
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 40

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 22-07-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue07-05 PAGE NO.: - 40-49

METHODS FOR IMPROVING THE PERFORMANCE OF
JAVASCRIPT INTERFACES

 Blahodelskyi Oleksandr Serhiyovych
 Designer, MySteel BV Gemert, Netherlands

INTRODUCTION

In the context of the rapid development of digital
technologies, website performance has become a
crucial factor determining the success of any online
business, making this topic highly relevant. A fast,
responsive, and user-friendly website not only
attracts and retains visitors but also contributes to
higher search engine rankings, increased
conversion rates, and improved user experience
(UX). For software engineers and web developers,
it is essential to prioritize performance
optimization methods in their projects [1].

JavaScript, as the primary programming language
for developing interactive user interfaces, faces
several challenges, such as the lack of document
reading and loading capabilities, lack of remote

access, and weak typing [2]. This article discusses
the reasons why improving the performance of
JavaScript interfaces is necessary, as well as the
approaches and methods that can be applied to
achieve this goal.

1. General Characteristics

JavaScript is one of the most in-demand
programming languages. Over the past few years,
this high-performance language has been present
in all areas, from websites and games to servers,
operating systems, and even robots. Furthermore,
JavaScript ranks among the top languages used on
GitHub, as evidenced by data from the Stack
Overflow user survey (Figure 1).

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue07-05
https://doi.org/10.37547/tajet/Volume06Issue07-05

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 41

https://www.theamericanjournals.com/index.php/tajet

Figure 1. Top 10 programming languages according to the Stack Overflow survey [3].

With the growing popularity of JavaScript,
developers bear the responsibility for its continued
development and successful competition with
other languages. The competition between
TypeScript and JavaScript clearly demonstrates
why the latter maintains its leading position.

In the face of increasing demand for both web
development and mobile application creation,
leading mobile application development
companies and their specialists are doing
everything possible to seize every opportunity to
promote the growth of JavaScript [3].

2. Types of Interfaces

The term "interface" is widely used in the field of
information technology and is similar in meaning
to its everyday use. For example, a user interface
encompasses control elements for devices such as
websites, ATMs, phones, and more. For a TV remote
control, the interface consists of buttons, while in a
car, it includes all the levers and buttons for
controlling the vehicle. Thus, an interface defines
the way of interacting with a system.

Creating effective interfaces is a complex task that
is often underestimated. In everyday life, we
frequently encounter inconvenient interfaces,
ranging from door handles to elevator controls.
The more complex the system, the harder it is to
create a user-friendly interface. Even in a simple
example of a TV power button (with two states—
on/off), control can be achieved through either two
separate buttons or one button that changes its
behavior depending on the current state.

In programming, the concept of an interface refers
to a set of functions and their signatures (function
names, the number and types of input parameters,
and return values) that are independent of specific
implementations. This definition aligns with the
concept of an abstract data type. For example, in
the context of working with points, the interface
includes the functions described theoretically and
implemented practically.

The relationship between abstraction and interface
is as follows: abstraction describes the data we
work with. Almost every web application includes
the abstraction of a "user." On the Hexlet platform,

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 42

https://www.theamericanjournals.com/index.php/tajet

for instance, there are abstractions like "course,"
"project," and others. The interface, on the other
hand, represents a set of functions through which
interaction with these data is carried out [4,5].

Below, Table 1 provides a description of a list of
interfaces (objects) that can be used when
developing various web applications.

Table 1. Description of Interfaces (Objects) [6,7]

Interface /

Object Description

Document

The Document interface represents any web page loaded in the browser and

serves as an entry point to the web page's content, which is the DOM tree. The

Document interface provides functions globally for the document, describing

common properties and methods for any type of document.

Element

The Element interface describes methods and properties common to all kinds of

elements, representing one of the objects in the Document.

Event

The Event interface represents any event that occurs in the Document Object

Model (DOM). Some events are created directly by the user (e.g., mouse or

keyboard events), while others are generated by the application programming

interface (API), such as events indicating that an animation has ended or a video

has been paused.

EventTarget

The EventTarget interface is implemented by objects that can receive and

handle events, such as Element, Document, Window, and XMLHttpRequest.

Node

DOM classes form a hierarchy with the Node interface at the top, inherited by

several types of DOM API objects, allowing these types to be processed

similarly. The Node interface provides properties and methods for performing

manipulations on the DOM tree. All objects in the document tree (including the

Document object itself) inherit from the Node interface.

NonDocumentTyp

eChildNode

The NonDocumentTypeChildNode interface contains properties related to node

objects that can have a parent object but do not fit the DocumentType interface.

NonDocumentTypeChildNode is a raw interface, and no object of this type can

be created; it is implemented by objects like Element and CharacterData.

ParentNode

The ParentNode object contains methods and properties common to all types of

node objects (Node objects) that can have child elements. It is implemented by

objects such as Element, Document, and DocumentFragment.

Storage

The Storage interface provides access to a local storage object or a session

storage object for a specific domain (the source that created the storage object).

It allows adding, modifying, or deleting stored data items.

WebSocket

It is the primary interface for establishing a connection to a WebSocket server

and subsequently sending and receiving connection data.

Web Socket API

This is an advanced technology that allows pages to use the WebSocket

protocol to open a two-way interactive communication session between the

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 43

https://www.theamericanjournals.com/index.php/tajet

user's browser and a server (remote node). With this API, you can send

messages to the server and receive event-driven responses without polling the

server for a reply.

Web Storage API

The Web Storage API provides mechanisms for browsers to store key-value

pairs in a much more intuitive way than using cookies (a small piece of data

sent by a web server and stored on the user's computer).

Window

The Window interface represents a window or frame in the browser containing

a DOM document.

WindowOrWorker

GlobalScope

The WindowOrWorkerGlobalScope mixin describes several properties and

functions common to the Window and WorkerGlobalScope interfaces.

XMLHttpRequest

XMLHttpRequest is an interface that provides functionality for exchanging data

between the client and the server, allowing data retrieval via a URL without the

need for a full page refresh. The XMLHttpRequest interface is widely used in

asynchronous AJAX requests (Asynchronous JavaScript and XML), enabling

specific page parts to be updated without disrupting user activity. Additionally,

XMLHttpRequest is extensively used in the development of single-page

applications (SPA).

When it comes to JavaScript performance, it needs
to be considered at every stage of development.

Table 2 provides a description of performance
improvement options.

Table 2. Description of Performance Improvement Options [8]

Variant Description

Reducing the number

of requests

Fewer requests mean fewer transfer cycles to the server, which reduces

latency.

Retrieving only

necessary data

Reduce the amount of data sent over the network. Additionally, it reduces

server load.

Ensuring good page

load performance

Ensure that the user interface responds to user actions. For example,

update the menu on the page before downloading more than 100 records.

Using asynchronous

calls and templates

whenever possible

Polling is a heavier burden on performance compared to using

asynchronous calls or callbacks.

Caching is key

Caching further reduces server load, providing an immediate performance

boost.

Preparing for more

page views than you

ever imagined

A target page with a large amount of data is suitable if you only have a few

hits. But if you get thousands of hits, it can really impact performance.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 44

https://www.theamericanjournals.com/index.php/tajet

 3. Methods for Improving JavaScript
Performance

To successfully obtain data, applications often
make multiple internal API calls. Various
middleware can be used for each function to
effectively address this task. Although JavaScript is
a single-threaded language, it efficiently handles
asynchronous operations thanks to its event-

driven execution model. Instead of using external
libraries like async.js, modern JavaScript offers
native constructs—Promises and async/await—
for managing asynchronous operations. These
mechanisms allow developers to write clean and
maintainable code that handles asynchronous
tasks in the event loop, preventing the main thread
from blocking and improving interface
performance.

// Asynchronous function to fetch user data

async function fetchUserData(userId) {

 try {

 // Using fetch API to request user data

 const response = await fetch(`https://api.example.com/users/${userId}`);

 if (!response.ok) {

 throw new Error(`Error: ${response.status}`);

 }

 const userData = await response.json();

 return userData;

 } catch (error) {

 console.error('Failed to fetch user data:', error);

 }

}

// Using async/await to process user data

async function processUser(userId) {

 const userData = await fetchUserData(userId);

 if (userData) {

 console.log('User data retrieved:', userData);

 // Additional user data processing logic

 }

}

// Function call

processUser(1);

However, even with the use of asynchronous
functions, JavaScript sometimes requires external
libraries to handle synchronous blocking calls,
which can negatively impact performance.
Therefore, it is crucial to integrate asynchronous

APIs into application code. For beginners,
mastering asynchronous programming can be
challenging and requires attention to detail.

To enhance JavaScript performance, it is essential
to write small and lightweight code, especially for

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 45

https://www.theamericanjournals.com/index.php/tajet

mobile applications where performance is critical.
Code optimization can be achieved through:

1. Gzip Compression: Gzip is a popular
compression tool used to reduce the size of
JavaScript files. Compressing files before sending
them to the browser significantly reduces latency
and improves overall application performance.

2. DOM Access Optimization: Interaction with the
DOM can significantly slow down JavaScript
execution. To improve performance, minimize the
number of DOM accesses by caching references to
browser objects or reducing the number of DOM
traversal cycles. For example, updating a list of
items in the DOM can be optimized using
DocumentFragment:

function updateList(items) {

 const fragment = document.createDocumentFragment();

 items.forEach(item => {

 const li = document.createElement('li');

 li.textContent = item;

 fragment.appendChild(li);

 });

 document.getElementById('list').appendChild(fragment);

}

3. Caching: Caching data is one of the most
effective ways to improve performance. This can be
achieved using the Cache API in JavaScript or HTTP

caching. Reusing cached data reduces the number
of requests and speeds up the application. For
example, using the Cache API to cache data:

caches.open('my-cache').then(cache => {

 cache.add('https://api.example.com/data').then(() => {

 console.log('Data cached successfully!');

 });

});

4. Memory Management and Leaks: Preventing
memory leaks is essential, as they can lead to
increased memory consumption by the loaded
page, negatively impacting application or website
performance. Tools like Chrome DevTools can be
used to track memory leaks, allowing you to record
timelines and analyze JavaScript performance.

5. Event Delegation: Learning event delegation is

useful for improving JavaScript efficiency. This
method allows a single event handler to manage
events across the entire page, enhancing efficiency.
Without event delegation, large web applications
may face issues due to numerous event handlers.
Event delegation, on the other hand, reduces
memory requirements for handling events and
decreases the number of bindings between code
and the DOM. Example of event delegation:

document.addEventListener('click', function(event) {

 if (event.target.matches('.clickable')) {

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 46

https://www.theamericanjournals.com/index.php/tajet

 handleEvent(event.target);

 }

});

6. Efficient Page Loading: Ensuring efficient page
loading is important for meeting user expectations
of quick responses. It is unnecessary to load all site
or application functions during initial page load.

Techniques like Lazy Loading and asynchronous
loading allow specific functions to load only when
needed, such as when the user scrolls to a
particular element or navigates to a new section of
the site. Example of Lazy Loading for images:

document.addEventListener("DOMContentLoaded", function() {

 let lazyImages = [].slice.call(document.querySelectorAll("img.lazy"));

 let active = false;

 const lazyLoad = function() {

 if (active === false) {

 active = true;

 setTimeout(function() {

 lazyImages.forEach(function(lazyImage) {

 if ((lazyImage.getBoundingClientRect().top <= window.innerHeight &&

lazyImage.getBoundingClientRect().bottom >= 0) &&

getComputedStyle(lazyImage).display !== "none") {

 lazyImage.src = lazyImage.dataset.src;

 lazyImage.classList.remove("lazy");

 lazyImages = lazyImages.filter(function(image) {

 return image !== lazyImage;

 });

 if (lazyImages.length === 0) {

 document.removeEventListener("scroll", lazyLoad);

 window.removeEventListener("resize", lazyLoad);

 window.removeEventListener("orientationchange", lazyLoad);

 }

 }

 });

 active = false;

 }, 200);

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 47

https://www.theamericanjournals.com/index.php/tajet

 }

 };

 document.addEventListener("scroll", lazyLoad);

 window.addEventListener("resize", lazyLoad);

 window.addEventListener("orientationchange", lazyLoad);

});

7. Performance Testing in Various
Environments: For developing high-performance
websites, it is critical to test code in different
environments and on various devices. This helps
identify potential performance issues and optimize
the code for different usage conditions. Tools like
Google's Lighthouse help evaluate performance,
accessibility, progressive web applications, and
other important aspects of a website.

8. Removing Unused JavaScript: Removing
unused parts of JavaScript code reduces the time

needed by the browser to compile and transfer the
code, positively impacting load speed and overall
performance [9]. This is achieved by eliminating
unused JavaScript. Tools like Webpack or Rollup
provide Tree Shaking capabilities that
automatically remove unused code from the final
bundle. Example of using Tree Shaking with
Webpack:

 Ensure the mode is set to production in your
Webpack configuration file, which automatically
activates Tree Shaking:

module.exports = {

 mode: 'production',

 entry: './src/index.js',

 output: {

 filename: 'bundle.js',

 path: __dirname + '/dist'

 }

};

9. Performance of Built-In JavaScript Methods:
It is also interesting to consider the performance of
built-in object methods, which, due to low-level
optimizations in engines, almost always perform
faster than manually written JavaScript
equivalents. The performance difference between

built-in methods and hand-written equivalents is
especially noticeable in Firefox, Opera, Safari, and
IE. In V8 (Chrome), most built-in JavaScript
methods are written in JavaScript, so the speed
increase is not as significant. Figure 1 shows the
performance difference based on method
implementation.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 48

https://www.theamericanjournals.com/index.php/tajet

Figure 1. Performance differences based on method implementation [10].

CONCLUSION

Thus, methods for enhancing the performance of
JavaScript interfaces play a crucial role in creating
efficient and responsive web applications. The
techniques discussed in this article, such as
reducing the number of requests, utilizing
asynchronous programming, and optimizing DOM
access, significantly improve the user experience.
Tools like Lighthouse and Google PageSpeed
Insights provide developers with the ability to
identify and resolve performance issues, ensuring
high speed and efficiency of websites.
Implementing these methods and tools not only
improves user interaction with web applications
but also increases the competitiveness of online
businesses. Adhering to the recommendations
presented in this article will enable developers to
create high-performance and reliable JavaScript
applications, which is an essential part of success in
the modern digital environment.

REFERENCES

1. JavaScript optimization techniques for faster
website loading. [Electronic resource] Access
mode: https://it-dev-
journal.ru/articles/metody-optimizaczii-java-
script (accessed 05/22/2024).JavaScript:
description, advantages and disadvantages,
usage . [Electronic resource] Access mode:
https://otus.ru/journal/javascript-opisanie-
preimushhestva-i-nedostatki-ispolzovanie /
(accessed 05/22/2024).

2. Why JavaScript remains a popular
programming language in 2024. [Electronic
resource] Access mode:
https://tproger.ru/articles/populyarnost-
javascript (accessed 05/22/2024).

3. Interface. [Electronic resource] Access mode:
https://ru.hexlet.io/courses/js-data-
abstraction/lessons/interface/theory_unit
(accessed 05/22/2024).

4. Program at the interface level. [Electronic
resource] Access mode:

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 49

https://www.theamericanjournals.com/index.php/tajet

https://habr.com/ru/articles/568810 /
(accessed 05/22/2024).

5. JavaScript interfaces of the web API. [Electronic
resource] Access mode:
https://basicweb.ru/javascript/js_web_api.ph
p (accessed 05/22/2024).

6. Interface. [Electronic resource] Access mode:
https://hemantajax-2.gitbook.io/javascript-
step-by-step/interface (accessed
05/22/2024).

7. JavaScript templates and performance.
[Electronic resource] Access mode:
https://learn.microsoft.com/ru-
ru/sharepoint/dev/solution-

guidance/javascript-patterns-and-
performance (accessed 05/22/2024).

8. Using JavaScript Software: tips and suggestions
for improving code performance. [Electronic
resource] Access mode:
https://allbachelor.com/2023/07/19/javascri
pt-performance-optimization-tips-and-
techniques-for-better-code-performance /
(accessed 05/22/2024).

9. We improve the performance of the client side
of the web application. [Electronic resource]
Access mode:
https://xakep.ru/2014/07/22/speedup-
client-javascript / (accessed 05/22/2024).

https://www.theamericanjournals.com/index.php/tajet

