
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 51

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 10-12-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue12-06 PAGE NO.: - 51-58

USING ASYNCHRONOUS PROGRAMMING IN

PYTHON TO IMPROVE APPLICATION

PERFORMANCE

Kokalko Mykola
Senior Software Engineer at Uvik, Hollywood, FL, USA

INTRODUCTION

Asynchronous programming is becoming one of

the key approaches to optimizing application

performance in the modern era of technological

advancement. With the increasing volume of data

and the growing number of users interacting with

systems in real-time, the need to process multiple

requests concurrently has emerged. Traditional

methods of sequential task execution are not

always capable of handling high loads, leading to

application slowdowns and reduced efficiency. In

this context, asynchronous technologies have

gained particular relevance as they allow for the

simultaneous execution of multiple operations

without blocking the program's main thread.

The relevance of this topic is driven by the growing

demand for high-performance applications

capable of handling large data volumes and

supporting simultaneous interactions with

numerous users. Asynchronous programming is

one solution that enables developers not only to

speed up task execution but also to reduce server

resource costs by efficiently managing parallel

processes. This is especially crucial for developing

web services, APIs, analytics systems, and

applications operating in real-time.

The purpose of this study is to explore methods

and tools for asynchronous programming in

Python, as well as to analyze their practical

application for enhancing application

performance.

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue12-06
https://doi.org/10.37547/tajet/Volume06Issue12-06

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 52

https://www.theamericanjournals.com/index.php/tajet

METHODS

In a broad sense, asynchronous programming in

Python involves executing requests without

blocking while awaiting their completion.

Asynchronous programming in Python can be

implemented using various methods, some of

which are particularly relevant for concurrency in

Python [1].

Hunt J. argues [2] that asynchronous programming

in Python provides an efficient model for handling

multiple tasks that can run concurrently without

blocking the main execution of the program.

Asynchronous tasks involving input-output

operations can be effectively implemented with

`asyncio.sleep()`. It is important to note that the

completion order of functions may vary depending

on how the asyncio event loop schedules tasks.

This behavior is crucial for task management

optimization, which is especially relevant when

working with asynchronous iterators.

A comparison of asynchronous and multithreading

approaches highlights fundamental differences.

Asynchronous programming allows only one part

of the program to execute at any given moment.

For example, if function `fn1()` is temporarily

paused (e.g., waiting), it does not block the entire

program, allowing other functions, such as `fn2()`,

to operate during that time. Thus, the system

efficiently uses CPU resources, reallocating time to

other tasks. In multithreading, however, all

functions, such as `fn1()`, `fn2()`, and `fn3()`, run

simultaneously and can execute in parallel without

waiting for each other’s completion [2].

Ganji M., Alimadadi S., and Tip F. emphasize [3]

that in Python, the keywords `async` and `await`

play a critical role in asynchronous programming.

In Hielscher M. M.'s article [4], the development of

LABS—a modular, open-source Python solution—

is discussed. The software is designed for

automation and process scheduling in laboratory

settings, specifically for managing automated

synthesis via a web interface. The article explores

how the modular structure enables configuration

and management of processes, ensuring flexibility

and scalability.

In Potashov A. V.'s work [5], the specifics of using

Python for backend development of high-load web

applications are presented. The author highlights

the importance of selecting appropriate tools and

architectural solutions to optimize the handling of

large data volumes and ensure stability under high

loads. The focus is on the use of asynchronous

technologies and parallel computations.

In the work by Wilkes M. and Wilkes M.,

“Parallelization and Async” [9], the specifics of

parallel and asynchronous programming in real-

world applications are examined. The authors

emphasize the advantages of using parallelism to

improve program execution efficiency and provide

examples of solving complex computational tasks.

The practical application of FastAPI described in

[6] demonstrates Python's asynchronous

capabilities to ensure fast and efficient responses,

making it suitable for high-load applications. The

"Databases" project on GitHub [8] offers

asynchronous database support for Python, easily

integrating with frameworks like FastAPI and

AIOHTTP. This enables non-blocking database

operations, which is crucial for maintaining

responsiveness in asynchronous applications. The

development of real-time applications using

Python and WebSocket is discussed in an article on

the Habr platform [10], describing how

asynchronous programming paradigms are

essential for real-time data handling between

clients and servers, ensuring low latency in

communication.

The resource “Asynchronous Processing in System

Design” [11] provides an overview of

asynchronous processing concepts in system

architecture. It highlights the benefits of task

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 53

https://www.theamericanjournals.com/index.php/tajet

decomposition and concurrent operation

processing to enhance system throughput. The

source [12] describes the use of asyncio.Queue for

inter-task communication in asynchronous

applications, explaining how queues can

coordinate work between producer and consumer

coroutines to create efficient data processing

pipelines.

Collectively, the reviewed literature underscores

the significance of asynchronous programming in

modern Python development. The integration of

asynchronous frameworks and tools broadens the

possibilities for creating high-performance,

scalable, and responsive applications. Ongoing

research and practical implementations continue

to expand horizons and address the challenges

associated with asynchronous code execution.

RESULTS AND DISCUSSION

Asynchronous programming, due to its flexibility

and efficiency, has become one of the key tools for

creating high-load and scalable systems. When a

function is declared with the `async` modifier, it

becomes a coroutine, capable of suspending and

resuming execution as needed. The `await`

operator is used to call other coroutines and

manage parallel operations efficiently within an

application. Table 1 below reviews the application

of `async` and `await` operators.

Table 1. Application of async and await operators [3]

Aspect async await

Function Type Marks a function as a coroutine.

Used within a coroutine to call other

coroutines.

Execution Control

Can suspend and resume the coroutine

during execution.

Suspends the current coroutine,

allowing other tasks to run.

Purpose

Essential for asynchronous

programming.

Used to wait for the completion of

asynchronous operations.

Event Loop

Allows the event loop to switch to

other tasks while waiting for

operations.

Enables the event loop to handle other

tasks during waiting.

Parallelism

Management

Ensures efficient management of

parallel processes.

Provides seamless handling of

asynchronous operations.

Code Usage

Indicates that a function can be

asynchronous.

Used within a coroutine to control the

flow of asynchronous code.

Coroutine

Interaction Can define coroutines.

Used to call other coroutines within a

coroutine.

Code Readability

Helps write readable asynchronous

code.

Enhances code readability by

managing asynchronous tasks.

Maintainability

Simplifies code by abstracting low-

level concurrency constructs.

Improves code maintainability

through efficient handling of

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 54

https://www.theamericanjournals.com/index.php/tajet

asynchronous tasks.

The Asyncio library offers high functionality and

flexibility, which has led to its inclusion in Python's

standard library set. The programming language

also integrated the `async` and `await` keywords,

which are used to explicitly denote asynchronous

code. These key constructs help to avoid confusion

between asynchronous functions and generators.

The `async` keyword is placed before a function

declaration with ̀ def`, indicating the asynchronous

nature of the function. The `await` keyword signals

that program execution is suspended until the

coroutine completes. An example using the `async`

and `await` keywords is presented below:

import asyncio

import aiohttp

urls = ['http://www.google.com', 'http://www.yandex.ru', 'http://www.python.org']

async def call_url(url):

 print(f'Starting request to {url}')

 response = await aiohttp.get(url)

 data = await response.text()

 print(f'{url}: data size {len(data)} bytes: {data}')

 return data

futures = [call_url(url) for url in urls]

loop = asyncio.get_event_loop()

loop.run_until_complete(asyncio.wait(futures))

In this code, the function marked as ̀ async` returns

a coroutine when called, which is executed

asynchronously. The asynchronous nature of this

method allows the program to await the

completion of each request without blocking the

main thread, significantly speeding up data

processing [4].

The following Table 2 examines the potential of

asynchronous programming in Python to enhance

application performance.

Table 2. The use of asynchronous programming in Python to improve application performance

[5]

Aspect Description

Asynchronous Tasks

(Coroutines)

Asynchronous programming uses coroutines that allow tasks to execute

concurrently without blocking the main thread, reducing delays during

input/output waits.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 55

https://www.theamericanjournals.com/index.php/tajet

Event Loop

Asynchronous tasks operate within a single thread using an event loop,

which manages task execution while minimizing context switching and

overhead.

Non-blocking

Input/Output (I/O)

Asynchronous programming enables resource management, such as database

queries and network connections, without blocking other operations,

enhancing performance in network applications.

Concurrency

Asynchronous programs allow multiple tasks to run simultaneously,

efficiently using CPU time while waiting on I/O operations.

Support for asyncio

Library

The built-in asyncio library provides convenient tools for managing

asynchronous tasks, such as coroutine creation and event management.

CPU Usage

Optimization

While asynchronous programming does not increase the number of available

CPU cores, it allows for more efficient use of resources by avoiding idle

time.

Minimization of

Locks

Asynchronous programming reduces the need for thread locks, decreasing

the likelihood of deadlocks and improving overall application stability and

performance.

High-performance

Network Support

Asynchronous programming is ideal for handling large numbers of network

or API requests, as it manages connections and data without blocking.

Scalability

Asynchronous applications are easier to scale, as they can efficiently handle

numerous concurrent connections and tasks.

One of the most popular applications of

asynchronous programming is the development of

high-performance web servers and APIs. Such

servers handle thousands or even millions of

requests per second, requiring efficient

management of wait times for operations such as

network requests or database interactions.

An example is the FastAPI framework, based on

Python's asynchronous constructs, which has

become a popular choice for building high-load

REST APIs. By utilizing coroutines and an event

loop, FastAPI can handle multiple connections

simultaneously without blocking the main thread.

For instance, when sending an HTTP request to

retrieve data from a database, instead of waiting

for a response, the system continues processing

other requests, making the server significantly

more responsive and efficient.

The practical benefit of using an asynchronous API

is that server resources (CPU, memory) are utilized

much more efficiently compared to traditional

thread-based servers like Flask or Django, which

require creating a new thread or process for each

request. This reduces infrastructure costs and

enables more users to be served on the same

hardware [6].

The asynchronous framework aiohttp is used for

building web clients and servers that support

multiple simultaneous connections. Its

architecture enables the creation of non-blocking

HTTP services, which are especially beneficial for

APIs handling incoming requests from other

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 56

https://www.theamericanjournals.com/index.php/tajet

systems. For example, microservices that work

with multiple external APIs can efficiently manage

requests without waiting for each to complete

individually.

Asynchronous servers based on aiohttp can handle

a large number of long-lived connections (e.g.,

WebSockets), which are used for real-time data

exchange [7].

Asynchronous libraries for working with external

systems, such as databases or other APIs, help to

minimize delays caused by processing requests. In

real-world applications where quick data retrieval

and processing are crucial, asynchronous

approaches significantly improve system

performance and throughput.

Databases often represent a bottleneck in

application performance. In the traditional

approach, the application must wait for the

database query to complete, blocking the thread

and reducing the overall system performance.

Asynchronous drivers like asyncpg (for

PostgreSQL) and aiomysql (for MySQL) allow non-

blocking query execution.

For example, in analytics systems where rapid

processing of large data volumes is essential,

asynchronous drivers enable multiple database

queries to be executed in parallel without waiting

for the previous ones to finish. This is particularly

important for high-load applications, such as e-

commerce platforms or business analytics

systems, where minimizing wait time is critical for

the overall functionality of the application [8].

Many modern applications integrate with various

external services, such as payment systems,

geolocation services, or other APIs. In such

scenarios, asynchronous requests allow multiple

requests to be sent and processed concurrently

without waiting for each one to complete. For

instance, the aiohttp framework enables multiple

HTTP requests to be sent in parallel, gathering

results as they complete without blocking program

execution.

The practical benefit of this approach is that

developers can build systems that efficiently

integrate with external APIs without degrading the

overall application performance. An example is a

hotel booking system where the application sends

requests to multiple external services to obtain

data on available rooms and prices. Asynchronous

programming minimizes wait times, enhancing the

user experience [9].

Real-time applications, such as online chat

systems, notifications, or games, actively use

asynchronous libraries to support persistent

connections with users. These applications need to

maintain numerous active connections with

minimal latency, making asynchronous

approaches essential for building efficient systems.

Asynchronous libraries like websockets allow

developers to create servers that handle

WebSocket connections, supporting real-time,

bidirectional communication with clients. This is

particularly critical for applications requiring

instant data transmission, such as trading

platforms, online communication systems, or

monitoring applications.

These approaches enable support for thousands of

connections without the need to create a separate

thread or process for each user. As a result, such

applications can scale significantly better while

maintaining minimal data transmission latency

[10].

These mechanisms are also applied in real-time

event-processing applications, such as monitoring

systems or signal processing from IoT devices. For

instance, in an industrial monitoring system

collecting data from sensors, asynchronous

approaches enable the parallel processing of

numerous incoming messages and the execution of

appropriate actions (e.g., notifications about

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 57

https://www.theamericanjournals.com/index.php/tajet

equipment malfunctions) [11].

In the field of Big Data processing, asynchronous

methods are essential. In scenarios requiring the

parallel processing of large volumes of data from

external sources, asynchronous solutions can

significantly speed up task execution. For example,

when working with distributed file systems or data

streams, asynchronous libraries allow for parallel

request processing, minimizing idle time.

Asynchronous queue systems, such as

asyncio.Queue, are widely used in applications that

need to manage tasks coming from multiple

sources. For example, in distributed data

processing systems, asynchronous queues are

used to transfer tasks between different system

components, ensuring efficient load distribution

among nodes. This increases throughput and

reduces wait times [12].

Thus, asynchronous methods are indispensable for

creating high-performance, scalable, and

responsive systems.

CONCLUSION

The examination of asynchronous programming

methods in Python has demonstrated its

significant advantages in the context of developing

high-performance and scalable applications. The

use of key constructs `async` and `await`, along

with specialized libraries like asyncio, enables

effective multitasking and parallel operation

management, ensuring smooth task execution

without blocking the main thread. This is

particularly important for systems that handle a

large volume of I/O operations, where delays in

data processing can negatively impact

performance and user experience.

The practical application of asynchronous

programming has shown that this approach can

substantially improve application responsiveness

and optimize server resource utilization. Web

services, APIs, and real-time systems can handle

numerous concurrent requests while avoiding

issues associated with traditional multithreading.

Asynchronous technologies also help reduce

infrastructure load and ensure system scalability,

a critical factor for modern business applications

and services.

In conclusion, the adoption of asynchronous

programming in Python application development

significantly enhances their efficiency and

resilience to high loads. This approach opens up

extensive possibilities for creating complex and

functional systems that can quickly adapt to

changing operational conditions and meet user

demands.

REFERENCES

1. signal — Set handlers for asynchronous events.

[Electronic resource] Access mode:

https://docs.python.org/3/library/signal.htm

l (accessed 12.10.2024).

2. Hunt J. Concurrency with AsyncIO //Advanced

Guide to Python 3 Programming. - Cham :

Springer International Publishing, 2023. – pp.

493-503.

3. Ganja M., Alimadadi S., Tip F. Code coverage

criteria for asynchronous programs

//Proceedings of the 31st ACM Joint European

Software Engineering Conference and

Symposium on the Foundations of Software

Engineering. - 2023. – pp. 1307-1319.

4. Hoelscher M. M. et al. LABS: Laboratory

Automation and Batch Scheduling–A Modular

Open Source Python Program for the Control of

Automated Electrochemical Synthesis with a

Web Interface //Chemistry–An Asian Journal.

– 2023. – Vol. 18. – No. 14. – p. e202300380.

5. Potashov A.V. PYTHON for the server side of

highly loaded web applications //BBK 1 N 34.

– p. 2767.

6. FastAPI Basics. [Electronic resource] Access

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE12

 58

https://www.theamericanjournals.com/index.php/tajet

mode: https://alex-

podrabinovich.medium.com/html-

%D0%BE%D1%81%D0%BD%D0%BE%D0%

B2%D1%8B-fastapi-da782612d3e5(accessed

12.10.2024).

7. Welcome to AIOHTTP. [Electronic resource]

Access mode:

https://docs.aiohttp.org/en/stable /(accessed

12.10.2024).

8. Databases. [Electronic resource] Access mode:

https://github.com/encode/databases

(accessed 12.10.2024).

9. Wilkes M., Wilkes M. Parallelization and async

//Advanced Python Development: Using

Powerful Language Features in Real-World

Applications. – 2020. – pp. 283-344.

10. Development of real-time applications with

Python and WebSocket. [Electronic resource]

Access mode:

https://habr.com/ru/companies/otus/article

s/770256 /(accessed 12.10.2024).

11. Asynchronous Processing in System Design.

[Electronic resource] Access mode: https://tr-

page .yandex.ru/translate?lang=en-

ru&url=https%3A%2F%2Fwww.geeksforgee

ks.org%2Fasynchronous-processing-in-

system-design%2F(accessed 12.10.2024).

12. Asyncio Queue in Python. [Electronic resource]

Access mode:

https://superfastpython.com/asyncio-queue

/(accessed 12.10.2024).

https://www.theamericanjournals.com/index.php/tajet

