
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 50

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 22-07-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue07-06 PAGE NO.: - 50-56

APPLYING MVI ARCHITECTURE TO ENHANCE
TESTABILITY AND MAINTAINABILITY IN ANDROID
APPLICATIONS

 Chike Mgbemena
 Mobile Software Engineer, Lagos, Nigeria

INTRODUCTION

In the field of Android application development,
creating scalable and easily maintainable
applications is a top priority. To achieve this goal,
software engineers rely on meticulously designed
architectural patterns that ensure code clarity and
separation of concerns. One such pattern gaining
popularity is the Model-View-Intent (MVI)
architecture. MVI architecture strictly delineates
application responsibilities by dividing it into three
key components: model, view, and intent.

This topic remains relevant against the backdrop of
increasing demands for software quality. MVI
architecture, with its advantages in state
management and predictable application behavior,
provides developers with the necessary tools to
meet these demands, as evidenced by successful
industry implementations. The aim of this article is
to explore the application of MVI architecture to

enhance the testability and maintainability of
Android applications.

1. General Characteristics of MVI Architecture

The Model-View-Intent (MVI) architecture
represents an advanced approach to developing
user interfaces based on the principles of
unidirectional data flow and immutable state. This
architecture is particularly effective in the context
of Android application development, where state
management and handling side effects traditionally
pose significant challenges.

At the core of MVI lies the idea of representing the
user interface as a function of the state: UI =
f(state). This means that any change in the user
interface results from a change in the application's
state. This approach ensures the predictability of
UI behavior and simplifies debugging.

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue07-06
https://doi.org/10.37547/tajet/Volume06Issue07-06

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 51

https://www.theamericanjournals.com/index.php/tajet

A key feature of MVI is the cyclical nature of the interaction between components (Table 1).

Table 1. Elements of MVI Architecture

Element Description

Model

In architectures such as MVP or MVVM, the model typically represents the data

and domain layer, serving as a bridge between the application and a remote data

source. In MVI, the model also represents data but in the form of an immutable

state. This means the state is updated only in one place – in the business logic,

ensuring its immutability in other parts of the application. Thus, the business logic

becomes the single source of truth. An example of state representation through a

sealed class containing data allows managing states (loading, success, errors)

centrally. The render method in the view tracks state changes and updates the user

interface accordingly.

View

Reactive programming is used to observe the state returned by the ViewModel. The

render() method, implemented in the child classes of BaseActivity or

BaseFragment, is used to update the user interface when the state changes. This is

especially important when using a shared ViewModel for different fragments, which

helps avoid redundant "if-else" statements for state logic management.

Intent

The view observes the state and visualizes its changes. However, the process starts

with the view initiating a state change: - A view is created (layout file and

fragment/activity). - All view operations are defined: user actions (e.g., click) or

actions initiated by the application itself. For instance, the user enters text in the

search bar and clicks the search button. This action sends the SearchCharacter intent

with the entered text to the ViewModel. The intent is interpreted by the ViewModel

into a corresponding action. This is necessary as the same action can be initiated by

different intents. Furthermore, different views can create the same intents using the

same ViewModel. The action is then processed by the ViewModel and passed to the

reducer to determine the new state, which is sent to the view. The reducer,

implemented as an extension function, maps the result to the corresponding state.

The view, observing the state, updates accordingly.

This cyclic model can be visualized as follows:

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 52

https://www.theamericanjournals.com/index.php/tajet

Fig.1.MVI data flow [1]

2. Key Components of MVI Architecture

The MVI architecture consists of the following key
components:

a) **Model**: Represents the state of the
application. In the context of MVI, the model is
immutable, ensuring a unidirectional flow of data
and simplifying change tracking.

b) **View**: Responsible for displaying the
application's state to the user. In Android, this can
be implemented using Activity, Fragment, or
Composable functions when using Jetpack
Compose.

c) **Intent**: Represents the user's intention to
change the application's state. Intents in MVI

should not be confused with Android Intents; here,
they are a semantic expression of the user's action.

d) **Action**: Derived from Intent, representing a
specific action that needs to be performed to
change the state.

e) **Result**: The outcome of processing an Action,
containing information to update the state.

f) **Reducer**: A pure function that takes the
current state and the Result, returning a new state.

g) **Store**: The central component that manages
the data flow and the state of the application.

The lifecycle of data in the MVI architecture can be
represented by the following diagram (Figure 2).

Figure 2 – Data Lifecycle in MVI Architecture

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 53

https://www.theamericanjournals.com/index.php/tajet

1. A user action generates an Intent.

2. The Intent is transformed into an Action.

3. The Action is processed and produces a Result.

4. The Result is used by the Reducer to create a new
State.

5. The new State is displayed in the View.

6. The View responds to user actions, generating
new Intents.

This cycle ensures a clear separation of concerns
and simplifies tracking changes in the application's
state.

In the context of Android development, MVI is
particularly effective when combined with reactive
tools such as RxJava or Kotlin Flow. These tools
allow for efficient handling of asynchronous
operations and data flow management, which is
critical for creating responsive and reliable mobile
applications .

It is important to note that while MVI provides a
powerful toolkit for managing state and data flow,
its effective application requires careful design and
a deep understanding of the principles of

functional and reactive programming. When
implemented correctly, MVI can significantly
enhance the testability and maintainability of
Android applications, especially in the context of
complex user interfaces and distributed systems.

3. Impact of MVI on Testability of Android
Applications

The Model-View-Intent (MVI) architecture has a
substantial impact on the testability of Android
applications, offering several advantages that
contribute to improved software quality and
reliability. Let’s consider the key aspects of this
impact.

3.1 Isolation of Components

MVI architecture ensures a clear separation of
responsibilities among components, greatly
simplifying their isolation for testing. Each MVI
component (Model, View, Intent, Action, Result,
Reducer) has a well-defined role and interaction
interface, allowing them to be tested
independently.

Example of component isolation for testing:

class ReducerTest {

 @Test

 fun `when TaskAdded result is processed, new task should be added to state`() {

 val initialState = TaskState(tasks = emptyList())

 val newTask = Task(id = "1", title = "New Task")

 val result = TaskResult.TaskAdded(newTask)

 val newState = taskReducer(initialState, result)

 assert(newState.tasks.contains(newTask))

 }

}

In this example, we can easily test the logic of the
Reducer without interacting with other system
components.

3.2 Predictability of States

One of the key advantages of MVI is the
predictability of application states. With
unidirectional data flow and immutable states,
every change in the application becomes

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 54

https://www.theamericanjournals.com/index.php/tajet

deterministic and easily reproducible. Data flow diagram in MVI (Figure 3)

Figure 3 – Data Flow Diagram in MVI

This predictability allows for more reliable tests, as
we can precisely determine the expected state after
processing a specific Intent or Action.

3.3 Simplification of Unit Testing

MVI architecture promotes the creation of more
modular and, therefore, more testable components.
Key aspects include:

a) Testing Intents and Actions: Intents and Actions
in MVI are simple data objects, making them easy
to test. We can verify that Intents are correctly
transformed into corresponding Actions.

b) Testing Reducer: The Reducer in MVI is a pure
function that takes the current state and a result,
returning a new state. This is an ideal scenario for
unit testing, as we can easily check that the Reducer
produces the expected state for given inputs.

c) Testing Side Effects: In MVI, side effects are
typically handled separately from the main data
flow, allowing them to be isolated and tested
independently.

Example test for a side effect:

@Test

fun `when error occurs, error effect should be emitted`() = runTest {

 val actionProcessor = TestActionProcessor()

 val action = TaskAction.LoadTasks

 val results = actionProcessor.processAction(action).toList()

 assert(results.any { it is TaskResult.Error })

}

3.4 Enhancement of Integration Testing

MVI also improves integration testing. With clear
separation between components and predictable

data flow, we can easily create tests that verify the
interaction between different parts of the system.

Example of an integration test:

@Test

fun `when add task intent is dispatched, new task should appear in view`() {

 val viewModel = TaskViewModel(testRepository)

 val testObserver = viewModel.state.test()

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 55

https://www.theamericanjournals.com/index.php/tajet

 viewModel.dispatch(TaskIntent.AddTask("New Task"))

 testObserver.assertValueAt(1) { state ->

 state.tasks.any { it.title == "New Task" }

 }

}

3.5 Improvement of UI Testing Efficiency

MVI architecture also positively impacts UI testing.
Since the application state is centralized and

predictable, we can easily create test scenarios for
various UI states.

Example of a UI test using Jetpack Compose:

@Test

fun taskListDisplaysCorrectly() {

 val tasks = listOf(Task("1", "Task 1"), Task("2", "Task 2"))

 val state = TaskState(tasks = tasks)

 composeTestRule.setContent {

 TaskList(state = state, onTaskClick = {})

 }

 composeTestRule.onNodeWithText("Task 1").assertIsDisplayed()

 composeTestRule.onNodeWithText("Task 2").assertIsDisplayed()

}

In conclusion, the impact of MVI on the testability
of Android applications is multifaceted and
significant. The architecture promotes the creation
of more modular, predictable, and therefore more
testable components. This, in turn, leads to higher
code quality, fewer bugs, and improved overall
application reliability. However, it is important to
consider that the effective use of MVI requires
careful planning and a deep understanding of the
architecture’s principles, which can pose certain
challenges for teams lacking experience with this
approach.

CONCLUSION

The Model-View-Intent (MVI) architecture is a

powerful tool for developing scalable and easily
maintainable Android applications. Its use allows
for a high level of testability and maintainability
due to strict separation of concerns and
unidirectional data flow. Despite some challenges
related to the learning curve and increased
boilerplate code, the advantages of MVI far
outweigh its drawbacks. In practice, MVI has
proven effective, as demonstrated in the
development of the Yelp application, where
performance was significantly improved, and the
number of frozen frames was reduced. Therefore,
MVI is an important architectural approach
capable of significantly enhancing the quality and
stability of modern mobile applications.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 56

https://www.theamericanjournals.com/index.php/tajet

REFERENCES

1. The MVI architecture for Android. [Electronic
resource] Access mode:
https://medium.com/swlh/mvi-architecture-
with-android-fcde123e3c4a (accessed
06/20/2024).

2. MVI architecture for Android. [Electronic
resource] Access mode:
https://www.scaler.com/topics/android/mvi-
architecture-android / (accessed
06/20/2024).

3. MVI-graphic editors for Android applications:
applications, programs and practical
recommendations. [Electronic resource]
Access mode:

https://www.codetd.com/en/article/152854
78 (accessed 06/20/2024).

4. Reactive Applications with Model-View-Intent
- Part 2: View and Intent. [Electronic resource]
Access mode:
http://hannesdorfmann.com/android/mosby
3-mvi-2 (accessed 06/20/2024).

5. Yelp has implemented the MVI graphics editor
to improve the performance and testability of
its Android application. [Electronic resource]
Access mode:
https://mobilemonitoringsolutions.com/yelp-
adopted-the-mvi-architecture-to-improve-
performance-and-testability-of-their-android-
app / (accessed 06/20/2024).

https://www.theamericanjournals.com/index.php/tajet

