
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 56

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 14-09-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue09-08 PAGE NO.: - 56-66

STUDY OF ARCHITECTURAL FEATURES AND

PRACTICAL APPLICATION OF OBJECT-

ORIENTED STATE-MANAGER REFLEXIO IN

THE CONTEXT OF MODERN WEB

DEVELOPMENT

Konstantin Astapov
Rambler&Co - Frontend Development Team Lead for Public Mail, Moscow
Russia

INTRODUCTION

In the era of rapid web technology advancements,

state management in scalable applications has

become an increasingly complex task. Modern web

applications are characterized by high

interactivity, complex business logic, and the need

to process large volumes of data in real-time [2]. In

this context, traditional approaches to state

management often prove insufficient, leading to a

range of challenges in the development and

maintenance of applications.

One of the key issues is the difficulty in separating

business logic from the user interface, which

complicates the scalability of applications and

increases the risk of errors. Additionally, existing

solutions frequently result in excessive user

interface updates, which negatively impacts

application performance.

Another significant problem is the high coupling

between different domains of the application,

which complicates the development and testing

processes and hinders the implementation of new

functionalities. These challenges are particularly

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue09-08
https://doi.org/10.37547/tajet/Volume06Issue09-08

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 57

https://www.theamericanjournals.com/index.php/tajet

acute in the context of large-scale enterprise

applications, where high flexibility and scalability

are required.

In response to these challenges, there is a growing

need for new approaches to state management

that consider the specifics of modern web

applications and offer effective solutions to

existing problems. It is in this context that Reflexio

was developed—an innovative state manager built

on the foundation of Redux but offering a range of

unique concepts and solutions [3].

The purpose of this article is to provide a detailed

examination of the architecture and key concepts

of Reflexio, analyze its advantages compared to

existing solutions, and discuss the potential areas

of application for this tool in modern web

development. The article will explore how Reflexio

addresses the main issues of state management in

scalable web applications and what new

opportunities it opens up for developers.

The study will analyze the theoretical foundations

and concepts of Reflexio, thoroughly examine its

architecture and implementation features, conduct

a comparative analysis with existing solutions, and

consider the practical aspects of applying Reflexio

in real-world projects.

Theoretical Foundations, Concept, and

Architecture of Reflexio

Reflexio represents an innovative approach to

state management in scalable web applications [1].

This business-flow-oriented state manager is built

on the foundation of Redux but offers a range of

unique solutions to the challenges faced by

developers of large enterprise systems.

One of the features of Reflexio is its independence

from the user interface infrastructure, making it a

versatile tool for various frameworks and libraries.

This is particularly important in large-scale

enterprise client applications, where modular and

multi-layered separation plays a critical role.

Reflexio is designed to address three primary

challenges in modern web development:

1. Separation of the business layer from the UI

layer in the application.

2. Minimization of redundant UI re-renders caused

by unnecessary intermediate state updates during

the execution of business scenarios.

3. Reduction of high coupling between different

application domains, which complicates

development and code readability as the

application scales.

Conceptually, Reflexio rethinks the approach to

code organization in reactive applications. In

typical reactive applications with a state manager,

the architecture is built around events (actions)

and handlers that modify the state. However, in

large applications, this approach becomes

inefficient due to the complexity of managing

interactions between different events and their

handlers.

Reflexio addresses this issue by introducing the

concept of "Bytes." A Byte in Reflexio is a higher-

order entity that groups related events and their

handlers. This allows for more efficient code

organization and management of complex

interactions within the application.

Consider an example: a button press might initiate

an asynchronous process that concludes with a

specific action. In Reflexio, these logically related

actions are grouped into a single Byte, significantly

simplifying the development and maintenance of

the code. Another example is form actions that are

only available after a window is opened. Grouping

such dependent actions into a Byte allows for more

effective management of application functionality.

It is important to note that Reflexio implements

event grouping using object-oriented

programming (OOP) principles. Handlers in

Reflexio are described as classes responsible for

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 58

https://www.theamericanjournals.com/index.php/tajet

handling a group of events. This enables the use of

OOP benefits, such as encapsulation, inheritance,

and polymorphism, when working with

application state.

Moreover, a Byte in Reflexio is not just a group of

events but a complex structure that allows for the

declarative description of an events handler in the

form of a class called script. Its design also includes

reducers for manipulating applications' state and

configurations that define the script's instantiation

strategy and affect the scope of events. Each Byte is

assigned a unique name that defines the

namespace for the group of events. Within this

namespace, each action also receives a unique

name, creating a two-tiered action naming system.

Reflexio's architecture extends the concept of

Redux by adding an additional layer of abstraction.

In Redux, any event first passes through

middleware, where it can be pre-processed before

reaching the reducer, which modifies the state.

Reflexio develops this idea further: Bytes group

several related reducers and middleware into

specialized units that handle business logic and

manage application state. In addition to

middleware and reducers, Reflexio introduces a

special event post-processing stage, called After

Effects, which is integrated into these units. The

reducers are represented as objects with action

names as keys, and the middleware is organized as

an object—an instance of a script class.

Thus, Reflexio offers a powerful and flexible toolkit

for state management in scalable web applications.

Its architecture, based on the concept of Bytes and

OOP principles, enables the creation of more

structured, scalable, and easily maintainable

applications, especially in the context of complex

enterprise systems [1].

Implementation Features

Reflexio, as an innovative state manager, possesses

a number of unique implementation features that

distinguish it from other state management

solutions for scalable web applications [1]. Let's

explore the key aspects of its implementation in

more detail.

1. Use of OOP Principles:

Reflexio applies object-oriented programming

(OOP) principles, but with significant differences

from traditional approaches. The main distinction

is that classes in Reflexio do not serve as reactive

states of the application. Instead, they are

exclusively responsible for logic related to

handling actions and managing internal state.

The internal state of Bytes in Reflexio is

encapsulated and inaccessible from outside of its

corresponding scripts. This ensures a high degree

of isolation and prevents unwanted side effects. On

the other hand, the application state (reactive

state) is implemented as a separate object that can

be read from and written to by any script class

through a special context provided by the

dependency injection (DI) mechanism.

This approach allows for a clear separation

between business logic and state management,

which is crucial for creating scalable and

maintainable applications. Furthermore, the set of

tools for working with the event flow is available in

scripts as a single object, also provided via DI. Here

DI also provides additional flexibility when

extending and overriding the basic Reflexio API.

Another important distinction is that classes in

Reflexio are embedded within a separate business

layer. In the application’s code, instances of these

classes are not implicitly created, nor is there

direct access to their properties and methods.

Instead, scripts intercept events, and state changes

are made by dispatching events handled by

reducers. This ensures a strictly unidirectional

flow of work with scripts, which greatly simplifies

debugging and understanding the business logic of

the application.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 59

https://www.theamericanjournals.com/index.php/tajet

2. Use of Dependency Injection:

In the Reflexio API, the use of the Dependency

Injection (DI) pattern is a fundamental rule. This

not only makes business units independent of the

direct implementation of side effects and auxiliary

functions but also addresses a broader issue: the

separation of the business logic layer into two

distinct internal levels—the contract (or

configuration) level and the implementation level.

The implementation level consists of script classes,

where each class corresponds to a specific Byte.

The contract and configuration level includes the

declaration of the Bytes themselves (with

configurations as arguments and reducers), as well

as the declaration of slices and their initial state. In

Reflexio, a Slice represents a portion of the

application state. Its definition includes the initial

state and a set of Bytes related to a specific state

domain. This separation makes the application

architecture significantly more structured and,

therefore, more readable and predictable for

development planning.

3. Feature Flags Out of the Box:

Another advantage of using OOP to describe

business logic in Bytes is the ability to store

intermediate data not related to the store’s state in

the internal state of the class. This allows script

instances to dynamically enable and disable

features as needed, supporting a feature-flag

architecture without the need for additional tools

or libraries.

4. Event-Driven Reactivity:

In the Reflexio concept, state does not have to be

immutable. Notifications to store subscribers and

the execution of afterEffects in scripts always

occur in response to specific actions (with specific

names) or to the name of a Byte (the group of

actions corresponding to that Byte). It doesn’t

matter whether the state changes as a result or

how it changes.

This approach, called "event-type driven" as

opposed to "state-change driven," leads to an

interesting consequence. So-called computed

states can use segments of actual state linked

together by a chain of actions to sequentially react

to changes in each other’s states. This provides

more transparent tracking and debugging of

computed state changes.

5. Event Bus:

The key entities in Reflexio—Slice and Byte—are

created and stored at the business level, separately

from UI components. Interaction with these

entities from components occurs exclusively

through event dispatch via the Event Bus.

Including certain Bytes and Slices in the general

bus at the level of the configurable application root

automatically expands the set of available actions

(the business API of the application) for any part of

the application code without needing to import

new objects from other files.

6. Multi-Stage Event Processing:

Action (event) processing in Reflexio occurs in

three sequential stages:

1) Before state changes (in watch and init)

2) During state changes (in reducers)

3) After state changes (in afterEffects)

This approach provides greater flexibility in

managing state processing and allows events to be

classified into two types: those that affect state

(and therefore subscribers and afterEffects) and

those that do not affect state (used exclusively as

messages between modules within the business

layer).

7. Extensibility:

Reflexio allows for the extension and overriding of

the base API using the benefits of OOP—DI and

inheritance. Tools necessary within a class for

working with actions and state are not imported

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 60

https://www.theamericanjournals.com/index.php/tajet

directly from the library but are implicitly injected

into the class through its constructor.

The base API can be replaced (while retaining its

signature) or extended by altering the Byte

configuration without affecting the business logic

code. This makes it easy to create various plugins

for specific state management tasks, as well as

specialized templates for building Bytes.

Additional plugins in Reflexio provide only Bytes—

the fundamental objects of the concept, which are

included in the general action bus. This means that

plugins do not create new APIs or objects that

require importing and storing but simply add their

action sets to the trigger, allowing interaction with

the new functionality from any point in the

application.

Thus, the implementation features of Reflexio

provide high flexibility, scalability, and

maintainability for applications, offering

developers a powerful toolkit for creating complex

web applications with clear and understandable

architecture.

Comparative Analysis with Existing Solutions

Currently, there are numerous solutions available,

each with its own advantages and limitations.

Reflexio offers a unique set of features that

warrant consideration in comparison with other

popular solutions.

Redux, as one of the most widely used state

management tools, provides a predictable state

container for JavaScript applications [4]. However,

unlike Reflexio, Redux does not offer built-in

mechanisms for grouping related actions and

handlers. This can lead to a "bloated" store and

increased complexity of the codebase as the

application grows. Reflexio addresses this issue

through the concept of "Bytes," which encapsulate

related logic and state.

MobX, another popular tool, uses reactive

programming for state management. While MobX

provides a more "magical" approach to reactivity,

which can simplify the code, it may make it difficult

to track state changes in large applications.

Reflexio, with its explicit definition of actions and

handlers, offers a more structured and predictable

data flow, which is particularly important in large-

scale enterprise applications [5].

Recoil, developed by Facebook, offers an atomic

approach to state management. While this solution

is well-suited for managing local component states,

it may be less efficient when dealing with complex

global application logic. Reflexio, with its Byte

concept and ability to group related actions,

provides more powerful tools for managing

complex business processes [6].

An important aspect of comparison is the support

for asynchronous operations. While Redux

requires additional middleware (such as redux-

thunk or redux-saga) to handle asynchronous

actions effectively, Reflexio provides built-in

mechanisms for handling asynchronous data flows

through its scripts and event processing system.

From a performance perspective, Reflexio offers a

unique approach to optimizing re-renders. By

allowing actions that do not trigger state updates

(through setting null in reducers), Reflexio enables

finer control over when and which parts of the user

interface should update. This can lead to significant

performance improvements in complex

applications compared to more traditional

approaches.

Reflexio's approach to modularity and

extensibility is also noteworthy. While many

existing solutions require additional libraries or

complex patterns to achieve modularity, Reflexio

provides this "out of the box" through its system of

Bytes and plugins based on byte-templates. This is

especially valuable in the context of micro-

frontends and large enterprise applications, where

modularity and code reuse are critically important.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 61

https://www.theamericanjournals.com/index.php/tajet

However, it is important to note that Reflexio,

being a more specialized solution, may have a

steeper learning curve compared to simpler

solutions. Its power and flexibility come with the

need to understand a range of concepts, such as

Bytes, scripts, and multi-stage event processing.

This may require additional time for developers to

master, especially those accustomed to more

traditional state management approaches.

Additionally, the Reflexio ecosystem, being newer

compared to ecosystems like Redux or MobX, may

be less developed in terms of available third-party

tools, libraries, and learning resources. However,

this drawback is offset by Reflexio’s built-in

extensibility and its ability to adapt to various use

cases without the need for external dependencies.

In the context of typing, Reflexio offers deeper

integration with type systems, particularly

TypeScript, compared to some other solutions.

This provides better support for static code

analysis and can significantly reduce runtime

errors.

Thus, the comparative analysis shows that Reflexio

offers a unique set of capabilities, particularly well-

suited for complex, scalable web applications. Its

advantages in modularity, performance, and

management of complex business processes make

it an attractive choice for large enterprise projects.

However, like any tool, Reflexio requires careful

consideration of the specific project requirements

and the team’s readiness to adopt a new approach

to state management.

Practical Application

Reflexio, as a powerful and flexible state manager,

finds broad application in the development of

scalable web applications. Let's take a closer look

at the practical aspects of using Reflexio through

the example of implementing modal window

functionality [1].

Creating a Byte:

A key element of Reflexio’s practical application is

the creation of Bytes. Consider the example of

creating a Byte for managing a modal window:

In this example, the `floatWindowBite` Byte is created, responsible for the functionality of the

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 62

https://www.theamericanjournals.com/index.php/tajet

modal window. The Byte includes a set of actions

(`init`, `setState`, `openWindow`, `closeWindow`,

`submit`, `done`) and a script configuration.

Reducers and Actions: Notice the `case-reducers`

object in the first parameter of the `Bite` function.

For some keys (`init`, `openWindow`,

`closeWindow`, `submit`, `done`), the value is set to

`null`. This is an important feature of the Reflexio

API design: such actions do not trigger state

updates and do not notify store subscribers.

This design choice has several important

consequences:

- Prevention of Excessive UI Re-renders: Actions

with `null` reducers do not trigger UI updates,

which enhances application performance.

- Safe Description of Business Logic: Developers

can freely describe complex business logic in terms

of actions without worrying about unnecessary

side effects.

- Improved Reactive Connections: This approach

facilitates building reactive connections between

different Bytes, which is critical for creating

complex, interconnected business processes.

Script Configuration: The second parameter of the

`Bite` function contains the script configuration.

Let’s examine its key elements:

- ̀ watchScope: ['floatWindow']`: Defines the events

this Byte will "listen" to. In this case, the Byte

responds to all events related to `floatWindow`.

- `script: FloatWindowScript`: Specifies the script

class that will handle the Byte's logic.

- `instance: 'stable'`: Determines the instance

creation strategy for the script. `'stable'` means

that a single, persistent instance will be created.

- `initOn: 'init'`: Indicates the action that triggers

the creation of the script instance.

In the `case-reducers` object, some keys have a

value of `null`. According to the design of the

library's API, this indicates that actions with these

statuses do not trigger state updates or notify store

subscribers. This approach prevents unnecessary

UI rendering, allowing for the safe description of

business logic in terms of actions without side

effects. It also simplifies the creation of reactive

connections between units of business logic

(Bytes).

This method ensures the efficiency and

responsiveness of the user interface even as the

application’s complexity increases. Using actions

to manage state transitions without triggering

excessive updates allows for clear and predictable

flows between different parts of the application.

Figure 1 - Reactive connection between bites

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 63

https://www.theamericanjournals.com/index.php/tajet

Figure 1 illustrates a schema where different Bytes

interact reactively with each other, exchanging

actions through the bus. If reducers corresponding

to those actions are null it is possible to build

complex but readable reactive chains of inter-bites

communications ensuring absence of unexpected

store updates. The configuration parameter

`watchScope` specifies the range of events that the

Byte listens to. In this example, the scope is set to

`[biteA, biteB]`, meaning it listens to all events from

`biteA` and `biteB`.

The script configuration parameters include:

- `initOn`: A string parameter that defines the

action that initiates the creation of the script class

instance during Byte initialization.

- `instance`: Defines the strategy for creating script

class instances for the `initOn` action.

- `watchScope`: An array of strings or objects

indicating the names of Bytes or specific events

that the Byte will "listen" to.

The script structure is as follows:

The script contains important functions such as

`init` and `watch`. The `init` function handles the

initiating event, while `watch` processes all events

related to the Byte. Various tools are available

within the script for working with events, allowing

you to intercept events, trigger other events,

change state, read state, create promises that wait

for events, and stop event propagation.

A key concept in Reflexio is organizing business

logic so that most action processing occurs within

the script, where the full benefits of OOP principles

can be utilized. Meanwhile, reducers should

remain as simple as possible, functioning primarily

as basic setters. This division ensures the power

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 64

https://www.theamericanjournals.com/index.php/tajet

and maintainability of business logic while

effectively managing state changes through

reducers.

Figure 2 - Suggested schema of event handling with script and reducers

Figure 2 demonstrates the advantages of using

OOP for describing business logic in Bytes:

- Managing Internal State: The internal state of the

class can store intermediate data not directly

related to the store’s state.

- Dynamic Feature Management: Script instances

can dynamically enable or disable features,

supporting a feature-flag architecture.

Reflexio introduces an additional stage of action

processing—`afterEffects`. This function is

triggered after the state has been changed by the

reducer and provides information about the event

that caused the state change.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 65

https://www.theamericanjournals.com/index.php/tajet

Figure 3 - Business flow in the Reflexio concept

Figure 3 illustrates the business flow in the

Reflexio concept. Actions (events) are initiated by

the user from the UI, then processed by the script,

passing through `watch` and `init`, before

modifying the state through reducers. Within the

script, where all the business logic for the

corresponding Byte is described, processing

occurs using the internal embedded tools defined

by the `Configs` object.

This flow ensures an efficient organization of

business logic with clear stages of event

processing, state changes, and subsequent

processing, managed within a robust and modular

structure.

The `addOpts` parameter within the Byte allows

custom objects or functions to be passed into the

class, making them accessible within the context of

Byte instances. This is an example of custom use of

dependency injection (DI). In `addOpts`, functions

for calling external APIs can be specified,

configured according to the environment, or

mocked for testing and debugging. This method of

functionality injection allows for the creation of

factories and generic templates for Bytes,

enhancing flexibility and code reusability in

Reflexio.

CONCLUSION

Reflexio represents an innovative approach to

state management in scalable web applications,

offering solutions to several critical challenges

faced by developers of large enterprise systems.

Built on the principles of object-oriented

programming and a reactive approach, Reflexio

ensures an effective separation of business logic

and the user interface, which is a fundamental

requirement for creating maintainable and

extensible applications.

Key concepts of Reflexio, such as Bytes and multi-

stage event processing, provide developers with

powerful tools for organizing complex business

logic. The use of OOP principles in the context of

state management enables the creation of more

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 66

https://www.theamericanjournals.com/index.php/tajet

structured and comprehensible architectures,

especially in large-scale projects.

The practical application of Reflexio demonstrates

its ability to effectively address issues like

excessive re-renders, high coupling between

different application domains, and scaling

complexity. The ability to dynamically manage

functionality through the feature-flag mechanism

and a flexible extension system via plugins makes

Reflexio particularly appealing for long-term

projects with evolving requirements.

Comparative analysis with existing solutions

shows that Reflexio offers a unique set of features,

particularly valuable in the context of complex

enterprise applications. Its approach to

modularity, performance, and asynchronous

operation management sets it apart from more

traditional state management tools.

However, like any advanced tool, Reflexio requires

a certain investment in learning and adapting

existing development practices. Its power and

flexibility come with the need for a deep

understanding of its concepts and architectural

principles.

REFERENCES

1. Reflexio //Github. URL:

https://github.com/rambler-digital-

solutions/reflexio

2. Harlampidi V.K. Progressive Web Applications:

A Review of Modern Methods, Tools, and

Practices // Science Bulletin. - 2023. - Vol. 4. -

No. 7 (64). - P. 401-421.

3. Johnson J. Designing with the mind in mind:

simple guide to understanding user interface

design guidelines. – Morgan Kaufmann, 2020.

4. Redux. URL: https://redux.js.org

5. MobX. URL:

https://mobx.js.org/README.html

6. Recoil. URL: https://recoiljs.org

https://www.theamericanjournals.com/index.php/tajet

