
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 33

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 06-10-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue10-05 PAGE NO.: - 33-41

MACHINE LEARNING ALGORITHMS FOR

ANOMALY DETECTION IN PUBLIC DATA

USING GITHUB AS AN EXAMPLE

Lyamkin Ilya
Senior Full Stack Engineer at Spotify, USA

INTRODUCTION

GitHub [2], one of the largest platforms for hosting

and collaborative development of software, has

become an integral part of the modern

technological landscape. Its role in evaluating

technology projects and startups is growing as

more investors and developers turn to platform

activity metrics to make decisions on funding and

collaboration [4]. However, with the increasing

popularity of GitHub, a significant issue has

arisen—manipulation of metrics such as stars,

commits, and forks, which calls into question the

reliability of these data as indicators of project

success and quality [3].

The relevance of studying methods for analyzing

public GitHub data is justified by the need to

improve the accuracy and reliability of technology

project evaluations. The falsification of metrics, for

example, fake stars, creates a false impression of a

project's popularity and significance, which can

mislead investors and users. As a result, identifying

anomalies in such data becomes a critical task for

ensuring transparency and fairness in the

technology community [3].

Machine learning (ML), as an advanced data

analysis technology, opens new possibilities for

detecting such anomalies. Machine learning

algorithms can process large amounts of data,

identifying hidden patterns and deviations from

the norm that are difficult to detect using

traditional analysis methods. Applying these

algorithms to GitHub data enables the automation

of detecting suspicious activities, such as sudden

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue10-05
https://doi.org/10.37547/tajet/Volume06Issue10-05

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 34

https://www.theamericanjournals.com/index.php/tajet

spikes in stars or unusual commit patterns,

contributing to a more accurate assessment of

projects.

The goal of this study is to develop a methodology

for detecting anomalies in GitHub data using

machine learning algorithms. The study will

explore the main approaches to analyzing such

data, conduct a comparative analysis of various

machine learning algorithms, and propose a

conceptual model of a system for automated

anomaly detection. This model can be applied to

projects focused on evaluating technology

startups, such as DualSpace AI, providing more

reliable and objective analysis results.

Thus, the research is aimed at addressing the

important task of improving the transparency and

reliability of GitHub data, which ultimately

contributes to better decision-making in software

development and investment.

1. Theoretical foundations and methodology

for detecting anomalies in GitHub data

GitHub [2], as a platform for hosting and

collaborative software development, provides a

wide range of public data that can serve as a basis

for analyzing and evaluating technology projects

[4]. These data include, but are not limited to, the

number of stars, forks, commits, pull requests, as

well as metadata about users, repositories, and

project-related events.

The data structure on GitHub is organized into

repositories, each representing a container for

code and associated artifacts. The main elements of

a repository include:

- Commits: These are fixed changes to the code that

are recorded in the change history. Commits

contain information about who made the changes,

when they were made, and a description of the

changes.

- Stars: This metric reflects the popularity and

interest in a repository. Users can "star"

repositories to show their support or interest.

- Forks: These are copies of a repository created for

further development or modification of the code.

Forks are an important indicator that a project is

attracting developers and has potential for further

development.

- Pull requests: These are proposals to make

changes to a repository, which can be accepted or

rejected by the project owners. Pull requests

reflect community activity and the involvement of

external developers.

Each of these elements can be analyzed to detect

anomalies that may indicate unnatural or

manipulative actions.

Anomalies in GitHub data can take various forms,

each representing a potential threat to the

accuracy of project analysis and evaluation. It is

important to classify these anomalies to develop

effective methods for detecting and mitigating

them.

The main types of anomalies include:

- Star anomalies: Sudden spikes in the number of

stars may indicate manipulation, where stars are

bought or generated by bots. These anomalies are

easily noticeable when analyzing time series data,

revealing unnatural patterns.

- Commit anomalies: Excessive activity in the form

of numerous minor or irrelevant commits over a

short period may indicate attempts to create the

illusion of active development.

- Fork anomalies: A sharp increase in the number

of forks, especially if these forks do not lead to

further activity, may signal manipulation aimed at

increasing a project’s visibility.

- Pull request anomalies: A large number of pull

requests from inactive or newly created accounts

may indicate artificial activity designed to boost

the project's popularity [4].

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 35

https://www.theamericanjournals.com/index.php/tajet

To address the task of detecting anomalies in

GitHub data, machine learning methods are

employed. One approach is to use unsupervised

learning algorithms, such as Isolation Forest [5]

and One-Class SVM [6]. These methods are

particularly useful when there are no pre-labeled

data, as they can detect outliers based on the

statistical characteristics of the dataset. Isolation

Forest, for instance, constructs multiple random

trees, which help to identify data points that are

easiest to isolate from the main cluster [5]. These

algorithms are well-suited for analyzing large and

complex data, such as GitHub activities.

However, deep learning algorithms also find

applications in detecting more complex anomalies.

Autoencoders and Generative Adversarial

Networks (GANs) are capable of identifying

complex, non-linear anomalies that are difficult to

detect with traditional methods [7]. Autoencoders,

for example, are trained to compress data into a

latent space and then reconstruct them, allowing

for the detection of anomalies based on the

difference between the original data and their

reconstructed versions [8]. This approach is

particularly effective for analyzing complex and

high-dimensional data typical of GitHub activity.

When selecting the optimal algorithm for anomaly

detection, several factors must be considered.

First, the characteristics of the data, such as

volume, temporal dynamics, and noise, play a key

role. For instance, for time-series data analysis,

such as star activity, algorithms capable of

accounting for temporal dependencies may be

preferred. Second, the objective of the analysis also

influences the choice of method: if the main goal is

to detect all possible anomalies, preference may be

given to algorithms with high sensitivity, even if

this leads to an increase in false positives. Third,

algorithm performance is crucial in cases where

computational resources are limited or when large

volumes of data need to be processed in real-time.

In this context, simpler and faster methods may be

more desirable.

To better understand how different algorithms can

be applied to GitHub data and which are most

effective in various scenarios, Table 1 is provided.

Table 1. Algorithms applied to GitHub data [5-8]

Algorithm Sensitivity Specificity Performance Interpretability

Isolation Forest High Medium High Medium

One-Class SVM Medium High Medium Low

Autoencoders High High Low Low

K-Means Medium Medium High Medium

This table allows for a visual assessment of which

algorithm may be most suitable for a specific

GitHub data analysis task, considering the

objectives and constraints.

Thus, the methodology for detecting anomalies in

GitHub data requires a comprehensive approach

that takes into account the characteristics of the

data, the goals of the analysis, and the

requirements of the algorithms. The correct choice

of machine learning methods not only automates

the anomaly detection process but also

significantly improves the accuracy and reliability

of the results, which is especially important in the

context of evaluating technology projects and

making investment decisions.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 36

https://www.theamericanjournals.com/index.php/tajet

2. Analysis of machine learning algorithms for

anomaly detection

The analysis of machine learning algorithms for

detecting anomalies in GitHub data requires a

thorough examination to provide practical

guidance on using advanced methods in real-world

data conditions. This section focuses on the

technical aspects and details of applying various

algorithms, emphasizing their adaptation to the

specific characteristics of GitHub data.

Unsupervised learning algorithms, such as

Isolation Forest and One-Class SVM, play a crucial

role in detecting anomalies in datasets where it is

difficult to predefine what constitutes normal or

deviant behavior. Isolation Forest is particularly

effective for handling high-dimensional data and

can be adapted to work with large datasets typical

of GitHub activities. The algorithm operates by

building trees that purposefully isolate data points,

assessing how easy or difficult it is to separate

them from the main cluster [5]. In the context of

GitHub data analysis, this means that the algorithm

can detect repositories or activities that

significantly deviate from typical behavior

patterns, such as sudden spikes in stars or

anomalous commit patterns.

One-Class SVM employs the principle of data

separation in multidimensional space,

constructing a hyperplane that distinguishes

normal data from anomalies. This method can be

especially useful in cases where anomalies

represent subtle deviations from the norm, which

are difficult to detect using simpler methods [6].

However, its effectiveness heavily depends on

kernel and regularization parameter selection,

requiring fine-tuning for each specific dataset. In

the context of GitHub data, this means that One-

Class SVM can be used to detect less obvious

manipulations, such as a systematic increase in

stars over a prolonged period.

Deep learning, with its ability to handle complex

and nonlinear dependencies, offers more powerful

tools for detecting anomalies in GitHub data.

Autoencoders are a type of neural network that

learns to reconstruct original data from its

compressed representation. During training, the

autoencoder forms a latent space where normal

data is reconstructed with minimal errors, while

anomalies cause significant discrepancies between

the original and reconstructed data [8]. For GitHub

data analysis, autoencoders can be useful for

detecting complex patterns that simpler

algorithms might miss. For instance, an

autoencoder can detect a repository that

artificially maintains high activity levels through

constant minor code changes.

Generative Adversarial Networks (GANs)

represent another deep learning method that can

be adapted for anomaly detection. In GANs, two

neural networks—the generator and the

discriminator—compete with each other: the

generator attempts to create synthetic data that

looks like the real data, while the discriminator

tries to distinguish the synthetic data from the real

[7]. In the context of anomaly detection, the

discriminator can be trained on real GitHub data to

detect artificially created activities, such as fake

stars or anomalous fork patterns. Despite their

power, GANs require significant computational

resources and can be challenging to configure and

interpret, limiting their use in real-world

applications.

To better understand algorithm behavior and

effectiveness in analyzing GitHub data, visualizing

the results of their operation is particularly useful.

For example, visualizing data distributions before

and after applying anomaly detection algorithms

can show how the algorithms isolate anomalous

data. Time series graphs that display activity in

GitHub repositories can also help identify

anomalies, such as sudden spikes in activity that

may be hidden in large volumes of data.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 37

https://www.theamericanjournals.com/index.php/tajet

For illustration, the following types of activity

distribution charts can be used to show normal and

anomalous patterns:

1. Star distribution over time: This chart can

display how the number of stars changes over

time. Anomalous spikes that are not supported by

corresponding activity in other metrics may

indicate manipulation.

2. Commit density chart: This chart shows how

frequently commits occur over a specific period.

An abnormally high commit density, especially

with minimal changes, may indicate artificially

generated activity.

3. Repository activity heatmap: A heatmap can

visualize activity by days and hours, revealing

anomalous patterns such as excessive activity

during non-working hours or uneven distribution

of activity.

These visualizations help to better understand

algorithm behavior and allow users to interpret

the results by providing clear evidence of

anomalies. Thus, the analysis of machine learning

algorithms for detecting anomalies in GitHub data

requires not only selecting and configuring

appropriate methods but also using visualization

to gain deeper insights into the data and their

interpretation.

3. Conceptual model of the anomaly detection

system for project evaluation

The conceptual model of the DualSpace anomaly

detection system for project evaluation, based on

GitHub data, represents a multi-layered

architecture that integrates various machine

learning algorithms for automated analysis and

interpretation of data. This model is designed to

ensure transparency and reliability in the

evaluation of technology projects, which is

particularly important for investors, developers,

and analysts who rely on GitHub data as an

indicator of project quality and popularity.

It is essential to emphasize that this system

accounts for the diversity and complexity of

GitHub data. Repositories on this platform contain

multiple types of data, including activity metrics

(such as the number of stars, forks, commits) and

metadata about users and events. These data

exhibit temporal dependencies and may be

distributed unevenly, which necessitates the use of

advanced processing and analysis methods.

At the first stage, data collection is performed

using the GitHub API. This process is automated,

allowing the system to regularly update

information about repositories, users, and events.

The data includes activity metrics, such as the

number of stars, forks, commits, and pull requests,

as well as metadata about users, their activities,

and event timestamps. These data arrive in an

unstructured form, and preprocessing them plays

a crucial role in ensuring the accuracy of

subsequent analysis.

import requests

Example of retrieving repository data using the GitHub API

url = "https://api.github.com/repos/username/repository"

response = requests.get(url)

data = response.json()

Extracting necessary metrics

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 38

https://www.theamericanjournals.com/index.php/tajet

stars = data['stargazers_count']

forks = data['forks_count']

commits_url = data['commits_url']

print(f"Stars: {stars}, Forks: {forks}")

This code illustrates a simple request to the GitHub

API to obtain basic information about a repository,

such as the number of stars and forks. In the real

system, the requests are more complex and involve

processing large volumes of data from numerous

repositories.

The next step involves data preprocessing, which

may include data cleaning, normalization, and

dimensionality reduction. These steps are

essential for preparing the data for more complex

analysis, such as anomaly detection. A key aspect

at this stage is the removal of noise, which can

distort the analysis results.

Once the data is prepared, it is passed to the

anomaly detector, where various machine learning

algorithms are applied. It is important for the

system to be flexible and support different analysis

methods depending on the nature of the data. For

example, to analyze time series of activity,

recurrent neural networks (RNNs) can be used, as

they account for temporal dependencies and can

detect anomalies that manifest in changes in

activity patterns.

from sklearn.ensemble import IsolationForest

Example of using Isolation Forest to detect anomalies

model = IsolationForest(n_estimators=100, contamination=0.01)

model.fit(training_data)

Predicting anomalies

anomalies = model.predict(test_data)

In this example, the code demonstrates the use of

the Isolation Forest algorithm to detect anomalies

in the data. This method is well-suited for working

with large datasets where anomalies may be rare

and difficult to detect using traditional methods

[9].

After detecting anomalies, the system moves to the

stage of result interpretation. It is important not

only to detect deviations but also to provide users

with context that helps them understand the

causes and consequences of these anomalies. This

may include data visualizations, such as activity

distribution graphs, time series charts, or

heatmaps, which visually show when and how the

anomalies occurred.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 39

https://www.theamericanjournals.com/index.php/tajet

import matplotlib.pyplot as plt

Example of creating an activity distribution chart

plt.plot(dates, star_counts)

plt.title("Star Distribution Over Time")

plt.xlabel("Date")

plt.ylabel("Number of Stars")

plt.show()

Figure 1 – Number of Stars in the Repository Over Time

This graph shows how the number of stars in a

repository changed over time and allows users to

visually assess possible anomalies, such as sudden

spikes in activity [10].

Finally, the system generates comprehensive

reports that include information on the detected

anomalies, analysis of their causes, and

recommendations for further actions. These

reports can be used to assess project reputation,

make investment decisions, or for internal analysis

by developers.

Thus, the proposed conceptual model represents a

comprehensive solution for the automated

analysis of GitHub data. It enables the detection

and interpretation of anomalies, which contributes

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 40

https://www.theamericanjournals.com/index.php/tajet

to improving the transparency and reliability of

technology project evaluation. Integrating systems

like DualSpace can significantly enhance decision-

making processes in the technology sector,

providing more accurate and informative data for

all stakeholders.

CONCLUSION

In conclusion, the conducted research has

demonstrated that using machine learning

algorithms to detect anomalies in GitHub data is

not only feasible but also an essential tool for

ensuring transparency and objectivity in

evaluating technology projects. GitHub, as a central

platform for hosting and collaborative software

development, provides a vast amount of data that

can serve as an indicator of project success and

popularity. However, manipulations of this data,

such as inflating stars or artificially generating

activity, can distort the real picture, misleading

investors, developers, and other stakeholders.

The methodology proposed in this article covers

the entire anomaly detection process, from data

preprocessing to interpreting results using

visualizations and generating reports. The use of

unsupervised learning algorithms, such as

Isolation Forest and One-Class SVM, as well as deep

learning methods like autoencoders and GANs,

ensures high accuracy in anomaly detection,

allowing both obvious and hidden manipulations

to be identified.

The developed conceptual model of the anomaly

detection system offers a flexible and scalable

solution that can be adapted to various conditions

and data types. It takes into account the specifics of

GitHub data, their temporal dependencies, and

uneven distribution, making it particularly

effective for analyzing large and complex datasets.

Integrating such a system into technology project

evaluation processes, as demonstrated by

DualSpace, can significantly improve decision-

making quality by providing more reliable and

accurate data. This, in turn, enhances transparency

in the technology market, strengthens trust

between investors and developers, and ultimately

promotes a fairer distribution of resources.

Thus, the presented research and proposed

methodology highlight the significance and

potential of applying machine learning in the

analysis of GitHub data, opening new

opportunities for the development of automated

systems for evaluating technology projects.

REFERENCES

1. Invest Boldly with the Power of Data. URL:

https://www.dualspace.ai/

2. Github. URL: https://github.com/

3. Aneja N., Aneja S. Detecting fake news with

machine learning //Conference Proceedings of

ICDLAIR2019. – Springer International

Publishing, 2021. – С. 53-64.

4. Dozmorov M. G. GitHub statistics as a measure

of the impact of open-source bioinformatics

software //Frontiers in bioengineering and

biotechnology. – 2018. – Т. 6. – С. 436207.

5. Liu F. T., Ting K. M., Zhou Z. H. Isolation forest

//2008 eighth ieee international conference

on data mining. – IEEE, 2008. – С. 413-422.

6. Binbusayyis A., Vaiyapuri T. Unsupervised

deep learning approach for network intrusion

detection combining convolutional

autoencoder and one-class SVM //Applied

Intelligence. – 2021. – Т. 51. – №. 10. – С. 7094-

7108.

7. Goodfellow I. et al. Generative adversarial nets

//Advances in neural information processing

systems. – 2014. – Т. 27.

8. Kingma D. P. Auto-encoding variational bayes

//arXiv preprint arXiv:1312.6114. – 2013.

9. Chen T., Guestrin C. Xgboost: A scalable tree

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 41

https://www.theamericanjournals.com/index.php/tajet

boosting system //Proceedings of the 22nd

acm sigkdd international conference on

knowledge discovery and data mining. – 2016.

– С. 785-794.

10. Loshchilov I., Hutter F. Sgdr: Stochastic

gradient descent with warm restarts //arXiv

preprint arXiv:1608.03983. – 2016.

https://www.theamericanjournals.com/index.php/tajet

