
The American Journal of Applied Sciences

17 https://www.theamericanjournals.com/index.php/tajas

TYPE Original Research

PAGE NO. 17-22

 OPEN ACCESS

SUBMITTED 21 August 2024

ACCEPTED 28 August 2024

PUBLISHED 22 September 2024

VOLUME Vol.06 Issue 09 2024

COPYRIGHT

© 2024 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

A Comprehensive Study on Fault-
Tolerant RISC-V Architectures and
Safety-Aware Cyber-Physical Systems
for Reliable Autonomous and Space
Computing

Dr. Adrian M. Keller
Department of Computer Engineering Helios Institute of

Technology, Zurich, Switzerland

Abstract: This article synthesizes contemporary theory

and practice in fault-tolerant microarchitectures with a

focus on RISC-V processor cores, dual-core lockstep

designs, software-implemented redundancy, and

latency-aware provisioning in prediction-serving

pipelines. Drawing exclusively on the provided

literature, it constructs an integrative perspective that

links radiation- and transient-fault mitigation strategies

from aerospace and satellite applications to safety-

critical domains such as automotive zonal controllers

and edge prediction services. The structured abstract

presents: (a) background emphasizing the confluence of

reliability, performance, and cost pressures; (b)

methods describing comparative, design-oriented, and

analytical approaches distilled from the references; (c)

key thematic results synthesizing hardware-and-

software co-design patterns, statistical injection

frameworks, thread protection techniques, and system-

level provisioning trade-offs; and (d) conclusions

outlining research directions, practical

recommendations, and limitations. This contribution

does not present new empirical measurements but

offers a deep theoretical elaboration that clarifies design

choices, exposes nuanced trade-offs, and proposes a

unified framework for future experimental validation

and standardization.

Keywords: Fault tolerance, RISC-V, lockstep

architectures, radiation effects, safety co-design,

prediction-serving pipelines

Introduction

The contemporary landscape of embedded and

distributed computing is characterized by an

accelerating demand for computational capability at the

edge, strong constraints on cost and power, and

The American Journal of Applied Sciences

18 https://www.theamericanjournals.com/index.php/tajas

pervasive expectations of reliability in hostile

environments. These pressures converge across

domains as diverse as spaceborne systems—where

ionizing radiation and single-event upsets (SEUs)

present existential threats to computation—and

automotive zonal controllers—where safety-critical

operation demands predictable, certified behavior

under fault conditions (Fayyaz & Vladimirova, 2014;

Abdul Karim, 2023). At the same time, novel service

models such as prediction-serving pipelines deliver low-

latency, high-throughput inference close to users, and

they rely on careful provisioning and scaling to balance

performance objectives against resource usage

(Crankshaw et al., 2020). These research vectors share a

common problem statement: how to design

architectures and systems that robustly tolerate faults—

transient, permanent, and systemic—without

prohibitive increases in cost, energy, or latency.

Extant literature provides a multiplicity of partial

solutions. Hardware-level redundancy and lockstep

execution approaches promise deterministic error

masking and straightforward certification paths when

implemented on diverse platforms (Abdul Karim, 2023;

Blasi et al., 2019). RISC-V, an open ISA, has become a

fertile ground for fault-tolerant microcontroller and

processor research because it enables architectural

experimentation with minimal licensing friction (Li et al.,

2022; Santos et al., 2020). Complementary to hardware

redundancy, software-implemented approaches offer

flexibility, lower upfront cost, and faster iteration cycles;

these approaches include checkpoint/recovery, thread-

level monitoring, and semantic recovery schemes

(Goloubeva et al., 2006; Gomez-Cornejo et al., 2013).

The safety and security co-design movement

emphasizes that achieving dependable systems requires

semantics-aware architectural patterns and tooling that

bring safety constraints into the architectural design

process (Dantas & Nigam, 2023).

However, several gaps persist. First, the literature often

treats radiation-hardened designs for space and low-

latency edge services as separate domains, yielding

fragmented design heuristics that are not readily

reconcilable for multi-domain platforms (Ginosar, 2012;

Foudeh et al., 2021). Second, statistical methods for

fault-injection and confidence estimation—necessary

for predicting field reliability without exhaustive

testing—remain underutilized or inconsistent across

studies, complicating cross-comparison and engineering

decision-making (Leveugle et al., 2009). Third, trade-offs

between latency-aware provisioning in prediction-

serving systems and reliability provisioning in fault-

tolerant hardware are rarely integrated, even though

many modern applications (e.g., autonomous drones

performing power-line inspections) combine both real-

time inference and radiation or environmental exposure

(Foudeh et al., 2021; Crankshaw et al., 2020). This article

synthesizes the provided references to close these gaps

by constructing an integrated, theory-rich framework

for fault-tolerant architectural design that explicitly

accounts for domain-specific constraints, statistical

validation, and operational provisioning.

Methodology

 The methodological approach taken in this synthesis is

analytical and comparative rather than experimental. It

consists of three complementary activities: (1)

extraction and classification of design primitives from

the reference set, (2) construction of an integrative

design space that maps primitives to system-level goals,

and (3) theoretical elaboration of trade-offs, supported

by citations to the primary sources.

Extraction and classification. Each reference was

examined for architectural mechanisms, validation

techniques, and system-level practices relevant to fault

tolerance. The mechanisms were categorized into

hardware redundancy (e.g., lockstep cores, dual-core

lockstep, thread-controlled watchdogs), software

redundancy (e.g., software-implemented hardware

fault tolerance, checkpointing, thread-level

redundancy), validation methodologies (e.g., statistical

fault injection, neutron radiation testing), and system

provisioning strategies (e.g., latency-aware scaling for

prediction-serving). The classification emphasizes cross-

cutting properties: determinism, detection latency,

recovery latency, resource overhead (area, power, and

cost), implementation complexity, and suitability for

certification.

Integrative design space construction. Building upon the

classification, design primitives were placed within a

conceptual design space spanned by axes representing

(A) fault model severity (transient vs. permanent), (B)

temporal constraints (soft real-time vs. hard real-time),

(C) resource constraints (area/power/cost sensitivity),

and (D) verification maturity (from simulation to

radiation testing). The mapping associates each

primitive with regions of the design space where it offers

favorable trade-offs. For instance, full lockstep

hardware maps to high-severity fault models and hard

real-time constraints but to high resource overhead;

software-implemented redundancy maps to lower-cost

regions where recovery latency can be tolerated (Blasi

et al., 2019; Goloubeva et al., 2006).

Theoretical elaboration and synthesis. For each region

and primitive, the article develops detailed arguments

The American Journal of Applied Sciences

19 https://www.theamericanjournals.com/index.php/tajas

about mechanism operation, interactions with adjacent

primitives, cumulative overhead, and validation

expectations. Theoretical discussion draws on statistical

injection methods for quantifying fault coverage and

confidence intervals (Leveugle et al., 2009), empirical

radiation testing to anchor expectations under extreme

conditions (Wilson et al., 2019), and modern

provisioning approaches for low-latency pipelines

(Crankshaw et al., 2020). Where literature makes explicit

empirical claims (e.g., neutron testing results), those

claims are restated and integrated; where literature

proposes architectures (e.g., Duckcore, RISC-V fault-

tolerant microcontrollers), the paper extrapolates

design consequences and possible combinations.

Limitations of methodology. Because this work

synthesizes rather than empirically measures, its

contributions are conceptual and prescriptive. The

emphasis on theoretical elaboration is intentional to

produce a rigorous roadmap that experimentalists and

system designers can use to instantiate and test

architectures in domain-specific contexts (Gomaa et al.,

2003; Santos et al., 2020).

Results

 This section distills the principal outcomes of the

analytical process: a taxonomy of resilient primitives, an

articulated mapping between domain demands and

recommended patterns, and a set of theoretical

performance-reliability trade-offs that inform practical

design choices.

Taxonomy of resilient primitives. The literature suggests

a rich palette of primitives:

Full lockstep hardware redundancy: Two or more cores

execute the same instruction stream synchronously,

with built-in comparators to detect divergence. This

approach offers deterministic failure detection and

simple fail-stop semantics that assist certification

processes (Abdul Karim, 2023; Blasi et al., 2019).

Partial/thread-level hardware protection with

watchdogs: This primitive combines hardware thread

isolation and watchdog timers to detect stuck threads or

livelock conditions, allowing selective protection that

reduces area/power overhead compared with full-core

duplication (Blasi et al., 2019).

Software-implemented hardware fault tolerance

(SIHFT): Techniques delivered in software to emulate

hardware redundancy through instruction-level

duplication, N-version programming, or

checkpoint/restart. SIHFT shifts cost from silicon to

code, permitting deployment on commodity devices

while accepting variable detection and recovery

latencies (Goloubeva et al., 2006).

Radiation-tested soft cores and hardened

microcontrollers: Empirical approaches emphasize that

soft cores implemented on SRAM-based FPGAs require

radiation testing (e.g., neutron testing) to understand

field failure rates; results guide architectural hardening

or operational mitigation (Wilson et al., 2019; Santos et

al., 2020).

Statistical fault injection: A validation primitive to

estimate fault coverage and confidence using

probabilistic sampling of fault modes; it provides a

structured way to reason about expected failure rates

without exhaustive real-world testing (Leveugle et al.,

2009)

System-level latency-aware provisioning: For services

such as online prediction-serving, dynamic provisioning

minimizes latency while considering resource budgets; it

is orthogonal but complementary to resilience

measures, and it's essential when inference is part of a

safety-critical pipeline (Crankshaw et al., 2020).

Mapping primitives to domains. By mapping the

taxonomy to domain-specific demands, the analysis

produces the following recommendations:

Space systems and satellites: Favor hardware-level

redundancy (e.g., lockstep or dual-core lockstep)

combined with radiation-tested components. The

severe fault model (ionizing radiation, single-event

latchups) and certification needs argue for

deterministic, low-detection-latency mechanisms;

software techniques can be layered for additional

coverage but are insufficient as sole mitigation (Fayyaz

& Vladimirova, 2014; Wilson et al., 2019; Ginosar, 2012).

Automotive zonal controllers and safety-critical

vehicles: Dual-core lockstep and hardware thread

protection are compelling because automotive systems

require predictable behavior and need to meet safety

standards; however, cost constraints favor partial

protection where acceptable and SIHFT in adjacently

non-critical domains (Abdul Karim, 2023; Blasi et al.,

2019).

Unmanned aerial vehicles and edge inference platforms:

These combine environmental exposure with strict

latency constraints for perception and control. A hybrid

approach is recommended: hardware redundancy for

critical control loops, software-implemented validation

for inference tasks, and latency-aware provisioning for

prediction-serving pipelines to guarantee the required

response times (Foudeh et al., 2021; Crankshaw et al.,

2020).

The American Journal of Applied Sciences

20 https://www.theamericanjournals.com/index.php/tajas

Quantitative reasoning and validation practices. The

synthesis emphasizes that confidence in resilience

claims depends on rigorous validation. Statistical

injection methods provide a path to estimate fault rates

and characterize error distributions; these methods

complement radiation testing and operational field data

(Leveugle et al., 2009; Wilson et al., 2019). For instance,

statistical fault injection can identify weak coverage

regimes that radiation testing should prioritize, thereby

creating an efficient validation schedule that maximizes

information per test dollar.

Interaction effects and systemic risk. A salient result is

the recognition that resilience mechanisms interact

nonlinearly. For example, redundant cores that share

the same supply domain can experience correlated

failures under a single-event transient that affects

power rails, reducing the assumed independence

advantage of duplication. Similarly, software

redundancy that relies on the same compiler and

runtime (e.g., GCC toolchains) can suffer correlated

faults due to shared compiler bugs or runtime library

vulnerabilities (Hagen, 2006). Thus, achieving true

diversity—across hardware, software, and operational

modes—is crucial for high-assurance systems (Gomaa et

al., 2003; Goloubeva et al., 2006).

Design overheads and amortized cost. While hardware

redundancy can be labeled “expensive” in area and

power, the analysis shows that amortized cost against

mission-critical failure consequences often favors

hardware-level investment in domains with high failure

impact (e.g., space systems, medical devices).

Conversely, for consumer-edge devices or soft real-time

prediction-serving services, software-based mitigations

and intelligent provisioning often yield a better cost-

benefit ratio (Santos et al., 2020; Crankshaw et al.,

2020).

Discussion

 This section interprets the results in depth, explores

counter-arguments, identifies limitations, and sketches

future research directions that emerge from

synthesizing the literature.

Interpreting the synthesis: converging evidence for

hybrid strategies. A dominant theme in the references is

that no single mitigation strategy universally dominates;

instead, hybrid solutions that combine hardware

redundancy, software monitoring, and system-level

provisioning produce robust, cost-aware outcomes

(Blasi et al., 2019; Goloubeva et al., 2006; Crankshaw et

al., 2020). The theoretical foundations of hybridization

rest on diversity and layered detection: hardware offers

low-latency detection and simple semantics for safety

certification, while software adds semantic checks,

graceful degradation, and field-upgradable logic.

System-level provisioning, particularly for latency-

sensitive inference pipelines, must be cognizant of

redundancy-induced resource needs to avoid

undermining latency guarantees.

Trade-offs: latency vs. reliability vs. cost. An inescapable

trade-off triangle governs design decisions. Full

hardware redundancy moves a design toward high

reliability and deterministic behavior at the cost of

latency-insensitive resource consumption (e.g.,

additional cores may increase power draw but do not

necessarily increase critical path latency). Software

redundancy can be more lightweight in hardware cost

but often increases detection and recovery latency,

which may be unacceptable for hard real-time control

loops (Gomaa et al., 2003; Blasi et al., 2019). System-

level provisioning can mitigate some latency costs by

allocating more compute capacity dynamically, but this

inflates operating costs and complicates scheduling in

constrained environments (Crankshaw et al., 2020).

Counter-arguments and nuanced positions. Some

proponents of software-implemented techniques argue

that advances in compiler-assisted duplication and

lightweight transactional memory make software

approaches sufficiently robust even for aggressive

environments (Goloubeva et al., 2006). The

counterpoint—grounded in empirical radiation testing

(Wilson et al., 2019)—is that certain classes of faults

(e.g., single-event functional interrupts, configuration

memory upsets in SRAM-based FPGAs) can undermine

software-layer assumptions and require lower-level

mitigation. Therefore, software approaches are

necessary but not sufficient in several high-risk domains.

Statistical validation: strengths and pitfalls. Statistical

fault injection provides a scalable method for estimating

failure probabilities, but its effectiveness depends

critically on the fidelity of the injection model and the

representativeness of the sample space (Leveugle et al.,

2009). Poorly parameterized injections can produce

optimistic assurances; conversely, overly conservative

models may force unnecessary design complexity.

Integrating statistical injection with targeted physical

testing (e.g., neutron radiation tests for FPGA soft cores)

yields balanced and economically defensible validation

strategies (Wilson et al., 2019). The literature suggests

using statistical injection early in the design cycle to

guide focus and physical testing later to validate the

most critical failure modes (Leveugle et al., 2009).

Certification and standards implications. The adoption

of RISC-V in fault-tolerant research underscores the

The American Journal of Applied Sciences

21 https://www.theamericanjournals.com/index.php/tajas

need for ecosystem-level standards that reconcile

openness with safety assurance (Li et al., 2022; Blasi et

al., 2019). Automotive standards require traceability and

deterministic behavior, which favor hardware

redundancy and watchdog-controlled isolation; space

systems mandate radiation hardening and rigorous

testing (Abdul Karim, 2023; Fayyaz & Vladimirova, 2014).

A key implication is that design choices should be

sensitive to certification paths: adopting software-only

mitigations may complicate certification and liability

assignments in regulated industries.

Operational considerations: deployment, maintenance,

and field updates. One advantage of software-

implemented approaches is field upgradability, enabling

iterative hardening and bug fixes post-deployment;

hardware redundancy lacks this flexibility.

Consequently, a pragmatic approach is to combine

hardened hardware for the most critical functions with

flexible software for peripheral tasks and for deploying

patches as new vulnerabilities or failure modes appear

(Santos et al., 2020; Goloubeva et al., 2006). This pattern

is particularly relevant for long-lived space and industrial

assets where post-launch updates are either impossible

or extremely costly.

Limitations of the synthesis. While the integrative

framework draws robustly from the provided literature,

its limitations include: (1) absence of new experimental

validation within this article, (2) potential biases

inherited from the cited works’ experimental

methodologies, and (3) the reliance on the set of

references supplied, which—while diverse—does not

exhaust the full global literature on the topic. These

limitations underscore the need for empirical follow-

ups, ideally cross-domain testbeds that evaluate hybrid

strategies under representative mission profiles

(Gomez-Cornejo et al., 2013; Santos et al., 2020).

Future research directions. Several promising avenues

arise:

Cross-domain testbeds that combine radiation testing,

automotive environmental stressors, and real-time

inference workloads to evaluate hybrid strategies

holistically (Wilson et al., 2019; Foudeh et al., 2021).

Improved statistical fault-injection frameworks that

integrate correlated-failure models to capture supply-

domain and software-toolchain correlations (Leveugle

et al., 2009; Hagen, 2006).

Co-design methodologies that formalize safety-security

pattern libraries and semantically rich architectural

templates to accelerate certified deployments (Dantas &

Nigam, 2023)

Research into economical diversity: methods to achieve

uncorrelated redundancy without duplicating expensive

silicon, such as mixed-vendor soft cores, compiler-level

diversity, and heterogenous isolation schemes (Gomaa

et al., 2003; Goloubeva et al., 2006).

Conclusion

 This synthesis has articulated a unified perspective on

fault-tolerant architecture design by systematically

drawing on the provided literature. The central thesis is

that resilient systems are best realized through hybrid

approaches that combine hardware redundancy for

deterministic, low-latency detection and fail-stop

semantics; software-implemented techniques for

flexibility, field updateability, and semantic checks;

statistical injection and targeted physical testing for

validation; and system-level provisioning to ensure

latency and resource constraints are met in operational

settings. Domain-specific constraints—whether

radiation exposure in space, safety certification in

automotive domains, or stringent latency in edge

inference—guide the weighting of these components

within solutions.

Key practical takeaways for designers include: (1)

prioritize hardware redundancy for mission-critical

control functions where certification and determinism

are essential (Abdul Karim, 2023; Blasi et al., 2019); (2)

use software techniques to augment and extend

detection capabilities while enabling maintainability

(Goloubeva et al., 2006); (3) employ statistical injection

early and physical testing for the most impactful failure

modes (Leveugle et al., 2009; Wilson et al., 2019); and

(4) integrate latency-aware provisioning when

prediction-serving operations are involved to avoid

inadvertent performance reliability trade-offs

(Crankshaw et al., 2020).

Ultimately, the pathway to robust, cost-effective

resilient architectures is neither purely hardware nor

purely software—it is a carefully engineered confluence

of both, validated by rigorous statistical and physical

testing regimes, and tailored to the demands of each

application domain. The conceptual framework and

detailed trade-off elaborations presented here aim to

guide future empirical work and standardization efforts

that will bring these hybrid strategies into production

systems with confidence.

References

1. Crankshaw, D., Sela, G. E., Mo, X., Zumar, C., Stoica,

I., Gonzalez, J., & Tumanov, A. (2020, October).

InferLine: latency-aware provisioning and scaling for

prediction serving pipelines. In Proceedings of the

The American Journal of Applied Sciences

22 https://www.theamericanjournals.com/index.php/tajas

11th ACM Symposium on Cloud Computing (pp. 477-

491).

2. Dantas, Y. G., & Nigam, V. (2023). Automating safety

and security co-design through semantically rich

architecture patterns. ACM Transactions on Cyber-

Physical Systems, 7(1), 1-28.

3. Foudeh, H. A., Luk, P. C. K., & Whidborne, J. F.

(2021). An advanced unmanned aerial vehicle (UAV)

approach via learning-based control for overhead

power line monitoring: A comprehensive review.

IEEE Access, 9, 130410-130433.

4. Li, J., et al. (2022). Duckcore: A fault-tolerant

processor core architecture based on the RISC-V ISA.

Electronics, 11(1).

5. Blasi, L., et al. (2019). A RISC-V fault-tolerant

microcontroller core architecture based on a

hardware thread full/partial protection and a

thread-controlled watchdog timer. In APPLEPIES,

2019, pp. 505–511.

6. Wilson, A. E., et al. (2019). Neutron radiation testing

of fault tolerant RISC-V soft processor on Xilinx

SRAM-based FPGAs. In IEEE SCC, 2019, pp. 25–32.

7. Santos, D. A., et al. (2020). A low-cost fault-tolerant

RISC-V processor for space systems. In DTIS, 2020,

pp. 1–5.

8. Leveugle, R., et al. (2009). Statistical fault injection:

Quantified error and confidence. In IEEE/ACM DATE,

2009, pp. 502–506.

9. Fayyaz, M., & Vladimirova, T. (2014). Fault-tolerant

distributed approach to satellite on-board computer

design. In 2014 IEEE Aerospace Conference. ISSN

1095-323X.

10. Ginosar, R. (2012). Survey of processors for space. In

DASIA, 2012, pp. 1–5.

11. Goloubeva, O., et al. (2006). Software-implemented

hardware fault tolerance. Springer Science &

Business Media, 2006.

12. Abdul Salam Abdul Karim. (2023). Fault-Tolerant

Dual-Core Lockstep Architecture for Automotive

Zonal Controllers Using NXP S32G Processors.

International Journal of Intelligent Systems and

Applications in Engineering, 11(11s), 877–885.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/77

49

13. Gomaa, M. A., et al. (2003). Transient-fault recovery

for chip multiprocessors. IEEE Micro, 23(6), 76–83.

14. Gomez-Cornejo, J., et al. (2013). Fast context

reloading lockstep approach for SEUs mitigation in a

FPGA soft core processor. In IECON 2013 - 39th

Annual Conference of the IEEE Industrial Electronics

Society, pp. 2261–2266.

15. Hagen, W. von. (2006). The Definitive Guide to GCC.

2nd ed. Apress.

https://ijisae.org/index.php/IJISAE/article/view/7749
https://ijisae.org/index.php/IJISAE/article/view/7749
https://ijisae.org/index.php/IJISAE/article/view/7749
https://ijisae.org/index.php/IJISAE/article/view/7749

