THE USA JOURNALS
THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)
VOLUME 06 ISSUE12

PUBLISHED DATE: - 10-12-2024
DOI: - https://doi.org/10.37547 /tajet/Volume06Issue12-06

[RESEARCHARTICLE ~ OpenAccess|
USING ASYNCHRONOUS PROGRAMMING IN

PYTHON TO IMPROVE APPLICATION
PERFORMANCE

PAGE NO.: - 51-58

Kokalko Mykola
Senior Software Engineer at Uvik, Hollywood, FL, USA

Abstract

Asynchronous programming in Python is a powerful tool for improving application performance by effectively managing
multitasking. The main focus is on the use of the async and await keywords, as well as the asyncio, ThreadPoolExecutor
and ProcessPoolExecutor libraries, which play an important role in organizing multitasking processes. This is especially
true for applications related to /0 operations, such as web servers and APIs. The use of asynchronous programming
allows you to eliminate thread locks and optimize query processing, which makes applications more responsive and
scalable. The article provides specific examples of using the asynchronous approach in practice, including parallel task
execution and resource management. In addition, the study demonstrates that the introduction of asynchronous
technologies helps to reduce infrastructure costs, ensuring high throughput and stable operation even under high load
conditions. Asynchronous programming stands out for its flexibility and the ability to create high-performance systems
that are capable of handling a large number of simultaneous 1/0 operations.

Keywords Asynchronous programming, Python, asyncio, ThreadPoolExecutor, performance, parallelism, multitasking,
optimization.

INTRODUCTION

demand for high-performance applications
capable of handling large data volumes and
supporting interactions with
numerous users. Asynchronous programming is
one solution that enables developers not only to

speed up task execution but also to reduce server

Asynchronous programming is becoming one of
the key approaches to optimizing application)
performance in the modern era of technological simultaneous
advancement. With the increasing volume of data
and the growing number of users interacting with
systems in real-time, the need to process multiple

requests concurrently has emerged. Traditional resource costs by efficiently managing parallel

methods of sequential task execution are not
always capable of handling high loads, leading to
application slowdowns and reduced efficiency. In
this context, asynchronous technologies have
gained particular relevance as they allow for the
simultaneous execution of multiple operations
without blocking the program's main thread.

The relevance of this topicis driven by the growing

processes. This is especially crucial for developing
services, APIs, analytics systems,
applications operating in real-time.

web and

The purpose of this study is to explore methods
and tools for asynchronous programming in
Python, as well as to analyze their practical
application for enhancing application
performance.

https://www.theamericanjournals.com/index.php/tajet

51

https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue12-06

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)

VOLUME 06 ISSUE12

METHODS

In a broad sense, asynchronous programming in
Python executing requests without
blocking while their completion.
Asynchronous programming in Python can be
implemented using various methods, some of
which are particularly relevant for concurrency in
Python [1].

involves
awaiting

Hunt]. argues [2] that asynchronous programming
in Python provides an efficient model for handling
multiple tasks that can run concurrently without
blocking the main execution of the program.
Asynchronous tasks input-output
operations can be effectively implemented with
‘asyncio.sleep()". It is important to note that the
completion order of functions may vary depending
on how the asyncio event loop schedules tasks.
This behavior is crucial for task management
optimization, which is especially relevant when
working with asynchronous iterators.

involving

A comparison of asynchronous and multithreading
approaches highlights fundamental differences.
Asynchronous programming allows only one part
of the program to execute at any given moment.
For example, if function ‘fn1()" is temporarily
paused (e.g., waiting), it does not block the entire
program, allowing other functions, such as “fn2()’,
to operate during that time. Thus, the system
efficiently uses CPU resources, reallocating time to
other tasks. In multithreading, however, all
functions, such as ‘fn1()’, 'fn2()°, and "fn3()’, run
simultaneously and can execute in parallel without
waiting for each other’s completion [2].

Ganji M., Alimadadi S., and Tip F. emphasize [3]
that in Python, the keywords “async’ and “await’
play a critical role in asynchronous programming.

In Hielscher M. M.'s article [4], the development of
LABS—a modular, open-source Python solution—
is discussed. The software is designed for
automation and process scheduling in laboratory

settings, specifically for managing automated
synthesis via a web interface. The article explores
how the modular structure enables configuration
and management of processes, ensuring flexibility
and scalability.

In Potashov A. V.'s work [5], the specifics of using
Python for backend development of high-load web
applications are presented. The author highlights
the importance of selecting appropriate tools and
architectural solutions to optimize the handling of
large data volumes and ensure stability under high
loads. The focus is on the use of asynchronous
technologies and parallel computations.

In the work by Wilkes M. and Wilkes M.,
“Parallelization and Async” [9], the specifics of
parallel and asynchronous programming in real-
world applications are examined. The authors
emphasize the advantages of using parallelism to
improve program execution efficiency and provide
examples of solving complex computational tasks.

The practical application of FastAPI described in
[6] demonstrates Python's asynchronous
capabilities to ensure fast and efficient responses,
making it suitable for high-load applications. The
"Databases” project on GitHub [8] offers
asynchronous database support for Python, easily
integrating with frameworks like FastAPI and
AIOHTTP. This enables non-blocking database
operations, which is crucial for maintaining
responsiveness in asynchronous applications. The
development of real-time applications using
Python and WebSocket is discussed in an article on
the Habr platform [10], describing how
asynchronous programming paradigms are
essential for real-time data handling between
clients and servers, ensuring low latency in
communication.

The resource “Asynchronous Processing in System
Design” [11] provides an
asynchronous processing concepts in system
architecture. It highlights the benefits of task

overview of

https://www.theamericanjournals.com/index.php/tajet

52

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)

VOLUME 06 ISSUE12

decomposition and concurrent operation
processing to enhance system throughput. The
source [12] describes the use of asyncio.Queue for
inter-task asynchronous
applications, explaining how queues can

coordinate work between producer and consumer

communication in

coroutines to create efficient data processing
pipelines.

Collectively, the reviewed literature underscores
the significance of asynchronous programming in
modern Python development. The integration of
asynchronous frameworks and tools broadens the
possibilities for creating high-performance,
scalable, and responsive applications. Ongoing

research and practical implementations continue
to expand horizons and address the challenges
associated with asynchronous code execution.

RESULTS AND DISCUSSION

Asynchronous programming, due to its flexibility
and efficiency, has become one of the key tools for
creating high-load and scalable systems. When a
function is declared with the ‘async’ modifier, it
becomes a coroutine, capable of suspending and
resuming execution as needed. The
operator is used to call other coroutines and
manage parallel operations efficiently within an
application. Table 1 below reviews the application
of "async’ and “await’ operators.

‘await’

Table 1. Application of async and await operators [3]

Aspect async await
Used within a coroutine to call other

Function Type Marks a function as a coroutine. [coroutines.

Can suspend and resume the coroutine [Suspends the current coroutine,
Execution Control |during execution. allowing other tasks to run.

Essential for asynchronous Used to wait for the completion of
Purpose programming. asynchronous operations.

Allows the event loop to switch to

other tasks while waiting for Enables the event loop to handle other
Event Loop operations. tasks during waiting.
Parallelism Ensures efficient management of Provides seamless handling of
Management parallel processes. asynchronous operations.

Indicates that a function can be Used within a coroutine to control the
Code Usage asynchronous. flow of asynchronous code.
Coroutine Used to call other coroutines within a
Interaction Can define coroutines. coroutine.

Helps write readable asynchronous [Enhances code readability by
Code Readability |code. managing asynchronous tasks.

Simplifies code by abstracting low- [Improves code maintainability
Maintainability level concurrency constructs. through efficient handling of

https://www.theamericanjournals.com/index.php/tajet

53

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)
VOLUME 06 ISSUE12

asynchronous tasks.

The Asyncio library offers high functionality and between asynchronous functions and generators.

flexibility, which has led to its inclusion in Python's
standard library set. The programming language
also integrated the “async’ and “await" keywords,
which are used to explicitly denote asynchronous
code. These key constructs help to avoid confusion

The “async’ keyword is placed before a function
declaration with "def’, indicating the asynchronous
nature of the function. The “await’ keyword signals
that program execution is suspended until the
coroutine completes. An example using the “async’
and "await’ keywords is presented below:

import asyncio
import aiohttp

urls = ['http://www.google.com', 'http://www.yandex.ru', 'http://www.python.org']

async def call url(url):
print(f'Starting request to {url}")
response = await aiohttp.get(url)
data = await response.text()
print(f' {url}: data size {len(data)} bytes: {data}")
return data

futures = [call url(url) for url in urls]

loop = asyncio.get event loop()

loop.run_until_complete(asyncio.wait(futures))

In this code, the function marked as “async’ returns
a coroutine when called, which is executed
asynchronously. The asynchronous nature of this
method allows the program to await the
completion of each request without blocking the

main thread,
processing [4].

significantly speeding up data

The following Table 2 examines the potential of
asynchronous programming in Python to enhance
application performance.

Table 2. The use of asynchronous programming in Python to improve application performance

[5]

Aspect

Description

Asynchronous Tasks

(Coroutines) input/output waits.

Asynchronous programming uses coroutines that allow tasks to execute
concurrently without blocking the main thread, reducing delays during

https://www.theamericanjournals.com/index.php/tajet

54

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)

VOLUME 06 ISSUE12
IAsynchronous tasks operate within a single thread using an event loop,
which manages task execution while minimizing context switching and
Event Loop overhead.

Non-blocking

Asynchronous programming enables resource management, such as database
queries and network connections, without blocking other operations,

Input/Output (I/O) |enhancing performance in network applications.
IAsynchronous programs allow multiple tasks to run simultaneously,
Concurrency efficiently using CPU time while waiting on I/O operations.

Support for asyncio
Library

The built-in asyncio library provides convenient tools for managing
asynchronous tasks, such as coroutine creation and event management.

CPU Usage
Optimization

'While asynchronous programming does not increase the number of available
CPU cores, it allows for more efficient use of resources by avoiding idle
time.

Minimization of
Locks

IAsynchronous programming reduces the need for thread locks, decreasing
the likelihood of deadlocks and improving overall application stability and
performance.

High-performance

IAsynchronous programming is ideal for handling large numbers of network

Network Support or API requests, as it manages connections and data without blocking.
IAsynchronous applications are easier to scale, as they can efficiently handle

Scalability numerous concurrent connections and tasks.

One of the most popular applications of other requests, making the server significantly

asynchronous programming is the development of
high-performance web servers and APIs. Such
servers handle thousands or even millions of
requests per second, efficient
management of wait times for operations such as
network requests or database interactions.

requiring

An example is the FastAPI framework, based on
Python's asynchronous constructs, which has
become a popular choice for building high-load
REST APIs. By utilizing coroutines and an event
loop, FastAPI can handle multiple connections
simultaneously without blocking the main thread.
For instance, when sending an HTTP request to
retrieve data from a database, instead of waiting
for a response, the system continues processing

more responsive and efficient.

The practical benefit of using an asynchronous API
is that server resources (CPU, memory) are utilized
much more efficiently compared to traditional
thread-based servers like Flask or Django, which
require creating a new thread or process for each
request. This reduces infrastructure costs and
enables more users to be served on the same
hardware [6].

The asynchronous framework aiohttp is used for
building web clients and servers that support
multiple simultaneous connections. Its
architecture enables the creation of non-blocking
HTTP services, which are especially beneficial for

APIs handling incoming requests from other

https://www.theamericanjournals.com/index.php/tajet

55

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)

VOLUME 06 ISSUE12

systems. For example, microservices that work
with multiple external APIs can efficiently manage
requests without waiting for each to complete
individually.

Asynchronous servers based on aiohttp can handle
a large number of long-lived connections (e.g.,
WebSockets), which are used for real-time data
exchange [7].

Asynchronous libraries for working with external
systems, such as databases or other APIs, help to
minimize delays caused by processing requests. In
real-world applications where quick data retrieval
and processing are
approaches significantly

performance and throughput.

crucial,
improve

asynchronous
system

Databases often represent a bottleneck in
application performance. In the
approach, the application must wait for the
database query to complete, blocking the thread
and reducing the overall system performance.
Asynchronous drivers like asyncpg (for
PostgreSQL) and aiomysql (for MySQL) allow non-
blocking query execution.

traditional

For example, in analytics systems where rapid
processing of large data volumes is essential,
asynchronous drivers enable multiple database
queries to be executed in parallel without waiting
for the previous ones to finish. This is particularly
important for high-load applications, such as e-
platforms or analytics
systems, where minimizing wait time is critical for
the overall functionality of the application [8].

commerce business

Many modern applications integrate with various
external services, such as payment systems,
geolocation services, or other APIs. In such
scenarios, asynchronous requests allow multiple
requests to be sent and processed concurrently
without waiting for each one to complete. For
instance, the aiohttp framework enables multiple
HTTP requests to be sent in parallel, gathering

results as they complete without blocking program
execution.

The practical benefit of this approach is that
developers can build systems that efficiently
integrate with external APIs without degrading the
overall application performance. An example is a
hotel booking system where the application sends
requests to multiple external services to obtain
data on available rooms and prices. Asynchronous
programming minimizes wait times, enhancing the
user experience [9].

Real-time applications, such as online chat
systems, notifications, or games, actively use
asynchronous libraries to support persistent
connections with users. These applications need to
maintain numerous active connections with
minimal latency, making
approaches essential for building efficient systems.

asynchronous

Asynchronous libraries like websockets allow
developers to create that handle
WebSocket connections, supporting real-time,
bidirectional communication with clients. This is
particularly critical for applications requiring
instant data transmission, such as trading
platforms, online communication systems, or
monitoring applications.

servers

These approaches enable support for thousands of
connections without the need to create a separate
thread or process for each user. As a result, such
applications can scale significantly better while
maintaining minimal data transmission latency
[10].

These mechanisms are also applied in real-time
event-processing applications, such as monitoring
systems or signal processing from IoT devices. For
instance, in an industrial monitoring system
collecting data from sensors,
approaches enable the parallel processing of
numerous incoming messages and the execution of

appropriate actions (e.g.,

asynchronous

notifications about

https://www.theamericanjournals.com/index.php/tajet

56

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)

VOLUME 06 ISSUE12

equipment malfunctions) [11].

In the field of Big Data processing, asynchronous
methods are essential. In scenarios requiring the
parallel processing of large volumes of data from
external sources, asynchronous solutions can
significantly speed up task execution. For example,
when working with distributed file systems or data
streams, asynchronous libraries allow for parallel
request processing, minimizing idle time.

Asynchronous queue systems, such as
asyncio.Queue, are widely used in applications that
need to manage tasks coming from multiple
For in distributed data
processing systems, asynchronous queues are
used to transfer tasks between different system
components, ensuring efficient load distribution
among nodes. This increases throughput and
reduces wait times [12].

sources. example,

Thus, asynchronous methods are indispensable for
creating high-performance, scalable, and
responsive systems.

CONCLUSION

The examination of asynchronous programming
in Python has
significant advantages in the context of developing
high-performance and scalable applications. The
use of key constructs “async’ and ‘await’, along
with specialized libraries like asyncio, enables
effective multitasking and parallel operation
management, ensuring smooth task execution

methods demonstrated its

without blocking the main thread. This is
particularly important for systems that handle a
large volume of I/0 operations, where delays in

data processing can negatively impact
performance and user experience.
The practical application of asynchronous

programming has shown that this approach can
substantially improve application responsiveness
and optimize server resource utilization. Web
services, APIs, and real-time systems can handle

numerous concurrent requests while avoiding
issues associated with traditional multithreading.
Asynchronous technologies also help reduce
infrastructure load and ensure system scalability,
a critical factor for modern business applications
and services.

In conclusion, the adoption of asynchronous
programming in Python application development
significantly their efficiency
resilience to high loads. This approach opens up
extensive possibilities for creating complex and
functional systems that can quickly adapt to
changing operational conditions and meet user
demands.

REFERENCES

enhances and

1. signal — Set handlers for asynchronous events.
[Electronic resource]
https://docs.python.org/3/library/signal.htm
1 (accessed 12.10.2024).

Access mode:

2. Hunt]. Concurrency with AsynclO //Advanced
Guide to Python 3 Programming. - Cham :
Springer International Publishing, 2023. - pp.
493-503.

3. Ganja M., Alimadadi S., Tip F. Code coverage
criteria ~ for asynchronous programs
//Proceedings of the 31st ACM Joint European
Software Engineering Conference and
Symposium on the Foundations of Software
Engineering. - 2023. - pp. 1307-1319.

4. Hoelscher M. M. et al. LABS: Laboratory
Automation and Batch Scheduling-A Modular
Open Source Python Program for the Control of
Automated Electrochemical Synthesis with a
Web Interface //Chemistry-An Asian Journal.
-2023.-Vol. 18. - No. 14. - p. e202300380.

5. Potashov A.V. PYTHON for the server side of
highly loaded web applications //BBK 1 N 34.
-p.2767.

6. FastAPI Basics. [Electronic resource] Access

https://www.theamericanjournals.com/index.php/tajet

57

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN — 2689-0984)
VOLUME 06 ISSUE12

10.

mode: https://alex-
podrabinovich.medium.com/html-

%D0%BE%D1%81%D0%BD%D0%BE%D0%
B2%D1%8B-fastapi-da782612d3e5(accessed

12.10.2024).

Welcome to AIOHTTP. [Electronic resource]
Access mode:
https://docs.aiohttp.org/en/stable /(accessed
12.10.2024).

Databases. [Electronic resource] Access mode:
https://github.com/encode/databases
(accessed 12.10.2024).

Wilkes M., Wilkes M. Parallelization and async
//Advanced Python Development:
Powerful Language Features in Real-World
Applications. - 2020. - pp. 283-344.

Using

Development of real-time applications with
Python and WebSocket. [Electronic resource]
Access mode:

https://www.theamericanjournals.com/index.php/tajet

11

12.

13.

https://habr.com/ru/companies/otus/article
s/770256 /(accessed 12.10.2024).

. Asynchronous Processing in System Design.

[Electronic resource] Access mode: https://tr-
page .yandex.ru/translate?lang=en-
ru&url=https%3A%2F%2Fwww.geeksforgee
ks.org%2Fasynchronous-processing-in-
system-design%Z2F(accessed 12.10.2024).

Asyncio Queue in Python. [Electronic resource]
Access
https://superfastpython.com/asyncio-queue
/(accessed 12.10.2024).

Natti, M. (2023). Reducing PostgreSQL read
and write latencies through optimized
fillfactor and HOT percentages for high-update
applications. International Journal of Science
and Research Archive, 9(2), 1059-1062.
https://doi.org/10.30574 /ijsra.2023.9.2.0657

mode:

58

https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.30574/ijsra.2023.9.2.0657

