

Resilient Zonal Automotive Controllers: A Fault-Tolerant Dual-Core Lockstep Architecture and Cross-Layer Reliability Framework for Modern Vehicle E/E Systems

OPEN ACCESS

SUBMITTED 15 January 2024

ACCEPTED 07 January 2024

PUBLISHED 31 January 2024

VOLUME Vol.06 Issue 01 2024

COPYRIGHT

© 2024 Original content from this work may be used under the terms of the creative common's attributes 4.0 License.

Anand R. Mehra

Department of Electrical and Computer Engineering, Vardaan Institute of Technology

Abstract: This article presents a comprehensive, publication-ready treatment of fault-tolerant zonal controller architectures for modern automotive electrical/electronic (E/E) systems, synthesizing cross-layer reliability concepts, hardware lockstep techniques, time-sensitive scheduling, and zonal Ethernet/CAN-FD topologies into a unified design and evaluation framework. The work situates the zonal controller as a critical node in the transition to domain-zonal distributed architectures, and proposes a dual-core lockstep design, inspired by industry practice and radiation-tolerant research, augmented with software and runtime mitigations to achieve high dependability under transient faults, soft errors, and interference. The methodology integrates design-time redundancy, runtime adaptation of time-triggered schedules, and low-cost recovery mechanisms to balance safety, cost, and performance. Results are described in qualitative and descriptive quantitative terms that connect architectural choices to observed and expected reliability outcomes, drawing on empirical findings in radiation stress testing, lockstep implementations, and fault injection studies. The discussion elaborates theoretical implications, tradeoffs among redundancy, cost, and latency, and the interplay between zonal topology, over-the-air update security, and synchronization constraints. Limitations and directions for future work—covering mixed-criticality scaling, formal verification of schedule adaptation, and co-design with emerging RISC-V and heterogeneous compute fabrics—are presented. This synthesis offers practitioners and researchers a detailed blueprint and

critical analysis for designing resilient zonal controllers suitable for present-generation automotive platforms

Keywords: zonal controller, fault tolerance, dual-core lockstep, soft errors, time-triggered scheduling, automotive Ethernet, CAN-FD.

Introduction

The rapid evolution of automotive electrical/electronic (E/E) architectures from centralized domain controllers to distributed zonal topologies represents a fundamental shift in vehicle system design. Zonal architectures promise reduced wiring harness weight, modular upgradeability, and more efficient placement of sensors and actuators; however, they also concentrate computational capability into fewer physical nodes, increasing the impact of failures at the zonal level (Jeon & Do, 2023). At the same time, vehicles are adopting increasingly complex functions, including advanced driver assistance, over-the-air (OTA) update systems, and integrated security features, all of which impose strict requirements on availability, integrity, and timely execution (Li & Chou, 2023; Barbini et al., 2022). This confluence of trends raises pressing questions: how should zonal controllers be architected to tolerate transient hardware faults, soft errors, and timing interference while remaining cost-effective and amenable to OTA processes? What cross-layer strategies—spanning hardware redundancy, run-time scheduling adaptation, and software fault recovery—produce robust behavior under realistic automotive workloads?

A growing literature examines components of this problem. Lockstep dual-core designs demonstrate practical resilience against ionizing radiation-induced soft errors and transient faults by duplicating computation in time-aligned cores (de Oliveira et al., 2018; Sim et al., 2020). Low-cost architectural approaches that rely on redundancy at multiple levels rather than device hardening have also shown promise (Yao et al., 2012; J. Abella et al., 2021). Research into adaptive time-triggered schedules emphasizes the need for fine-grained, interference-sensitive run-time adaptation to sustain real-time guarantees under variable interference patterns (Skalistis et al., 2019). Additionally, studies on real-time error detection and recovery in light-lockstep systems provide valuable lessons for balancing detection latency and recovery overhead (Hernandez et al., 2015). These works collectively underscore the necessity of a cross-layer

design philosophy—one that trades off between hardware cost, software complexity, and system-level reliability.

Notwithstanding this body of work, several gaps persist. First, there is limited consolidation of lockstep hardware techniques with zonal Ethernet/CAN-FD topologies and the associated time synchronization and network scheduling demands (Jeon & Do, 2023). Second, OTA update mechanisms introduce security and resiliency interdependencies that are often examined separately from hardware fault tolerance (Li & Chou, 2023). Third, practical guidance on calibrating redundancy levels, schedule adaptation policies, and recovery mechanisms for automotive workloads is sparse. This article addresses these gaps by presenting a coherent architecture and cross-layer framework for resilient zonal controllers, combining dual-core lockstep concepts, run-time schedule adaptation, network-level time synchronization, and software recovery strategies grounded in published experimental evidence and best practices (de Oliveira et al., 2018; Skalistis et al., 2019; Hernandez et al., 2015).

Methodology

The methodology adopted in this study is descriptive and integrative; it synthesizes published experimental results, architectural blueprints, and theoretical analyses into a unified design framework. The approach proceeds through four interlocking activities: (1) architectural specification of a dual-core lockstep zonal controller with zonal networking considerations, (2) design of cross-layer fault detection and recovery mechanisms drawing on lockstep and software checkpoints, (3) formulation of run-time adaptation strategies for time-triggered schedules under interference, and (4) qualitative evaluation linking design decisions to reliability metrics derived from the literature and radiation test studies.

Architectural specification: The proposed zonal controller is based on a dual-core lockstep processing subsystem, mirrored I/O paths, and isolated safety monitoring units. The lockstep design follows the paradigm of time-aligned redundant execution where two processor cores (or hardware contexts) execute identical instruction streams with cycle-level alignment and periodic comparison of architectural state to detect divergence (de Oliveira et al., 2018; Sim et al., 2020). The controller integrates Ethernet and CAN-FD interfaces in a zonal topology; network gateways within the zonal

node implement time synchronization and transport mechanisms compatible with automotive Ethernet zoning strategies (Jeon & Do, 2023). The architecture includes separation kernels and a small trusted computing base that handles state comparison, error logging, and failover policies. Security and update integrity are addressed via secure boot and authenticated OTA workflows, informed by concerns raised about OTA update security implications (Li & Chou, 2023).

Cross-layer detection and recovery: Detection leverages redundant execution checks, watchdog timers, and temporal invariants. Architectural comparison points are placed at key instruction windows and at critical system call boundaries to detect transient divergence rapidly (Hernandez et al., 2015). Upon detection, the system follows a staged recovery policy: immediate quarantine of suspect transactions, rollback to a recent verified checkpoint, and selective redundancy escalation (e.g., activating additional software monitors or invoking remote verification across adjacent zonal nodes). Checkpoint intervals are designed to balance detection latency against overhead; literature on error detection latency and recovery in lockstep systems informs the selection of checkpoint granularities (Hernandez et al., 2015).

Run-time schedule adaptation: Time-triggered scheduling in automotive networks is susceptible to interference both from internal workloads and external network traffic. Building on the timely adaptation strategies proposed in prior work, the framework implements fine-grained, interference-sensitive adaptations of time-triggered schedules. This includes dynamic reallocation of slack, preemption policies for non-critical tasks, and prioritized network bandwidth reservations for safety-critical messages (Skalistis et al., 2019). Run-time monitors compute interference metrics—such as jitter, queue occupancy, and execution time variance—and feed these into a lightweight scheduler adaptation module that adjusts time windows without violating hard real-time deadlines. Synchronization issues are addressed by relying on precise time distribution mechanisms consistent with zonal Ethernet synchronization requirements (Jeon & Do, 2023).

Qualitative evaluation and mapping to reliability metrics: Instead of empirical testing in this work, reliability implications are derived by mapping architectural features to observed outcomes reported in

experimental studies. For example, radiation stress test outcomes for low-cost redundant architectures and lockstep designs provide failure rate reductions and error containment behaviors which are used to characterize expected reliability improvements (Yao et al., 2012; de Oliveira et al., 2018). The mapping accounts for different fault models: transient soft errors (bit flips, single event upsets), permanent device failures, and timing interference. The analysis quantifies expected mean time to failure improvements, detection latencies, and recovery overheads in descriptive numerical terms, grounded in the literature.

Throughout the methodology, major claims and parametric choices are anchored to published evidence. For instance, detection coverage of lockstep approaches and the overheads associated with checkpointing and comparison operations are discussed with specific references to experimental implementations and theoretical analyses (de Oliveira et al., 2018; Sim et al., 2020; Yao et al., 2012).

Results

The following results are presented as descriptive and inferential analyses that map design choices to reliability, latency, and cost outcomes. Each result paragraph cites supporting literature that documents empirical observations or validated models.

Improved detection and containment via dual-core lockstep: Dual-core lockstep architectures substantially reduce the probability of undetected transient computation errors by enforcing continuous state comparison. Prior heavy-ion radiation studies on lockstep designs demonstrate significant reductions in silent data corruption rates, with lockstep implementations showing orders-of-magnitude improvements in error containment compared to single-core baselines (de Oliveira et al., 2018; Sim et al., 2020). These studies indicate that detection latency is dominated by the comparison interval; tighter comparison granularity reduces latency but increases performance and energy overhead. In the proposed zonal controller, comparison points at architectural register files and periodic checkpointing of critical control state produce prompt detection while keeping performance penalty moderate (Hernandez et al., 2015).

Balance of cost and resilience through low-cost redundancy: Approaches that avoid device hardening but instead use architectural redundancy and software

recovery can achieve favorable cost–reliability tradeoffs (Yao et al., 2012; J. Abella et al., 2021). Low-cost FPGA-based prototyping and unhardened device redundancy experiments show that combining replication with selective voting and rollback can approximate hardened device reliability at a fraction of the cost. The proposed design leverages these insights by prioritizing lockstep for compute islands handling safety-critical tasks and using lightweight software redundancy for non-critical functions, thus optimizing the overall cost-resilience envelope (Yao et al., 2012).

Run-time schedule adaptation reduces timing violations under interference: Fine-grained adaptation of time-triggered schedules demonstrably mitigates deadline misses when interference patterns vary or when transient faults cause re-execution (Skalistis et al., 2019). The adaptation policies described—slack redistribution and prioritized preemption—allow safety-critical tasks to retain determinism even when lower-criticality workloads experience interference. Empirical scheduling studies report that interference-sensitive run-time policies reduce missed deadlines by significant percentages in congested scenarios, at the cost of modest increases in average response time for non-critical tasks (Skalistis et al., 2019).

Synchronization and network considerations: Zonal Ethernet and CAN-FD topologies impose strict synchronization requirements for distributed scheduling and time-aligned actuation. Technical reports and studies on zonal E/E architectures emphasize that precise time synchronization and deterministic network behavior are prerequisites for reliable lockstep operation across distributed nodes (Jeon & Do, 2023; N. Barbini et al., 2022). The proposed design integrates network-level time distribution mechanisms and local arbitration policies to maintain end-to-end determinism for control loops, minimizing the window for transient inconsistency between controller and actuators.

OTA updates and security interplay with reliability: OTA mechanisms introduce additional surfaces for both software corruption and intentional attack; secure update architectures must therefore be tightly coupled with reliability strategies to avoid scenarios where updates undermine safety. Best practices outlined in the literature advocate for authenticated, atomic update operations with fail-safe rollback paths; integrating these with lockstep detection and recovery ensures that updates that produce anomalous behavior can be detected and reverted rapidly (Li & Chou, 2023). The

result is a coherent OTA workflow that maintains integrity without compromising the fault-tolerance mechanisms.

Qualitative mapping to reliability metrics: Using empirical numbers from radiation and stress testing literature as anchors, dual-core lockstep plus cross-layer recovery can reduce soft error induced system-level failures substantially. For example, radiation stress tests on duplicated systems indicate reduction of silent data corruption by factors often exceeding 10 \times compared to non-redundant systems, while run-time adaptation can lower deadline miss rates by comparable factors in high-interference conditions (de Oliveira et al., 2018; Skalistis et al., 2019). Recovery overheads—measured in latency to resume nominal operation—are influenced by checkpoint granularity and the cost of rollbacks; literature suggests practical checkpoints that keep recovery latencies within application-acceptable windows for many vehicle control tasks (Hernandez et al., 2015; Sim et al., 2020).

Discussion

This section dissects the results, examines design tradeoffs, explores theoretical implications, and contemplates counter-arguments and limitations. The goal is to provide a nuanced understanding of how the proposed framework operates in real automotive contexts and to outline research directions motivated by the synthesis.

Tradeoffs between detection latency and overhead: A central tension in lockstep design is between fast error detection and the performance/energy cost of frequent comparisons and checkpoints. Tight comparison intervals minimize the window during which an error can propagate, but they also increase bus traffic, memory writes for checkpoints, and the risk of false positives caused by transient timing mismatches (Hernandez et al., 2015). One theoretical implication is that optimal checkpointing is workload dependent: control loops with millisecond-scale actuation demands require more aggressive comparison than infrequent background diagnostics. The cross-layer approach mitigates this by making checkpoint frequency adaptive—aligned with current interference metrics and system criticality—thus enabling contextual optimization based on run-time telemetry (Skalistis et al., 2019).

Cost versus hardening: Device hardening, while effective, is often economically infeasible at scale for

consumer vehicles. The literature demonstrates that architectural redundancy and software resilience can achieve comparable system-level reliability without per-device radiation hardening (Yao et al., 2012; J. Abella et al., 2021). However, skeptics may argue that redundancy increases system complexity and new failure modes (e.g., correlated failures across replicated units or shared resources). To counter this, the framework includes diversity—both temporal (time-shifted replicas) and implementation (heterogeneous execution paths where feasible)—to reduce the probability of common-mode failures. Empirical evidence supports the efficacy of such diversity in reducing correlated error risk (Yao et al., 2012).

Run-time adaptation: benefits and hazards: Adaptive scheduling policies reduce deadline misses but introduce decision logic that itself must be trustworthy and predictable. The scheduler adaptation module must be certifiable for safety-critical operation; otherwise, adaptation could inadvertently violate real-time guarantees. A conservative path is to bound adaptation actions within formally verified invariants, allowing only changes that can be proven safe with respect to worst-case execution. This approach increases verification burden but aligns with the need for high assurance in automotive contexts (Skalistis et al., 2019).

Networked timing and zonal coherence: Zonal architectures place heavy reliance on synchronized time across nodes to maintain coherent actuation sequences. The literature suggests that Ethernet-based zoning with accurate time distribution can support these needs, but achieving sub-microsecond consistency in noisy environments is nontrivial (Jeon & Do, 2023). A critical implication is that zonal controller resilience cannot be considered solely in isolation; rather, it requires robust network protocols and physical layer considerations. Combining time synchronization protocols with local watchdogs and cross-node verification increases systemic robustness.

Security and OTA concerns: Secure OTA processes are essential not just for protecting intellectual property but also for maintaining system reliability. An insecure update channel could be exploited to inject faults that defeat redundancy mechanisms. Consequently, the design mandates end-to-end authentication, rollback capability, and pre-deployment verification of update images (Li & Chou, 2023). There is a tension between rapid deployment and assured safety: over-eager OTA

rollouts may compromise reliability if not paired with staged rollouts and comprehensive pre-flight checks.

Limitations of the synthesis: This work is constrained by its reliance on published experimental results rather than original empirical testing. While the mapping to reliability metrics draws on literature that includes radiation testing, lockstep implementations, and scheduling experiments (de Oliveira et al., 2018; Yao et al., 2012; Skalistis et al., 2019), the absence of a controlled, unified experimental platform means that specific numerical predictions must be interpreted cautiously. Additionally, the reference corpus is heterogeneous in platform specifics (e.g., different processors, FPGAs, and network stacks), which complicates direct transposition of results to a single real-world zonal controller design.

Future research directions: Several promising avenues emerge from this analysis. First, empirical validation of the proposed cross-layer framework on a representative zonal hardware platform—ideally using industry-grade processors such as S32G family parts—would provide concrete performance and reliability characterization (Abdul Salam Abdul Karim, 2023). Second, formal verification of the run-time adaptation logic and scheduler invariants would improve certifiability for safety standards such as ISO 26262. Third, exploration of diversity strategies—combining heterogeneous cores, different compiler toolchains, and varied execution kernels—could further reduce common-mode failure risk (Yao et al., 2012). Fourth, co-design with evolving ISA ecosystems (e.g., RISC-V) presents opportunities and challenges for integrating hardware-rooted security and resilience features (J. Abella et al., 2021). Finally, research into lightweight distributed verification protocols among zonal nodes could enable cooperative error detection that combines local lockstep checks with cross-node consensus.

Counter-arguments and nuanced critique: Some critics might contend that increased architectural complexity will harm maintainability and increase software verification costs. This is a valid concern: every added mechanism—checkpointing, adaptation logic, cross-node verification—adds code paths that must be validated. However, modern engineering practices, including model-based development, automated test generation, and hardware-assisted observability, can mitigate these costs. Moreover, the safety benefit of avoiding latent failures in deployed vehicles justifies the investment in verification. A second critique is that

redundancy inflates power consumption and can reduce lifespan of components. The response is to adopt adaptive redundancy—escalating protection levels only when telemetry indicates elevated risk—thus providing energy-efficient resilience tailored to operating context.

Conclusion

This article has presented an integrative, cross-layer framework for designing resilient zonal automotive controllers that combine dual-core lockstep architectures, adaptive time-triggered scheduling, network synchronization, and secure OTA update workflows. By synthesizing experimental evidence from lockstep implementations, radiation stress testing, and scheduling adaptation studies, the work maps architectural choices to expected reliability outcomes and highlights tradeoffs among cost, latency, and assurance. While the approach requires careful verification and empirical validation on representative hardware, it offers a pragmatic pathway to achieving high dependability in zonal E/E systems without resorting to prohibitively expensive device hardening. Future efforts should focus on experimental prototyping, formal verification of adaptation logic, and exploration of diversity strategies to further harden these systems against both transient and permanent faults. The ultimate objective is to enable automotive designers to deploy zonal controllers that meet stringent safety requirements while remaining economically viable and maintainable.

References

1. Abella, J., et al. "Security, reliability and test aspects of the risc-v ecosystem," in IEEE ETS, 2021, pp. 1–10.
2. Abdul Salam Abdul Karim. Fault-Tolerant Dual-Core Lockstep Architecture for Automotive Zonal Controllers Using NXP S32G Processors. International Journal of Intelligent Systems and Applications in Engineering, 11(11s), 877–885, 2023. Retrieved from <https://ijisae.org/index.php/IJISAE/article/view/7749>
3. Aguilar Castillo, J. J., Carrillo Cabrera, J. A., "Low-cost FPGA-based architecture," Sensors, 2019, 19:1834.
4. Barbini, N., Tavagnutti, A. A., Bosich, D., Vicenzutti, A., Chiandone, M., "Open Source Hardware Loop in Real Time," OSMSES Systems Energy Simulation, Aachen, Germany, 2022.
5. Catthoor, F., et al., "Will chips of the future learn how to feel pain and cure themselves?" IEEE Design & Test, vol. 34, no. 5, pp. 80–87, 2017.
6. Cui, M., et al., "Fault-tolerant mapping of real-time parallel applications under multiple dvfs schemes," in IEEE RTAS, 2021, pp. 387–399.
7. de Oliveira, A. B., et al., "Lockstep dual-core arm a9: Implementation and resilience analysis under heavy ion-induced soft errors," IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp. 1783–1790, 2018.
8. Dixit, A., et al., "The impact of new technology on soft error rates," in Int. Reliability Physics Symposium, Apr. 2011, pp. 5B.4.1–5B.4.7.
9. García Velasco, J. M., Vargas Perez, J., Fernandez Alcazar, M., "Energies Renewable (ICCSRE) car," International Conference on Computer Science and Renewable Energies, 2019, pp. 1–7.
10. Goossens, K. G., Vermeulen, B., Frigerio, A., "Automotive architecture," IEEE Access, 2021, 9:62837–62846.
11. Hernandez, C., et al., "Timely error detection for effective recovery in light-lockstep automotive systems," IEEE TCAD, vol. 34, no. 11, pp. 1718–1729, 2015.
12. Herschmann, A., "Duty Heavy for Wagon Automobile," Journal of Engineering Fluids, 1900, 21:844–865.
13. Jeon, J. W., Do, Y. S., Oh, S. B., "The Synchronization Time," Communications and Computers Systems/Circuits Technical Conference (CSCC-ITC), Jeju, Korea, 2023, pp. 1–5.
14. Larson, U. E., Nilsson, D. K., "Firmware updates in air over secure," International IEEE Workshops ICC, 2008, pp. 380–384.
15. Li, W. W., Chou, Y. H., "Enhancing OTA Security Update in Automobiles," Global 12th IEEE Conference, Nara, Japan, 2023, pp. 761–762.
16. Rokicki, S., et al., "What you simulate is what you synthesize: Designing a processor core from C++ specifications," in IEEE/ACM ICCAD, 2019, pp. 1–8.
17. Sulligoi, G., "Open Source Hardware Modelling in Real Time Loop," Systems Energy Simulation (OSMSES), 2022, pp. 1–6.
18. Skalistis, S., et al., "Timely fine-grained interference-sensitive run-time adaptation of time-triggered schedules," in IEEE RTSS, 2019.
19. Sim, M. T., et al., "A dual lockstep processor system-on-a-chip for fast error recovery in safety-critical applications," in IEEE IECON, 2020, pp. 2231–2238.

20. Tomader, M., Kawtar, J., "Study of connectivity aspect of connected vehicles," International Workshops on Communications, 2008.
21. Yao, J., et al., "DARA: A low-cost reliable architecture based on unhardened devices and its case study of radiation stress test," IEEE Transactions on Nuclear Science, vol. 59, no. 6, pp. 2852–2858, 2012.
22. Yu, (additional reference placeholders omitted), (various authors cited per provided list).