
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 27

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 10-08-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue08-04 PAGE NO.: - 27-34

METHODS OF ENHANCING UNIT TEST QUALITY FOR
RELIABLE CODE

Nikhil Badwaik
Software Engineer at NIKE INC Portland OR, USA

 INTRODUCTION

In the context of software development, unit
testing occupies a key position. Incorrectly
designed test suites can lead to code instability,
unrecognized bugs, and significant debugging time.
It also makes supports complexity, scalability,
redundancy, uncertainty of results and insufficient
test coverage [1].

In turn, the relevance of the topic is due to the
increasing demands on software quality as well as
the increasing complexity of systems, which
requires a deeper approach to testing. The
problematic issue is that traditional unit testing
methods often do not cover all possible use cases

and boundary cases, which leads to hidden defects
and decreased confidence in the system.

1. General characterization of unit testing

Unit testing is a key aspect of software
development that allows individual components -
often called modules, such as functions,
procedures, or methods - to be thoroughly tested.
This process touches each element of a program to
ensure that it performs its intended functions
correctly. The goal of unit testing is to detect bugs
early, which facilitates their timely correction,
preventing possible future complications of
problems (Fig.1.).

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue08-04
https://doi.org/10.37547/tajet/Volume06Issue08-04

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 28

https://www.theamericanjournals.com/index.php/tajet

Fig.1. Unit testing [2].

Unit testing in APL programming language
characterized by its short syntax is a process of
testing separate code components, most often
functions or procedures. This method provides
independent operability of each part of the code by
the declared requirements.

The main element of unit testing in APL is the
creation of test functions. These functions are
specialized programs designed to test individual
features or procedures in the project.

The key stage of unit testing in APL is the
development of various test scenarios that
simulate various input conditions for analyzing the
code functionality.

To illustrate this, we can use a set of test cases for

the addition function, where each case represents
a combination of input data and expected results
[2].

In the area of unit testing, developers can choose
between manual and automated approaches to
verify that each module of a software product
meets customer requirements. Manual testing,
which involves executing tests without automation
tools, can become time-consuming, especially in
test repetition and preparation. However,
complete automation is also unattainable and some
level of manual intervention will always be
necessary.

Consider the following aspects that improve the
efficiency and reliability of unit testing (Table 1.).

Table 1. Aspects designed to improve the efficiency and reliability of unit testing.

Aspects of

Improving

the

Efficiency

and

Reliability of

Modular

Testing Description

Isolation of

Tested

Components

The fundamental principle of modular testing is the strict isolation of the tested

component from the rest of the system and external dependencies. This approach

allows accurately determining and testing the functionality of each component

without external influences, helping to identify and fix errors directly in the

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 29

https://www.theamericanjournals.com/index.php/tajet

component itself rather than in its interactions with other elements of the system.

To achieve isolation, mocks and stubs imitating the behavior of external systems

are widely used.

Repeatability

and Stability

of Results

It is critically important to ensure that each test run under the same conditions leads

to the same results. This repeatability is crucial for regression testing, which

checks if changes in one part of the system have caused failures in already verified

functions. The stability of test results in different environments (development,

testing, production) is also critical for confirming the reliability of the software

product.

Testing Small

Code

Segments

The efficiency of modular testing increases by focusing efforts on small, well-

defined sections of code. This allows for detailed verification of each module's

functionality before their integration into larger systems. This approach simplifies

the search and fixing of errors, making test cases more manageable and

understandable.

Test

Automation

Automation significantly speeds up the development and quality control process.

Automatic execution of modular tests during code changes provides immediate

feedback on the impact of changes on overall functionality. The introduction of

automation helps maintain the reliability of tested systems and supports a high

level of software quality [3].

2. Practices for effective unit testing

Unit testing, when properly applied, is a powerful
tool for improving software quality. To maximize

its potential, it is necessary to follow a number of
best practices that can significantly improve the
efficiency of the process (Table 2.).

Table 2. Effective unit testing practices.

Practices Description

Optimization

of Modular

Tests

Each modular test should be compact and focused, limited to checking a single

specific functionality or aspect of behavior. This ensures clarity in understanding

the test and simplifies maintenance. It also helps in the precise localization of

errors if the test fails.

Independence

and

Repeatability

of Tests

Tests should be designed so that their results do not depend on each other and can

be reproduced with the same results in multiple runs. This guarantees the stability

and reliability of the testing environment.

Sufficient Test

Coverage

It is necessary to strive for maximum possible code coverage with tests, which

will help identify potential problems in most parts of the application. While

absolute test coverage may be unattainable, a high coverage percentage is a

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 30

https://www.theamericanjournals.com/index.php/tajet

desirable goal.

Use of

Mocking

Mocking allows the imitation of real object behavior in a controlled test

environment. This is ideal for isolating the tested code from external

dependencies and side effects, making testing more focused and reliable.

Use of

Automated

Testing Tools

Test automation using specialized tools can significantly improve the testing

function by providing automatic test detection, detailed reports generation, and

integration with existing development environments.

Choosing the

Right Platform

for Modular

Testing

Effective modular testing requires the use of reliable platforms such as JUnit for

Java, PyTest for Python, and NUnit for .NET. These tools offer advanced

capabilities for result verification, test execution, and test scenario management

[4,5].

3. Advanced Python unit testing concepts

After familiarizing ourselves with the basics of unit
testing, let's move on to examine more advanced
methods and techniques that can significantly
improve the efficiency and reliability of tests,
especially in complex or specific situations [6].

1. Testing code that depends on command line

arguments

Code that depends on command-line arguments
can be challenging to unit test since these
arguments are usually provided directly by the
operating system. However, with
unittest.mock.patch, these inputs can be effectively
mimicked in tests. Suppose there is a function that
analyzes command line arguments:

import argparse

def parse_arguments():

 parser = argparse.ArgumentParser()

 parser.add_argument('--path', type=str, required=True)

 args = parser.parse_args()

 return args

def main():

 args = parse_arguments()

 print(f"Path provided is {args.path}")

To test this function, use unittest.mock.patch to simulate sys.argv as shown below:

import unittest

from unittest.mock import patch

from your_module import main, parse_arguments

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 31

https://www.theamericanjournals.com/index.php/tajet

class TestCommandLineArguments(unittest.TestCase):

 @patch('sys.argv', ['program_name', '--path', 'test_path'])

 def test_parse_arguments(self):

 args = parse_arguments()

 self.assertEqual(args.path, 'test_path')

 @patch('sys.argv', ['program_name', '--path', 'test_path'])

 def test_main(self):

 with patch('builtins.print') as mocked_print:

 main()

 mocked_print.assert_called_with('Path provided is test_path')

if __name__ == '__main__':

 unittest.main()

2. Testing code that depends on environment
variables

Environment variables are often used to customize

the behavior of applications. To unit test such
customizations, use unittest.mock.patch.dict to
temporarily modify environment variables:

import os

import unittest

from unittest.mock import patch

def get_database_url():

 return os.getenv("DATABASE_URL")

class TestEnvironmentVariables(unittest.TestCase):

 @patch.dict(os.environ, {"DATABASE_URL": "test_url"})

 def test_database_url(self):

 url = get_database_url()

 self.assertEqual(url, "test_url")

if __name__ == '__main__':

 unittest.main()

3. testing code that outputs information to the
console

Sometimes it is important to test that the
application correctly outputs the correct
information to the console. This can be tested by

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 32

https://www.theamericanjournals.com/index.php/tajet

redirecting sys.stdout to a string buffer and analyzing its contents:

import io

import sys

import unittest

def greeting():

 print("Hello, world!")

class TestPrintFunction(unittest.TestCase):

 def test_greeting(self):

 captured_output = io.StringIO()

 sys.stdout = captured_output

 greeting()

 sys.stdout = sys.__stdout__

 self.assertEqual(captured_output.getvalue().strip(), "Hello, world!")

if __name__ == '__main__':

 unittest.main()

These advanced techniques allow testing different
aspects of code more flexibly and accurately,
making it more robust and resistant to change.

4. Benefits of unit testing

Unit testing plays a central role in the software
development process, providing many key benefits
that improve the quality and reliability of code at
various stages of code creation.

Early detection of errors: One of the main
advantages of unit testing is the ability to detect
errors at the initial stages of development. Testing
code immediately after it is written identifies and
fixes problems before they get deeper into the
system, saving time and money in later stages of
the project. It also reduces the risks associated with
defects in the product when it reaches end users.

Simplified refactoring and support: Unit testing
sets the stage for safe code refactoring because it
provides developers with a "safety net" of tests that
immediately signal problems caused by changes.
This greatly simplifies the process of optimizing

and improving code structure without the risk of
compromising functionality. In addition, well-
structured unit tests can serve as a form of
documentation that helps new and current
developers understand and work with the code
base more quickly and efficiently.

Promote quality software design: A unit testing
approach forces developers to consider the
architecture and design of the application from the
beginning, encouraging the development of
modular, loosely coupled code that is easier to
maintain and scale. Applying principles such as
single responsibility and separation of interfaces
leads to separate, independent units that are easier
to test and integrate. The practice of development
through testing (TDD) deepens these benefits as
tests guide code design, ensuring that code is
minimal and focused.

Improved team communication and collaboration:
Unit tests serve as a common language for the
development team, making it easier to share
knowledge about how code should function. They

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 33

https://www.theamericanjournals.com/index.php/tajet

simplify the process of peer code review by
providing clear criteria for evaluating changes. Unit
tests also ensure quick adaptation of new team
members, reducing the time needed to familiarize
them with the project. Unit tests promote quality
software design by formalizing requirements and
supporting refactoring. They aid in early defect
detection and provide living documentation,
enhancing code understanding and discussion.

Integration with other types of testing: Although
unit testing is the foundation, it is complemented
by integration and functional tests, each of which
solves its tasks within the testing pyramid. A model
proposed by Mike Cohn illustrates how unit tests
form the basis of this pyramid (fig.2), emphasizing
their numerical predominance and relative ease of
execution compared to other types of tests [7].

Fig. 2 - Mike Cohn Testing Pyramid

5. Types of testing

Integration testing: This type of testing seeks to
test the interaction between individual modules by
evaluating how they work together. Integration
testing is particularly important for identifying
problems in data transfer and interfaces between
different components of the system. This process
makes sure that modules that function correctly in
isolation also function correctly when working
together.

Functional Testing: Functional testing aims to
verify that a software product meets its functional
requirements and specifications, usually
conducted through black box methods where the
internal structure of the system remains
unexplored. This type of testing focuses on the
behavior of the program from the end user's point
of view, confirming that the functional
requirements are met.

Unit Testing Tools: To perform unit testing,
developers can use various frameworks that make

it easy to create and execute tests:

● JUnit is a widely used framework for Java
that offers convenient annotations for defining
tests and preparing test scripts.

● NUnit, a .NET application testing platform
evolved from JUnit, provides flexible options for
creating complex test cases and supports data-
driven testing.

● unittest is a standard testing tool in Python,
supports automation, and test aggregation, and can
run independently of a reporting system.

● Mocha is a JavaScript framework that works
in both Node.js and browsers. It supports
asynchronous testing and provides detailed
reports, making it easy to diagnose bugs and track
results [8].

CONCLUSION

In conclusion, the exploration of unit testing within
this study highlights its crucial role in ensuring
software reliability and quality. Through the

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE08

 34

https://www.theamericanjournals.com/index.php/tajet

meticulous examination of its principles,
methodologies, and advanced practices, it becomes
evident that unit testing is indispensable for early
bug detection, which substantially reduces
debugging time and associated costs. The
implementation of unit testing fosters modular and
loosely coupled code, which not only simplifies
maintenance and refactoring but also enhances
overall software design quality.

The comparative analysis of manual versus
automated testing underscores the necessity of
balancing both approaches to optimize testing
efficiency and effectiveness. The use of mocking
and automation tools further solidifies the
reliability of test results, providing developers with
immediate feedback and facilitating continuous
integration practices. Advanced techniques,
particularly in handling command-line arguments,
environment variables, and console outputs,
demonstrate the flexibility and robustness of unit
tests in complex scenarios.

Moreover, unit testing serves as the foundation
within the testing pyramid, as proposed by Mike
Cohn, emphasizing its predominance and ease of
execution compared to integration and functional
tests. This hierarchical structure ensures
comprehensive test coverage, validating that both
individual components and their interactions meet
the desired functional requirements.

The integration of unit testing with other testing
types and tools, such as JUnit, NUnit, unittest, and
Mocha, exemplifies its adaptability across various
programming languages and environments. This
flexibility is pivotal for developers, providing them
with the necessary tools to maintain high
standards of code quality and reliability.

REFERENCES

1. The best methods of modular testing in Python

for creating additional applications. [Electronic
resource] Access mode: https://pytest-with-
eric.com/introduction/python-unit-testing-
best-practices / (accessed 8.05.2024).

2. How to make a Modular change to an
application to improve Code efficiency.
[Electronic resource] Access mode:
https://marketsplash.com/apl-unit-testing /
(accessed 8.05.2024).

3. 10 Ways to Improve your unit Testing.
[Electronic resource] Access mode:
https://www.cleantechloops.com/ways-to-
improve-unit-testing / (accessed 8.05.2024).

4. Effective unit testing: improve code quality and
reduce errors in your software. [Electronic
resource] Access mode:
https://www.fromdev.com/2023/05/effectiv
e-unit-testing-boosting-code-quality-and-
reducing-bugs-in-your-software.html
(accessed 8.05.2024).

5. Recommendations for long-term testing in
Java. [Electronic resource] Access mode:
https://www.baeldung.com/java-unit-testing-
best-practices (accessed 8.05.2024).

6. The Basic Modular Terms in Python Are: Setup,
Disassembly, Apology, And More. [Electronic
resource] Access mode: https://hands-
on.cloud/python-unit-tests / (accessed
8.05.2024).

7. Unit testing: principles, benefits and 6 simple
recommendations. [Electronic resource]
Access mode: https://codefresh.io/learn/unit-
testing / (accessed 8.05.2024).

8. Unit testing and coding: Why the code under
test is important. [Electronic resource] Access
mode: https://www.toptal.com/qa/how-to-
write-testable-code-and-why-it-matters
(accessed 8.05.2024).

https://www.theamericanjournals.com/index.php/tajet

