
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 17

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 02-10-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue10-03 PAGE NO.: - 17-22

METHODS FOR PREVENTING SQL INJECTION

IN IDENTITY AND ACCESS MANAGEMENT

(IAM) SYSTEMS

Asha Seshagiri
Software Development Engineer 3 at Expedia, Austin Texas, USA

INTRODUCTION

This topic remains highly relevant. Password and

payment information leaks from databases,

significant disruptions in the operation of web

applications—these are some of the consequences

of SQL injections. Even companies that prioritize

cybersecurity, as well as their partners and clients,

fall victim to attackers.

A vivid example is the attack on the IT company

Kaseya in July 2021. On July 2, 2021, several

managed service providers (MSPs) and their

clients fell victim to a ransomware attack carried

out by the REvil group, causing massive downtime

for more than 1000 companies. Cybercriminals

bypassed authentication, uploaded a payload to

the VSA server, and used SQL injection to deploy

malicious updates. As a result, more than 36,000

service providers could not access Kaseya's

flagship VSA service for at least four days. The

downtime led to significant losses [1].

In June 2023, over 200 organizations faced data

breaches due to security flaws discovered about

six weeks earlier in a popular file transfer program.

This attack was triggered by an SQL injection

vulnerability in the MOVEit file transfer program

from Progress Software. Attackers gained access to

files and credentials. Among the victims were

schools in the USA, universities worldwide, and

companies such as BBC, Boots, and British

Airways. In total, 17-20 million people were

affected by the breaches [2].

Therefore, the aim of this work is to examine

methods for preventing SQL injections in identity

and access management (IAM) systems.

1. General Characteristics of SQL Injections

SQL injection (SQLi) is one of the critical

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue10-03

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 18

https://www.theamericanjournals.com/index.php/tajet

vulnerabilities in web security, allowing attackers

to interfere with queries that a web application

sends to its database. This interference provides

attackers with unauthorized access to data that is

usually protected. Attackers can gain access to

other users' information or other data accessible to

the application. In some cases, the attacker can

modify or delete data, causing long-term changes

in the content or behavior of the application.

SQL injection vulnerabilities can be identified

manually through systematic testing of each entry

point into the application. Some common methods

include:

- Introducing a single quote (') to identify errors or

other anomalies.

- Using SQL-specific syntax to assess the

underlying value of the entry point and identify

differences in the application's responses.

- Applying logical conditions, such as OR 1=1 and

OR 1=2, to detect differences in the application's

responses.

- Using payloads designed to trigger time delays

during the execution of an SQL query, which helps

identify differences in response times.

- Employing out-of-band network interactions

(OAST) intended to trigger interactions within the

SQL query and track any resulting activities.

Additionally, most SQL injection vulnerabilities

can be quickly and effectively detected using

automated tools such as Burp Scanner [3]. The

main consequences of an attack are reflected in

Table 1.

Table 1. Consequences of Cyberattacks Caused by SQL Injection

Vulnerabilities

Name Description

Confidentiality

Since SQL databases often contain sensitive information, maintaining this

confidentiality is one of the main concerns related to SQL injection

vulnerabilities.

Authentication

If username and password checks are based on unreliable SQL commands, an

attacker can gain access to the system under someone else's account without

knowing the actual password.

Authorization

If authorization rights information is stored in the SQL database, successful

exploitation of an SQL injection vulnerability can allow an attacker to alter this

information.

Integrity

Just as confidential data can be accessed, it can also be altered or even deleted

through an SQL injection attack.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 19

https://www.theamericanjournals.com/index.php/tajet

Figure 1 further summarizes the types of SQL injections.

Fig.1. Types of SQL Injections [5]

From Figure 1, the following types of SQL

injections are identified:

1. Error-Based SQL Injections: Error-based SQL

injections allow attackers to extract information

about the database structure through error

messages generated by the database server. In

certain situations, using this method alone, an

attacker can gain access to the entire database

structure.

2. Union-Based SQL Injections: Union-based SQL

injections use the SQL UNION operator to combine

the results of multiple SELECT queries into a single

data set, which is then returned in the HTTP

response.

3. Blind Boolean-Based SQL Injections: Boolean-

based SQL injection works by sending an SQL

query that forces the application to return

different responses based on whether the query

returns TRUE or FALSE.

4. Blind Time-Based SQL Injections: Time-based

SQL injection works by sending a query that causes

the database to wait a specified amount of time

before responding. The response time allows the

attacker to determine if the result is TRUE or

FALSE. Depending on the result, the HTTP

response will either be delayed or returned

immediately. Even if no data is returned, the

attacker can determine the truth of the query.

However, this attack is slow, especially in large

databases, as the attacker iterates through

characters one by one [5].

2. General Characteristics of IAM

Identity and Access Management (IAM) is a crucial

discipline in cybersecurity aimed at ensuring

proper management of user access to digital

resources. IAM systems are designed to prevent

unauthorized access and ensure that each user is

granted only the permissions necessary to perform

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 20

https://www.theamericanjournals.com/index.php/tajet

their duties.

The goal of IAM is to prevent hacker activities by

allowing authorized users to perform their tasks

securely and efficiently. IAM systems typically

include four key components: identity lifecycle

management, access control, authentication and

authorization, and identity governance.

IAM initiatives contribute to cybersecurity,

business process optimization, and regulatory

compliance. IAM systems help centralize access

management in the context of digital

transformation, supporting secure access for

various types of users to diverse resources. They

simplify IT management and network

administration, ensure compliance with regulatory

requirements, and enhance data security by

protecting against credential-based attacks [6,7].

Table 2 lists the main advantages of using IAM.

Table 2. Advantages of Using IAM

Advantage Description

Unified Access

to All Resources

Single Sign-On (SSO) simplifies the authentication process by allowing users to

access multiple resources using a single set of credentials. This significantly

reduces the number of required passwords and simplifies account management.

Centralized

Management

IAM systems ensure precise assignment of privileges, allowing the granting of

appropriate access rights to the right users. This enhances both efficiency and

security.

Enhanced

Security

Through centralized access control and strengthened authentication measures,

IAM systems significantly increase the overall security level of the enterprise,

preventing unauthorized access.

Next, we will consider the main methods for

preventing SQL injection attacks:

1. Input Data Filtering: Input filtering is a

fundamental method for protecting against SQL

injections. It involves detecting and removing

malicious code from user-inputted data. Malicious

users can use complex URLs and special characters

to execute commands and gain unauthorized

access to the database.

2. Database Code Restriction: In addition to input

filtering, it is necessary to restrict the code

available to the database. This helps prevent the

execution of undesirable queries and exploration

of the database. It is important to reduce

functionality, use stored procedures, and apply

prepared statements and parameterization.

3. Database Access Restriction: To minimize the

damage from potential attacks, database access

should be restricted. This includes using firewalls

to filter data, limiting user access rights, and

encrypting data. Access restrictions should be

implemented based on the principle of least

privilege, which means using the minimum

necessary access rights to perform tasks.

4. Updating Applications and Databases: Regularly

updating software and databases is a key aspect of

protecting against SQL injections. Vulnerabilities

in applications and databases are regularly

discovered and published. Organizations need to

keep track of vulnerability news and promptly

install updates and patches.

5. Monitoring Input Data and Data Exchange:

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 21

https://www.theamericanjournals.com/index.php/tajet

Continuous monitoring of SQL operators and

database activity allows for effective detection and

prevention of attacks. Using machine learning and

behavioral analysis within privileged access

management (PAM) systems and security

information and event management (SIEM)

systems significantly enhances protection [9].

3. Implementation of Procedures

One of the most effective methods for preventing

SQL injection attacks is the implementation of

stored procedures. The use of stored procedures

not only improves application performance but

also significantly reduces the risk of SQL injection

attacks. This approach allows developers to clearly

define acceptable SQL operators for execution,

ensuring that the application does not execute

arbitrary SQL code.

The main reason stored procedures prevent SQL

injections is the clear separation of data and code.

Instead of directly passing SQL operators to the

database, stored procedures require developers to

pass only the necessary data as parameters. These

parameters are then processed within the stored

procedure using predefined SQL operators,

eliminating the possibility of injecting malicious

code.

The process of implementing stored procedures

can be divided into three main stages:

1. Creating the Stored Procedure: Developing an

SQL script that defines the logic and parameters of

the function. This script should adhere to the best

practices of SQL programming to avoid potential

security threats.

2. Granting Permissions: Properly managing access

by providing the necessary permissions to execute

the stored procedure. This ensures that only

specific users or roles can execute the procedure,

reducing the risk of malicious exploitation.

3. Calling the Stored Procedure: Updating the

application code to call the stored procedure using

appropriate parameters. It is important to ensure

that these values are sanitized and validated

before being passed to the stored procedure [10].

CONCLUSION

In conclusion, preventing SQL injections in identity

and access management (IAM) systems is critically

important for ensuring cybersecurity. The

discussed methods, such as input data filtering, the

use of stored procedures, prepared statements,

and parameterization, are effective means of

protection against SQL injections. Limiting

database access and regularly updating software

further strengthen system protection. These

measures ensure reliable authentication and

authorization, protect sensitive information, and

maintain data integrity. Implementing a

comprehensive database security approach

significantly reduces risks and protects IAM

systems from attacker exploits.

REFERENCES

1. The attack of the Kaseya VSA ransomware.

[Electronic resource] Access mode:

https://en.wikipedia.org/wiki/Kaseya_VSA_ra

nsomware_attack (accessed 06/20/2024).

2. Natti, M. (2023). Reducing PostgreSQL read

and write latencies through optimized fill

factor and HOT percentages for high-update

applications. International Journal of Science

and Research Archive, 9(2), 1059–1062.

https://doi.org/10.30574/ijsra.2023.9.2.0657

3. More than 200 organizations have become

victims of violations related to information

technology MOVE. [Electronic resource]

Access mode:

https://www.axios.com/2023/07/07/moveit

-hack-200-target-millions-victims (accessed

06/20/2024).

4. Types of SQL Injection (SQLi). [Electronic

https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.30574/ijsra.2023.9.2.0657

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE10

 22

https://www.theamericanjournals.com/index.php/tajet

resource] Access mode:

https://www.geeksforgeeks.org/types-of-sql-

injection-sqli/ (access date 06/20/2024).

5. What is identity and access management

(IAM). [Electronic resource] Access mode:

https://www.ibm.com/topics/identity-

access-management (access date

06/20/2024).

6. What IAM is and what it does. [Electronic

resource] Access mode:

https://www.microsoft.com/en-

us/security/business/security-101/what-is-

identity-access-management-iam (access date

06/20/2024).

7. Top Identity and Access Management Systems

| IAM | Open Source | Enterprise. [Electronic

resource] Access mode:

https://medium.com/@devops.ent/top-

identity-and-access-management-systems-

iam-open-source-enterprise-92cf66560a55

(access date 06/20/2024).

8. How to Prevent SQL Injection: 5 Key

Prevention Methods. [Electronic resource]

Access mode:

https://www.esecurityplanet.com/threats/ho

w-to-prevent-sql-injection-attacks/

9. How to Prevent SQL Injection Attacks:

Essential Tips and Best Practices. [Electronic

resource] Access mode: https://www.sql-

easy.com/learn/how-to-prevent-sql-injection-

attacks/ (access date 06/20/2024).

10. Natti, M. (2023). Migrating from Oracle to

PostgreSQL: Leveraging Open-Source to

Reduce Database Costs and Enhance

Flexibility. The Eastasouth Journal of

Information System and Computer Science,

1(02), 109–112.

https://doi.org/10.58812/esiscs.v1i02.433

https://www.theamericanjournals.com/index.php/tajet

