The American Journal of
Applied Sciences

ISSN 2689-0992 | Open Access

m Check for updates

OPEN ACCESS

21 August 2024
28 August 2024
22 September 2024
Vol.06 Issue 09 2024

© 2024 Original content from this work may be used under the terms
of the creative common’s attributes 4.0 License.

The American Journal of Applied Sciences 17

Original Research
17-22

A Comprehensive Study on Fault-
Tolerant RISC-V Architectures and
Safety-Aware Cyber-Physical Systems
for Reliable Autonomous and Space
Computing

Dr. Adrian M. Keller
Department of Computer Engineering Helios Institute of
Technology, Zurich, Switzerland

Abstract: This article synthesizes contemporary theory
and practice in fault-tolerant microarchitectures with a
focus on RISC-V processor cores, dual-core lockstep
designs, software-implemented redundancy, and
latency-aware provisioning in prediction-serving
pipelines. Drawing exclusively on the provided
literature, it constructs an integrative perspective that
links radiation- and transient-fault mitigation strategies
from aerospace and satellite applications to safety-
critical domains such as automotive zonal controllers
and edge prediction services. The structured abstract
presents: (a) background emphasizing the confluence of
reliability, performance, and cost pressures; (b)
methods describing comparative, design-oriented, and
analytical approaches distilled from the references; (c)
key thematic results synthesizing hardware-and-
software co-design patterns, statistical injection
frameworks, thread protection techniques, and system-
level provisioning trade-offs; and (d) conclusions
outlining research directions, practical
recommendations, and limitations. This contribution
does not present new empirical measurements but
offers a deep theoretical elaboration that clarifies design
choices, exposes nuanced trade-offs, and proposes a
unified framework for future experimental validation
and standardization.

Keywords: Fault tolerance, RISC-V, lockstep
architectures, radiation effects, safety co-design,
prediction-serving pipelines

Introduction

The contemporary landscape of embedded and
distributed computing is characterized by an
accelerating demand for computational capability at the
edge, strong constraints on cost and power, and

https://www.theamericanjournals.com/index.php/tajas

pervasive expectations of reliability in hostile
environments. These pressures converge across
domains as diverse as spaceborne systems—where
ionizing radiation and single-event upsets (SEUs)
present existential threats to computation—and
automotive zonal controllers—where safety-critical
operation demands predictable, certified behavior
under fault conditions (Fayyaz & Vladimirova, 2014;
Abdul Karim, 2023). At the same time, novel service
models such as prediction-serving pipelines deliver low-
latency, high-throughput inference close to users, and
they rely on careful provisioning and scaling to balance
performance objectives against resource usage
(Crankshaw et al., 2020). These research vectors share a
common problem statement: how to design
architectures and systems that robustly tolerate faults—
transient, permanent, and systemic—without
prohibitive increases in cost, energy, or latency.

Extant literature provides a multiplicity of partial
solutions. Hardware-level redundancy and lockstep
execution approaches promise deterministic error
masking and straightforward certification paths when
implemented on diverse platforms (Abdul Karim, 2023;
Blasi et al., 2019). RISC-V, an open ISA, has become a
fertile ground for fault-tolerant microcontroller and
processor research because it enables architectural
experimentation with minimal licensing friction (Li et al.,
2022; Santos et al., 2020). Complementary to hardware
redundancy, software-implemented approaches offer
flexibility, lower upfront cost, and faster iteration cycles;
these approaches include checkpoint/recovery, thread-
level monitoring, and semantic recovery schemes
(Goloubeva et al., 2006; Gomez-Cornejo et al., 2013).
The safety and security co-design movement
emphasizes that achieving dependable systems requires
semantics-aware architectural patterns and tooling that
bring safety constraints into the architectural design
process (Dantas & Nigam, 2023).

However, several gaps persist. First, the literature often
treats radiation-hardened designs for space and low-
latency edge services as separate domains, yielding
fragmented design heuristics that are not readily
reconcilable for multi-domain platforms (Ginosar, 2012;
Foudeh et al., 2021). Second, statistical methods for
fault-injection and confidence estimation—necessary
for predicting field reliability without exhaustive
testing—remain underutilized or inconsistent across
studies, complicating cross-comparison and engineering
decision-making (Leveugle et al., 2009). Third, trade-offs
between latency-aware provisioning in prediction-
serving systems and reliability provisioning in fault-
tolerant hardware are rarely integrated, even though

The American Journal of Applied Sciences

18

many modern applications (e.g., autonomous drones
performing power-line inspections) combine both real-
time inference and radiation or environmental exposure
(Foudeh et al., 2021; Crankshaw et al., 2020). This article
synthesizes the provided references to close these gaps
by constructing an integrated, theory-rich framework
for fault-tolerant architectural design that explicitly
accounts for domain-specific constraints, statistical
validation, and operational provisioning.

Methodology

The methodological approach taken in this synthesis is
analytical and comparative rather than experimental. It
consists of three complementary activities: (1)
extraction and classification of design primitives from
the reference set, (2) construction of an integrative
design space that maps primitives to system-level goals,
and (3) theoretical elaboration of trade-offs, supported
by citations to the primary sources.

Extraction and classification. Each reference was
examined for architectural mechanisms, validation
techniques, and system-level practices relevant to fault
tolerance. The mechanisms were categorized into
hardware redundancy (e.g., lockstep cores, dual-core
lockstep, thread-controlled watchdogs), software
redundancy (e.g., software-implemented hardware
fault tolerance, checkpointing, thread-level
redundancy), validation methodologies (e.g., statistical
fault injection, neutron radiation testing), and system
provisioning strategies (e.g., latency-aware scaling for
prediction-serving). The classification emphasizes cross-
cutting properties: determinism, detection latency,
recovery latency, resource overhead (area, power, and
cost), implementation complexity, and suitability for
certification.

Integrative design space construction. Building upon the
classification, design primitives were placed within a
conceptual design space spanned by axes representing
(A) fault model severity (transient vs. permanent), (B)
temporal constraints (soft real-time vs. hard real-time),
(C) resource constraints (area/power/cost sensitivity),
and (D) verification maturity (from simulation to
radiation testing). The mapping associates each
primitive with regions of the design space where it offers
favorable trade-offs. For instance, full lockstep
hardware maps to high-severity fault models and hard
real-time constraints but to high resource overhead;
software-implemented redundancy maps to lower-cost
regions where recovery latency can be tolerated (Blasi
et al., 2019; Goloubeva et al., 2006).

Theoretical elaboration and synthesis. For each region
and primitive, the article develops detailed arguments

https://www.theamericanjournals.com/index.php/tajas

about mechanism operation, interactions with adjacent
primitives, cumulative overhead, and validation
expectations. Theoretical discussion draws on statistical
injection methods for quantifying fault coverage and
confidence intervals (Leveugle et al., 2009), empirical
radiation testing to anchor expectations under extreme
conditions (Wilson et al., 2019), and modern
provisioning approaches for low-latency pipelines
(Crankshaw et al., 2020). Where literature makes explicit
empirical claims (e.g., neutron testing results), those
claims are restated and integrated; where literature
proposes architectures (e.g., Duckcore, RISC-V fault-
tolerant microcontrollers), the paper extrapolates
design consequences and possible combinations.

Limitations of methodology. Because this work
synthesizes rather than empirically measures, its
contributions are conceptual and prescriptive. The
emphasis on theoretical elaboration is intentional to
produce a rigorous roadmap that experimentalists and
system designers can use to instantiate and test
architectures in domain-specific contexts (Gomaa et al.,

2003; Santos et al., 2020).

Results

This section distills the principal outcomes of the
analytical process: a taxonomy of resilient primitives, an
articulated mapping between domain demands and
recommended patterns, and a set of theoretical
performance-reliability trade-offs that inform practical
design choices.

Taxonomy of resilient primitives. The literature suggests
a rich palette of primitives:

Full lockstep hardware redundancy: Two or more cores
execute the same instruction stream synchronously,
with built-in comparators to detect divergence. This
approach offers deterministic failure detection and
simple fail-stop semantics that assist certification
processes (Abdul Karim, 2023; Blasi et al., 2019).

Partial/thread-level hardware protection with
watchdogs: This primitive combines hardware thread
isolation and watchdog timers to detect stuck threads or
livelock conditions, allowing selective protection that
reduces area/power overhead compared with full-core

duplication (Blasi et al., 2019).

Software-implemented hardware fault tolerance
(SIHFT): Techniques delivered in software to emulate
hardware redundancy through instruction-level
duplication, N-version programming, or
checkpoint/restart. SIHFT shifts cost from silicon to
code, permitting deployment on commodity devices
while accepting variable detection and recovery

latencies (Goloubeva et al., 2006).

The American Journal of Applied Sciences

19

Radiation-tested soft cores and hardened
microcontrollers: Empirical approaches emphasize that
soft cores implemented on SRAM-based FPGAs require
radiation testing (e.g., neutron testing) to understand
field failure rates; results guide architectural hardening
or operational mitigation (Wilson et al., 2019; Santos et
al., 2020).

Statistical fault injection: A validation primitive to
estimate fault coverage and confidence using
probabilistic sampling of fault modes; it provides a
structured way to reason about expected failure rates
without exhaustive real-world testing (Leveugle et al.,
2009)

System-level latency-aware provisioning: For services
such as online prediction-serving, dynamic provisioning
minimizes latency while considering resource budgets; it
is orthogonal but complementary to resilience
measures, and it's essential when inference is part of a
safety-critical pipeline (Crankshaw et al., 2020).

Mapping primitives to domains. By mapping the
taxonomy to domain-specific demands, the analysis
produces the following recommendations:

Space systems and satellites: Favor hardware-level
redundancy (e.g., lockstep or dual-core lockstep)
combined with radiation-tested components. The
severe fault model (ionizing radiation, single-event
latchups) and certification needs argue for
deterministic, low-detection-latency = mechanisms;
software techniques can be layered for additional
coverage but are insufficient as sole mitigation (Fayyaz
& Vladimirova, 2014; Wilson et al., 2019; Ginosar, 2012).

Automotive zonal controllers and safety-critical
vehicles: Dual-core lockstep and hardware thread
protection are compelling because automotive systems
require predictable behavior and need to meet safety
standards; however, cost constraints favor partial
protection where acceptable and SIHFT in adjacently
non-critical domains (Abdul Karim, 2023; Blasi et al.,

2019).

Unmanned aerial vehicles and edge inference platforms:
These combine environmental exposure with strict
latency constraints for perception and control. A hybrid
approach is recommended: hardware redundancy for
critical control loops, software-implemented validation
for inference tasks, and latency-aware provisioning for
prediction-serving pipelines to guarantee the required
response times (Foudeh et al., 2021; Crankshaw et al.,
2020).

https://www.theamericanjournals.com/index.php/tajas

Quantitative reasoning and validation practices. The
synthesis emphasizes that confidence in resilience
claims depends on rigorous validation. Statistical
injection methods provide a path to estimate fault rates
and characterize error distributions; these methods
complement radiation testing and operational field data
(Leveugle et al., 2009; Wilson et al., 2019). For instance,
statistical fault injection can identify weak coverage
regimes that radiation testing should prioritize, thereby
creating an efficient validation schedule that maximizes
information per test dollar.

Interaction effects and systemic risk. A salient result is
the recognition that resilience mechanisms interact
nonlinearly. For example, redundant cores that share
the same supply domain can experience correlated
failures under a single-event transient that affects
power rails, reducing the assumed independence
advantage of duplication. Similarly, software
redundancy that relies on the same compiler and
runtime (e.g., GCC toolchains) can suffer correlated
faults due to shared compiler bugs or runtime library
vulnerabilities (Hagen, 2006). Thus, achieving true
diversity—across hardware, software, and operational
modes—is crucial for high-assurance systems (Gomaa et
al., 2003; Goloubeva et al., 2006).

Design overheads and amortized cost. While hardware
redundancy can be labeled “expensive” in area and
power, the analysis shows that amortized cost against
mission-critical failure consequences often favors
hardware-level investment in domains with high failure
impact (e.g., space systems, medical devices).
Conversely, for consumer-edge devices or soft real-time
prediction-serving services, software-based mitigations
and intelligent provisioning often yield a better cost-
benefit ratio (Santos et al., 2020; Crankshaw et al.,
2020).

Discussion

This section interprets the results in depth, explores
counter-arguments, identifies limitations, and sketches
future research directions that emerge from
synthesizing the literature.

Interpreting the synthesis: converging evidence for
hybrid strategies. A dominant theme in the references is
that no single mitigation strategy universally dominates;
instead, hybrid solutions that combine hardware
redundancy, software monitoring, and system-level
provisioning produce robust, cost-aware outcomes
(Blasi et al., 2019; Goloubeva et al., 2006; Crankshaw et
al., 2020). The theoretical foundations of hybridization
rest on diversity and layered detection: hardware offers
low-latency detection and simple semantics for safety

The American Journal of Applied Sciences

20

certification, while software adds semantic checks,
graceful degradation, and field-upgradable logic.
System-level provisioning, particularly for Ilatency-
sensitive inference pipelines, must be cognizant of
redundancy-induced resource needs to avoid
undermining latency guarantees.

Trade-offs: latency vs. reliability vs. cost. An inescapable
trade-off triangle governs design decisions. Full
hardware redundancy moves a design toward high
reliability and deterministic behavior at the cost of
latency-insensitive resource consumption (e.g.,
additional cores may increase power draw but do not
necessarily increase critical path latency). Software
redundancy can be more lightweight in hardware cost
but often increases detection and recovery latency,
which may be unacceptable for hard real-time control
loops (Gomaa et al., 2003; Blasi et al., 2019). System-
level provisioning can mitigate some latency costs by
allocating more compute capacity dynamically, but this
inflates operating costs and complicates scheduling in
constrained environments (Crankshaw et al., 2020).

Counter-arguments and nuanced positions. Some
proponents of software-implemented techniques argue
that advances in compiler-assisted duplication and
lightweight transactional memory make software
approaches sufficiently robust even for aggressive
environments (Goloubeva et al, 2006). The
counterpoint—grounded in empirical radiation testing
(Wilson et al., 2019)—is that certain classes of faults
(e.g., single-event functional interrupts, configuration
memory upsets in SRAM-based FPGAs) can undermine
software-layer assumptions and require lower-level
mitigation. Therefore, software approaches are
necessary but not sufficient in several high-risk domains.

Statistical validation: strengths and pitfalls. Statistical
fault injection provides a scalable method for estimating
failure probabilities, but its effectiveness depends
critically on the fidelity of the injection model and the
representativeness of the sample space (Leveugle et al.,
2009). Poorly parameterized injections can produce
optimistic assurances; conversely, overly conservative
models may force unnecessary design complexity.
Integrating statistical injection with targeted physical
testing (e.g., neutron radiation tests for FPGA soft cores)
yields balanced and economically defensible validation
strategies (Wilson et al., 2019). The literature suggests
using statistical injection early in the design cycle to
guide focus and physical testing later to validate the
most critical failure modes (Leveugle et al., 2009).

Certification and standards implications. The adoption
of RISC-V in fault-tolerant research underscores the

https://www.theamericanjournals.com/index.php/tajas

need for ecosystem-level standards that reconcile
openness with safety assurance (Li et al., 2022; Blasi et
al., 2019). Automotive standards require traceability and
deterministic behavior, which favor hardware
redundancy and watchdog-controlled isolation; space
systems mandate radiation hardening and rigorous
testing (Abdul Karim, 2023; Fayyaz & Vladimirova, 2014).
A key implication is that design choices should be
sensitive to certification paths: adopting software-only
mitigations may complicate certification and liability
assignments in regulated industries.

Operational considerations: deployment, maintenance,
and field updates. One advantage of software-
implemented approaches is field upgradability, enabling
iterative hardening and bug fixes post-deployment;
hardware redundancy lacks this flexibility.
Consequently, a pragmatic approach is to combine
hardened hardware for the most critical functions with
flexible software for peripheral tasks and for deploying
patches as new vulnerabilities or failure modes appear
(Santos et al., 2020; Goloubeva et al., 2006). This pattern
is particularly relevant for long-lived space and industrial
assets where post-launch updates are either impossible
or extremely costly.

Limitations of the synthesis. While the integrative
framework draws robustly from the provided literature,
its limitations include: (1) absence of new experimental
validation within this article, (2) potential biases
inherited from the cited works’ experimental
methodologies, and (3) the reliance on the set of
references supplied, which—while diverse—does not
exhaust the full global literature on the topic. These
limitations underscore the need for empirical follow-
ups, ideally cross-domain testbeds that evaluate hybrid
strategies under representative mission profiles
(Gomez-Cornejo et al., 2013; Santos et al., 2020).

Future research directions. Several promising avenues
arise:

Cross-domain testbeds that combine radiation testing,
automotive environmental stressors, and real-time
inference workloads to evaluate hybrid strategies
holistically (Wilson et al., 2019; Foudeh et al., 2021).

Improved statistical fault-injection frameworks that
integrate correlated-failure models to capture supply-
domain and software-toolchain correlations (Leveugle
et al., 2009; Hagen, 2006).

Co-design methodologies that formalize safety-security
pattern libraries and semantically rich architectural
templates to accelerate certified deployments (Dantas &
Nigam, 2023)

The American Journal of Applied Sciences

21

Research into economical diversity: methods to achieve
uncorrelated redundancy without duplicating expensive
silicon, such as mixed-vendor soft cores, compiler-level
diversity, and heterogenous isolation schemes (Gomaa
et al., 2003; Goloubeva et al., 2006).

Conclusion

This synthesis has articulated a unified perspective on
fault-tolerant architecture design by systematically
drawing on the provided literature. The central thesis is
that resilient systems are best realized through hybrid
approaches that combine hardware redundancy for
deterministic, low-latency detection and fail-stop
semantics; software-implemented techniques for
flexibility, field updateability, and semantic checks;
statistical injection and targeted physical testing for
validation; and system-level provisioning to ensure
latency and resource constraints are met in operational
settings. Domain-specific constraints—whether
radiation exposure in space, safety certification in
automotive domains, or stringent latency in edge
inference—guide the weighting of these components
within solutions.

Key practical takeaways for designers include: (1)
prioritize hardware redundancy for mission-critical
control functions where certification and determinism
are essential (Abdul Karim, 2023; Blasi et al., 2019); (2)
use software techniques to augment and extend
detection capabilities while enabling maintainability
(Goloubeva et al., 2006); (3) employ statistical injection
early and physical testing for the most impactful failure
modes (Leveugle et al., 2009; Wilson et al., 2019); and
(4) integrate latency-aware provisioning when
prediction-serving operations are involved to avoid
inadvertent performance reliability trade-offs
(Crankshaw et al., 2020).

Ultimately, the pathway to robust, cost-effective
resilient architectures is neither purely hardware nor
purely software—it is a carefully engineered confluence
of both, validated by rigorous statistical and physical
testing regimes, and tailored to the demands of each
application domain. The conceptual framework and
detailed trade-off elaborations presented here aim to
guide future empirical work and standardization efforts
that will bring these hybrid strategies into production
systems with confidence.

References

1. Crankshaw, D., Sela, G. E., Mo, X., Zumar, C., Stoica,
I, Gonzalez, J., & Tumanov, A. (2020, October).
InferLine: latency-aware provisioning and scaling for

prediction serving pipelines. In Proceedings of the

https://www.theamericanjournals.com/index.php/tajas

10.

11.

12.

13.

14.

11th ACM Symposium on Cloud Computing (pp. 477-
491).

Dantas, Y. G., & Nigam, V. (2023). Automating safety
and security co-design through semantically rich
architecture patterns. ACM Transactions on Cyber-
Physical Systems, 7(1), 1-28.

Foudeh, H. A, Luk, P. C. K., & Whidborne, J. F.
(2021). An advanced unmanned aerial vehicle (UAV)
approach via learning-based control for overhead
power line monitoring: A comprehensive review.
IEEE Access, 9, 130410-130433.

Li, J., et al. (2022). Duckcore: A fault-tolerant
processor core architecture based on the RISC-V ISA.
Electronics, 11(1).

Blasi, L., et al. (2019). A RISC-V fault-tolerant
microcontroller core architecture based on a
hardware thread full/partial protection and a
thread-controlled watchdog timer. In APPLEPIES,
2019, pp. 505-511.

Wilson, A. E., et al. (2019). Neutron radiation testing
of fault tolerant RISC-V soft processor on Xilinx
SRAM-based FPGAs. In IEEE SCC, 2019, pp. 25-32.
Santos, D. A,, et al. (2020). A low-cost fault-tolerant
RISC-V processor for space systems. In DTIS, 2020,
pp. 1-5.

Leveugle, R., et al. (2009). Statistical fault injection:
Quantified error and confidence. In IEEE/ACM DATE,
2009, pp. 502-506.

Fayyaz, M., & Vladimirova, T. (2014). Fault-tolerant
distributed approach to satellite on-board computer
design. In 2014 |IEEE Aerospace Conference. ISSN
1095-323X.

Ginosar, R. (2012). Survey of processors for space. In
DASIA, 2012, pp. 1-5.

Goloubeva, 0., et al. (2006). Software-implemented
hardware fault tolerance. Springer Science &
Business Media, 2006.

Abdul Salam Abdul Karim. (2023). Fault-Tolerant
Dual-Core Lockstep Architecture for Automotive
Zonal Controllers Using NXP S32G Processors.
International Journal of Intelligent Systems and
Applications in Engineering, 11(11s), 877-885.
Retrieved from
https://ijisae.org/index.php/IJISAE/article/view/77
49

Gomaa, M. A,, et al. (2003). Transient-fault recovery
for chip multiprocessors. IEEE Micro, 23(6), 76-83.
Gomez-Cornejo, J., et al. (2013). Fast context
reloading lockstep approach for SEUs mitigation in a
FPGA soft core processor. In IECON 2013 - 39th
Annual Conference of the IEEE Industrial Electronics
Society, pp. 2261-2266.

The American Journal of Applied Sciences

22

15. Hagen, W. von. (2006). The Definitive Guide to GCC.
2nd ed. Apress.

https://www.theamericanjournals.com/index.php/tajas

https://ijisae.org/index.php/IJISAE/article/view/7749
https://ijisae.org/index.php/IJISAE/article/view/7749
https://ijisae.org/index.php/IJISAE/article/view/7749
https://ijisae.org/index.php/IJISAE/article/view/7749

