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ABSTRACT

This study examines the feasibility of machine failure detection using deep learning approaches in a bid to improve
predictive maintenance approaches. A deep-learning model has been created using the AI41 2020 Predictive Maintenance
dataset in order to effectively predict equipment failures. The model is built using two deep learning algorithms Long —
Short Term Memory (LSTM), and Convolutional Neural Networks (CNNs). The preprocessing of the data that encompasses
data cleaning, feature engineering, and normalization is applied to guarantee data quality. The metrics used to evaluate
model performance are accuracy, ROC and AUC. Empirical findings show that the proposed LSTM-CNN model has a high
predictive accuracy and significantly better results compared to the other traditional Support Vector Machine (SVM)
models, especially when it comes to predicting complex patterns and dependence of operational data. In spite of the
benefits, there are still issues of data quality, architecture, hyperparameter choice, and model interpretability. In general,
the research validates the high potential of deep learning in reliable machine failure detection and specifies the main
directions of future studies.
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1- Introduction maintenance plans. Utilizing this data most effectively
has thus become a major concern in the provision of

The swift merger of smart manufacturing, industrial big reliable, safe, and cost-effective industrial processes [1].

data, and Industry 4.0 has catalyzed the complete

transformation of the traditional manufacturing systems
to the smart and data-driven manufacturing
environments [1]. A major part of this change is
mechanical equipment, but the nonstop working process
inevitably causes degradation of the machine and its
breakdowns that may cause unexpected shutdowns, loss
of considerable revenue and pose serious safety risks [2].
At the same time, the current industrial systems produce
high amounts of working data, providing unprecedented
chances to track the state of machines and enhance the
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Predictive maintenance has become one of the most
advanced maintenance techniques, which tries to predict
the failure of equipment in advance with constant
observation of the working states with the help of sensors
[3]. The vibration, temperature, pressure, and other
process variables are monitored to determine when they
are going to degrade. Conventional machine learning
methods, such as support vector machines, statistical
time-series models, and regression-based methods, have
also been extensively implemented in this regard, and
they have shown encouraging outcomes. However, such
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techniques are frequently based on handcrafted
properties and can have difficulties solving complex
nonlinear properties of the data in industry [4, 5].

Deep learning has received more and more interest in
predictive maintenance in recent years because it has a
high potential for automatic feature extraction and
nonlinear modelling. Autoencoders, recurrent neural
networks, and convolutional neural network deep
learning structures have been found superior in fault
diagnosis and failure forecasting tasks [6]. In spite of
these developments, the literature is often concerned
with either single-model architectures or deeply
complicated frameworks of deep learning that need
significant computational capabilities. Also, most
methods do not have a formal data analysis flow and
strict  validation steps, which
generalizability and practical use in a real industrial setup

(21, 31, [7].

restricts  their

To overcome these shortcomings, this work suggests a
hybrid predictive maintenance model, which uses
Convolutional Neural Networks (CNN) [8] and Long
Short-Term Memory (LSTM) [9]. The suggested
solution is created through a systematic methodology
that involves the stages of extensive data pre-processing,
exploratory data analysis, model training, cross-
validation, and evaluation of the results. The AI4I 2020
Predictive Maintenance data is used to carry out the
experiments, and the model performance is evaluated by
accuracy and ROC-based measures. This study will offer
a dependable and viable predictive system to predict
failure of machines in a contemporary manufacturing
facility by balancing predictive accuracy and strong and
efficient execution.

The rest of this paper is structured in the following way:
Section 2 explains the proposed methodology. In Section
3, the data from the experiment are discussed and
presented. Lastly, there is the conclusion of the paper in
Section 4.

2- The Proposed Methodology

This section presents a systematic research process of
building a machine fault predictive maintenance model,
which will start its development process with the
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identification of the problem and the collection of data
and proceed to model development, validation, and
performance optimization with the objective of having an
accurate prediction of machine failures in the future. The
key activities of the proposed LSTM-CNN based
accurate machine failure prediction model are listed in
the section below.

i. Collection of datasets: Obtain the dataset of the
experiments, i.e. AI4l 2020  Predictive
Maintenance dataset offering the necessary
operational and failure-related variables.

ii.  Data preprocessing/cleaning: Clean the gathered
data, fill in the missing data, identify and remove
outliers and eliminate noise to guarantee the
quality of data.

ili. = Exploratory data analysis (EDA): Conduct
exploratory analysis to understand the distribution
of data, patterns and relationships among variables
[10].

iv.  Model selection and development. Train the
prediction model with a deep learning LSTM-
CNN architecture that is appropriate for non-linear
failure prediction.

V.  Model training: Train the LSTM-CNN model on
the preprocessed data to obtain underlying trends
that are related to machine failures.

vi. Parameter tuning and validation: Find the best
model parameters and wuse cross-validation
methods to better generalize the model and avoid
overfitting.

vii.  Model assessment: Test the model based on
suitable metrics, such as accuracy, Receiver
Operating Characteristic (ROC) curves, and Area
Under ROC Curve (AUC).

viii. Optimization and refinement. In case needed,
optimize and further refine model parameters
based on the results of validation to give better
predictive performance on unseen data.

ix. To get a deeper insight, Figure 1 shows the
proposed the LSTM-CNN based machine failure
prediction model and Algorithm 1 shows the
sequence of the steps of the actions followed to
attain the proposed model.
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Figure 1. The methodology of the proposed LSTM-CNN Machine Predictive Maintenance model

Algorithm 1. LSTM-CNN Machine Failure Prediction (Pseudocode)

Input: Al41 2020 Predictive Maintenance dataset D
Output: Trained LSTM-CNN model M and evaluation results R
i Collection of datasets
D « Load AI41 2020 dataset (operational variables + failure-related variables)
ii. Data preprocessing/cleaning
D « Clean(D)
- Fill Missing Values(D)
- Detect and Remove Outliers(D)
- Remove Noise(D)
iii. Exploratory data analysis (EDA)
Perform EDA on D to examine:
- Distributions
- Patterns
- Relationships among variables
iv. Model selection and development
M «— Build Model (type = "LSTM-CNN", purpose = "non-linear failure prediction™)
V. Model training
Train M using D
Vi. Parameter tuning and validation
Tune Parameters (M)
Validate M using Cross Validation to improve generalization and avoid overfitting
vil. Model assessment
R «— Evaluate(M) using:
- Accuracy
- ROC Curve
- AUC
viii. Optimization and refinement
Optimize And Refine(M) based on validation results
Endif
Return M, R
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2.1. Data Set

This experiment relies on the AI41 2020 Predictive
Maintenance Dataset [11] as a reference industrial
dataset to test machine failure prediction using a LSTM-
CNN algorithm. The dataset gives a realistic view of the
industrial working conditions in a fusion of sensor and
operational variables, the product ID, ambient (air)
temperature, process temperature, rotational speed,
torque, and tool wear that are all used to define the
mechanical, thermal, and wear state of the machine.

The target variable is a nominal failure label of which one
of the particular types of failure (tool wear, heat
dissipation, power, overstrain or random failure) will be
taken as a failure. The data is very lopsided, and it
represents the real-life industrial conditions, whereby
there are around 96 per cent instances of normal
operation, and 4 per cent failure. To ensure this
imbalance is corrected and the model can be more robust,
the preprocessing stage undertaken ensured that the
dataset was under sampled and normalized before
training the model.

To evaluate the stability of the models and the level of
model generalization, the processed dataset was split into
several training-testing splits to evaluate them
experimentally. It was taken into account three data
compositions; 90-10, 80-20 and 70-30 training and
testing data, respectively. This experimental design
allows for testing the predictive ability of the LSTM-
CNN algorithms model in conditions of different data
availability in a systematic way, and it is also consistent
with the common practice in the research of predictive
maintenance.

2.2. Data Preprocessing

Data processing was conducted as an essential pre-
processing phase prior to model training. The raw Al4I
2020 Predictive Maintenance Dataset contains sensor
measurements that may be affected by noise due to
measurement inaccuracies, operational disturbances, or
transient machine conditions. Such noise can negatively
influence the learning process and reduce prediction
accuracy. Therefore, noise removing [12], [13] was
applied to smooth the sensor signals and suppress
abnormal fluctuations while preserving the intrinsic
characteristics of the data. This was achieved by applying
statistical filtering over local data windows, where each
data point was replaced by a representative value
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computed from its neighboring samples. The smoothing
operation is mathematically expressed as

~ 1 i+k
X zﬁzj=i—kxj’ (])

where X;denotes the filtered signal, x;jrepresents the
original data samples, and N = 2k + 1is the window
length. In addition, median-based filtering was employed
to further reduce the influence of extreme values, defined
as

%; = median{x;_, ..., Xj1 1} ?2)

These operations effectively reduced noise and outliers,
resulting in smoother and more reliable feature
distributions.

After noise removing, data normalization [14], [15] was
applied to rescale all features into a unified numerical
range. The dataset includes multiple variables with
different units and magnitudes, and without
normalization, features with larger scales could dominate
the learning process. To overcome this issue, min—max
normalization was applied to map each feature into a
bounded range according to

XX
xi’ — 14 min (3)
Xmax~¥min

Additionally, standardization using Z-score
normalization was performed to ensure zero mean and
unit variance, given by

x =k )

g

where pand orepresent the mean and standard deviation
of each feature, respectively. This normalization process
improved numerical stability, accelerated convergence,
and ensured balanced feature contribution during model
training.

2.3. Research Evaluation Metrics

The accuracy metrics, the Receiver Operating
Characteristic (RoC) [16]and Area Under the Curve
(AUC) [17], are used in the measurement of the
performance of the model in this study. One of the
measures of the performance of a classification model is
accuracy. Accuracy [6] is a measure of the accuracy of
the model in making the correct predictions of all the
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predictions. Accuracy is determined based on the number
of correct predictions to the total number of predictions.
When the model is right in its prediction, that is, when a
data sample is rightfully classified based on the actual
label or class, we say that the model has made the right
prediction. The results of the accuracy are in the form of
a percentage, where an accuracy of 100% implies that the
model had all predictions right. Accuracy is calculated
using the formula below [6]:

Number of correct predictions

Accuracy = x 100 5)

otal number of predictions

In the meantime, ROC (Receiver Operating
Characteristic) is a curve that explains the behavior of the
classification model at various thresholds. The ROC
graph gives the True Positive Rate (TPR) on the Y-axis
and the False Positive rate (FPR) on the X-axis. ROC
gives an insight into the discriminating capability of the
model between the positive and negative classes. True
Positive Rate (TPR), also referred to as sensitivity or
recall, is the percentage of true positives of all true
positive samples. The formula used to compute TPR is:

TP
TP+FN

TPR = ()

Where
TP = True Positive predictions,
FN = False Negative predictions

False Positive Rate (FPR) is the percentage of false
negatives that are falsely detected from all false negative
samples. FPR can be calculated by the formula:

FP
FP+TN

FPR =

(7)

Where:

FP = False Positive predictions;,
TN = True Negative predictions.

The Area of the ROC curve is known as AUC (Area
Under the Curve); AUC is taken as a performance
measurement of the classification model. The range of
AUC is between 0 and 1, whereby a score of 1 means an
ideal classification, whereas a score of 0.5 means a
random classification. The larger the AUC value, the
better a good model the model works to distinguish
between negative and positive classes.
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3- Results and Discussions

This paper presents a hybrid LSTM-CNN model, which
can be applied to predict machine failures in a predictive
maintenance setting. The data of the AI4l 2020
Predictive Maintenance was initially processed and
ready to be developed into models, which included the
initial division into training and testing subsets with
different proportions. The feature scaling was done by
means of normalization or standardization to guarantee
compatibility of the heterogeneous input variables.

The proposed LSTM-CNN model was subsequently
developed with the well-specified input, hidden, and
output layers. The hidden layers and the number of
neurons in each layer were chosen empirically by means
of experimental testing and adjusted to the needs of the
task at hand, which is failure prediction. The processed
training data was used to model train with parameters
being optimized through the backpropagation algorithm
to minimize the predictive error.

After training, a confusion matrix was used to assess the
performance of the models, where accuracy, Receiver
Operating Characteristic (ROC) curves, and the Area
Under the Curve (AUC) were calculated. The
experimental findings support the existence of a positive
correlation between the proportion of training data and
the predictive performance. Figure 2 shows that the
maximum testing accuracy of 96% was obtained in the
case of a 90 per cent training split, whereas 94 per cent
accuracy was seen in the case of a 70 per cent training
split.

There were consistent patterns in terms of ROC and
AUC. Figure 3 shows the ROC curves of all
experimental settings, and Figure 4 shows the
corresponding values of AUC. Testing AUC was high at
0.99 in 90:10 and 80:20 training testing splits with almost
perfect classification performance, and a 70:30 split gave
an AUC of 0.97.

In comparison to the previously used Support Vector
Machines (SVM) that achieved a testing accuracy of 88,
the proposed model based on LSTM-CNN proves to be
better in all evaluation measures. The results indicate that
the hybrid LSTM-CNN model has high accuracy (96)
and AUC (0.99), making it an accurate and reliable
algorithm to detect machine failures during the predictive
maintenance process.
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Accuracy results of each trial
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Figure 2. The accuracy results of each trial in the proposed model
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Figure 3: RoC evaluation metrics using several results: a) RoC 90 % of the training dataset; b) RoC 10 % of the
training dataset; ¢) RoC 80 % of the training dataset; d) RoC 20 % of the training dataset; ¢) RoC 70 % of the
training dataset; f) RoC 30 % of the training dataset.
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Figure 4. The AUC results of each trial in the proposed model

It is anticipated that the implementation of the LSTM-CNN model will increase the efficiency of predictive maintenance

as it will allow predicting the breakdown of a machine in advance. This model can learn and derive non-linear, complicated
and intricate patterns on sensor data, hence giving precise and dependable predictions of failure. However, there are a
number of limitations that need to be taken into account. The proposed LSTM-CNN model has several limitations, such as
the need to work with large volumes of high-quality labelled data to use all the computational capabilities to the full extent
and can only be deployed by consuming a lot of computer resources. In addition, the interpretability of deep learning
models is not an easy task since their decisions are more complex and less clear than the decision-making processes of

conventional statistical or rule-based decision-making methods.

4- Conclusion and Future Works
4.1. Conclusion

This paper examined the predictive maintenance system
in terms of predicting machine failures using deep
learning methods, which are specifically the LSTM-
CNN model. The entire framework incorporated the
predictive performance evaluation, which used the AI41
2020 Predictive Maintenance data to perform methods of
preprocessing the data, training the model, and
evaluating the model. The results of the experiment
indicate that the proposed LSTM-CNN solution has a
very high predictive accuracy and reliability in machine
failure detection. In particular, its model achieved an
accuracy of 96 and an Area Under the ROC Curve (AUC)
of 0.99, which is a great ability to discriminate. These
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findings validate the capabilities of MLP models to
dynamic and non-linear operational and sensor data
relationships.

Moreover, it has been demonstrated, using comparative
analysis, that the LSTM-CNN model is superior to the
conventional machine learning approaches, including
Support Vector Machines (SVM), in the modelling of
complex trends and relationships within industrial data.
This  performance benefit  accentuates the
appropriateness of deep learning techniques in predictive
maintenance cases where both failure modes are
multifaceted, as well as data-motivated knowledge is
imperative.
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Although these outcomes are encouraging, the paper
does not ignore the inherent difficulties of the deep
learning methods, such as the complexity of models,
computational costs, sensitivity to hyperparameter
choices, and low interpretability because of the black-
box nature of neural networks. These are some of the
factors that should be put into serious consideration
during the implementation of such models in a real-world
industrial setting.

All in all, the results confirm that the proposed LSTM-
CNN models are a sound and efficient choice in machine
failure prediction and can be used to a great extent to
improve the predictive maintenance strategies by
decreasing the cases of unexpected downtime and
enhancing the decision-making process.

4.2. Future Work

Future studies can build upon this study by investigating
more complex and hybrid deep learning designs,
including CNN and recurrent neural networks RNN, to
further enrich the representation of both temporal and
non-linear relationships in sensor data in industry.
Moreover, enhancing model interpretability is also one
of the directions because the black-box character of deep
learning models restricts their clarity and applicability.
The explainable artificial intelligence methodologies
might be combined to give insights into the importance
of features and the decision process. In addition to that,
the model would be strengthened and generalized to
more realistic real-world environments by using bigger
and more diverse datasets gathered in various industries.
More automated methods in  hyperparameter
optimization and model efficiency should also be
explored in the future to make processing a computer-
constrained, efficient deployment of models. Lastly,
combining the proposed model with actual real-time
predictive maintenance systems and assessing its
performance in practical settings would provide a useful
indication of its usefulness in minimizing downtime and
maximizing maintenance plans.
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