/xvdb"

 instance_id = "${aws_instance.example.id}"

 volume_id = "${aws_ebs_volume.example-volume.id}"

}

In this example, the EBS volume is presented as a separate resource, which allows for more flexible

The American Journal of Engineering and Technology 35 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

management of volumes, making it possible to add or
remove them without needing to modify the EC2
instance [4]. Below are the main advantages that make
Terraform a preferred choice:

- Syntax: Terraform’s HCL syntax is more readable and
concise compared to JSON in ARM templates, and it
includes functions for variable interpolation.

- Modules and structure: Terraform offers simple and
intuitive code modularization, making it easier to work
with compared to linked templates in ARM.

- Dependency management: Terraform automatically
recognizes dependencies between resources, ensuring
changes are applied in the correct sequence. In ARM,
these dependencies must be explicitly specified
manually.

- Change planning: One of Terraform’s key features is
the ability to preview changes during the planning
phase, providing transparency and helping to avoid
unexpected errors. ARM implements a similar feature
through the "what-if" command, but it is not an
essential part of the deployment process.

- Cross-platform compatibility: Terraform integrates
with most public clouds, including Kubernetes and
other platforms, making it a flexible tool for building
hybrid infrastructures.

However, Terraform also has some limitations:

- Delay in supporting new features: Although
Terraform for Azure is actively supported, new feature
support may appear with some delay. In cases where
new features are required, ARM templates can be used
through Terraform resources.

- Lack of integration with Azure Portal: Unlike ARM,
Terraform does not provide the ability to create
resources through the Azure portal and then download
templates.

- State management: Terraform requires managing the
state of controlled resources, which may introduce
additional security and high-availability requirements
for storage.

Terraform Enterprise (TFE) and its SaaS version,
Terraform Cloud, offer additional features compared
to the basic open-source product, such as remote
execution and state management. However, most of
these features can also be implemented without the
Enterprise version through integration with CI/CD
platforms [5].

This rethinking positions Terraform strongly in the
corporate environment, providing powerful tools for
infrastructure management and deployment.

3. CI/CD Automation with GitHub Actions

GitHub Actions is an advanced tool for automating

various stages of software development, such as
continuous integration (CI) and continuous deployment
(CD).

Continuous integration (CI) is a practice where all code
changes made to a shared repository are automatically
tested for errors using automated tests. This allows
developers to quickly identify and fix issues, improving
code quality and speeding up development.

Continuous deployment (CD) is a logical extension of CI,
where changes from the repository are automatically
deployed to production servers. This automation
significantly accelerates the delivery of new features
and bug fixes.

GitHub Actions plays a key role in automating these
processes, enabling the creation and management of
CI/CD pipelines directly within GitHub repositories. This
platform allows for the automation of tasks such as code
testing, building, compliance checks, and application
deployment.

The principles of CI/CD go beyond mere tools—it is a
development philosophy aimed at minimizing risks
when implementing changes in software. The more
frequently changes are integrated and deployed, the
easier it is to manage the process and maintain product
stability.

One of the key advantages of GitHub Actions is its
flexibility. This tool allows the configuration of
workflows with multiple steps, ranging from simple test
execution to complex multi-stage deployments.
Integration with GitHub also simplifies CI/CD process
management, making them more transparent and user-
friendly [6].

Thus, the implementation of GitHub Actions in projects
significantly optimizes development, making it more
predictable and efficient, which improves both the
quality and speed of development teams' work.

CONCLUSION

Building a fully automated pipeline for serverless
deployment using AWS Lambda, Terraform, and GitHub
Actions is an effective way to accelerate the
development and deployment of applications. The
integration of these tools significantly enhances the
flexibility and scalability of the architecture, allowing
developers to quickly adapt to changing requirements
and efficiently release updates. Despite some
challenges, such as debugging and testing distributed
functions, this approach greatly simplifies DevOps
processes and improves team productivity. Further
improvements could include optimizing the pipeline
architecture, utilizing additional tools for monitoring
and infrastructure management, and refining
automated testing processes.

The American Journal of Engineering and Technology 36 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

REFERENCES

Nestorov A. M. et al. Performance evaluation of data-
centric workloads in serverless environments //2021
IEEE 14th International Conference on Cloud
Computing (CLOUD). – IEEE, 2021. – pp. 491-496.

Choudhary B. et al. Case Study: use of AWS lambda for
building a serverless chat application //Proceeding of
International Conference on Computational Science
and Applications: ICCSA 2019. – Springer Singapore,
2020. – pp. 237-244.

Begoug M., Chouchen M., Ouni A. TerraMetrics: An
Open Source Tool for Infrastructure-as-Code (IaC)
Quality Metrics in Terraform //Proceedings of the 32nd
IEEE/ACM International Conference on Program
Comprehension. – 2024. – P. 450-454.

Pandya S., Guha Thakurta R. Hands-on infrastructure
as code with hashicorp terraform //Introduction to
Infrastructure as Code: A Brief Guide to the Future of
DevOps. – Berkeley, CA: Apress, 2022. – pp. 99-133.

Kumar M. et al. Infrastructure as code (IAC): insights on
various platforms // Sentiment Analysis and Deep
Learning: Proceedings of ICSADL 2022. – Singapore:
Springer Nature Singapore, 2023. – pp. 439-449.

Decan A. et al. On the use of github actions in software
development repositories //2022 IEEE International
Conference on Software Maintenance and Evolution
(ICSME). – IEEE, 2022. – pp. 235-245.

