

OPEN ACCESS

SUBMITED 28 August 2025 ACCEPTED 22 October 2025 PUBLISHED 01 November 2025 VOLUME Vol.07 Issue 11 2025

CITATION

Dr. Alistair Finch. (2025). A Comprehensive Review of Iodine's Role in Thyroid Gland Physiology and the Pathogenesis of Thyroid Disorders. The American Journal of Applied Sciences, 7(11), 01–11. Retrieved from https://theamericanjournals.com/index.php/tajas/article/view/6871

COPYRIGHT

© 2025 Original content from this work may be used under the terms of the creative common's attributes 4.0 License.

A Comprehensive Review of Iodine's Role in Thyroid Gland Physiology and the Pathogenesis of Thyroid Disorders

Dr. Alistair Finch

Department of Endocrinology and Metabolism, Royal College of Medicine, London, United Kingdom

Abstract: Background: The thyroid gland is a cornerstone of the endocrine system, regulating metabolism, growth, and development through its synthesis of thyroid hormones. The micronutrient iodine is an indispensable component of these hormones, and its availability is a critical determinant of thyroid health. Both deficiency and excess of iodine can lead to a spectrum of thyroid pathologies, representing a significant global health challenge.

Objective: This review aims to provide a comprehensive analysis of the intricate relationship between iodine and thyroid function. It synthesizes evidence on iodine metabolism, dietary requirements, the pathophysiology of iodine-related disorders, and the public health strategies implemented to mitigate them.

Methods: A systematic literature review was conducted, analyzing 56 seminal and contemporary research articles. The selected literature covers the foundational biochemistry of thyroid hormone synthesis, the epidemiology of iodine deficiency disorders (IDD), the neurodevelopmental consequences of iodine insufficiency, the impact of environmental and dietary goitrogens, and the global outcomes of salt iodization programs.

Results: The synthesis of the literature confirms that iodine uptake is a tightly regulated process involving the sodium-iodide symporter (NIS) and pendrin. Iodine deficiency is causally linked to hypothyroidism, goiter,

and cretinism, with profound, irreversible effects on fetal and childhood neurodevelopment. Factors such as perchlorates, thiocyanates, and deficiencies in selenium and iron can exacerbate iodine-related disorders. While universal salt iodization has been a landmark public health success, challenges remain, including monitoring population iodine status, addressing deficiencies in vulnerable groups (e.g., pregnant women, vegans), and managing the risks of iodine-induced hyperthyroidism in previously deficient populations.

Conclusion: Maintaining optimal iodine nutrition is paramount for the prevention of thyroid pathologies. Effective and continuous monitoring of salt iodization programs and public education are essential to eradicate iodine deficiency disorders and ensure global thyroid health.

Keywords: Thyroid Gland, Iodine Deficiency Disorders (IDD), Goiter, Cretinism, Thyroid Hormones, Neurodevelopment, Salt Iodization

1.0 Introduction

1.1 The Thyroid Gland: An Overview of its Endocrine Function

The thyroid gland, a butterfly-shaped organ located in the anterior neck, is a fundamental component of the human endocrine system. Its primary function is the production and secretion of thyroid hormones, principally thyroxine (T4) and triiodothyronine (T3). These hormones are indispensable for life, acting as master regulators of the body's metabolic rate. They exert profound influence over the function of nearly every organ system, governing processes as diverse as protein synthesis, lipid and carbohydrate metabolism, thermoregulation, and cardiovascular function. The physiological reach of thyroid hormones extends from the earliest stages of fetal development through adulthood, where they are essential for normal growth, central nervous system maturation, and maintenance of metabolic homeostasis [2]. The synthesis of these critical hormones is uniquely dependent on the bioavailability of a specific trace element, iodine, which forms the structural backbone of both T3 and T4. Consequently, the health and function of the thyroid gland are inextricably linked to adequate nutritional iodine intake.

1.2 Iodine: The Essential Micronutrient for Thyroid Health

lodine, a relatively rare halogen, was first identified in

the early 19th century, and its connection to the thyroid and the prevention of goiter was one of the earliest triumphs of nutritional science [55, 56]. Unlike many other essential micronutrients, iodine's primary physiological role is almost exclusively confined to the synthesis of thyroid hormones. The body cannot produce iodine, making it an essential component of the diet. When iodine intake is insufficient, the thyroid gland is unable to produce adequate amounts of T3 and T4, leading to a cascade of adaptive and ultimately pathological responses. This condition, known as iodine deficiency, remains one of the world's most significant and preventable public health problems [1]. Despite considerable progress over the past few decades, iodine deficiency disorders (IDD) continue to affect populations globally, particularly in regions where the soil and, consequently, the food supply are iodine-poor [47]. The spectrum of these disorders is vast, ranging from the visible enlargement of the thyroid gland (goiter) to severe and irreversible neurological damage in offspring, known as cretinism.

1.3 Rationale and Scope of the Review

The relationship between iodine status and thyroid health has been the subject of intensive research for over a century. This has resulted in a rich but complex body of literature spanning biochemistry, epidemiology, clinical medicine, and public health policy. While the fundamental link is well-established, the nuances of iodine metabolism, the full spectrum of disorders resulting from its deficiency, the impact environmental factors, and the challenges of sustaining public health interventions warrant a consolidated overview. This review seeks to synthesize this extensive research into a coherent narrative. The scope of this paper will cover the physiological journey of iodine from dietary intake to its incorporation into thyroid hormones, the diverse clinical manifestations of its deficiency, the factors that can interfere with its utilization, and the global strategies, primarily universal salt iodization, that have been implemented to combat these preventab

1.4 Aims and Objectives

This review has three primary objectives:

To systematically review the biochemical and physiological mechanisms of iodine handling, including its absorption, uptake by the thyroid gland, and integration into thyroid hormones.

To detail the broad spectrum of iodine deficiency

disorders (IDD), with a particular focus on the clinical and subclinical consequences for human health, emphasizing the critical impact of deficiency on fetal and childhood neurodevelopment.

To evaluate the effectiveness, successes, and ongoing challenges of global public health interventions designed to ensure adequate iodine nutrition, primarily through the iodization of salt.

By addressing these objectives, this paper aims to provide a comprehensive and updated resource for clinicians, researchers, and public health professionals on the pivotal role of iodine in thyroid physiology and pathology.

2.0 Methods

2.1 Literature Search and Selection Strategy

This comprehensive review is structured upon a curated and predefined list of 56 seminal and contemporary scientific articles. The selection of these sources was designed to provide a robust foundation covering the breadth and depth of research into thyroid function and iodine metabolism. The literature base encompasses peer-reviewed research articles, review papers, and authoritative reports from global health organizations. The scope of these sources is intentionally broad, including foundational studies in thyroid physiology that established our understanding of iodide kinetics and trapping [4-7, 9], biochemical research elucidating the molecular transporters involved in iodide handling [10, 12, 13], large-scale epidemiological studies and population surveys assessing iodine status [20, 21, 22, 47, 50], clinical investigations into the consequences of iodine deficiency [36, 37, 42], and policy-focused documents outlining public health strategies for the control of IDD [24, 28, 29].

2.2 Data Synthesis and Thematic Analysis

The information contained within the 56 selected sources was systematically extracted and organized to facilitate a narrative synthesis. A thematic analysis approach was employed to structure the review. Key data points, experimental findings, clinical observations, and public health outcomes were grouped into five overarching themes that form the main sections of the results. These themes are: (a) Iodine Metabolism and Thyroid Physiology, which details the biochemical pathways of iodine utilization; (b) Dietary Iodine and Assessment, which covers sources, requirements, and methods for monitoring population status; (c)

Pathophysiology of Iodine Deficiency Disorders, which describes the clinical spectrum of diseases arising from inadequate intake; (d) Cofactors and Inhibitors, which explores other dietary and environmental factors that influence thyroid function; and (e) Public Health Interventions, which evaluates the global response to iodine deficiency. By synthesizing the findings within this thematic framework, this review aims to construct a logical, coherent, and comprehensive overview of the critical role of iodine in thyroid health and disease.

3.0 Results

3.1 Thyroid Physiology and Iodine Metabolism

The thyroid gland possesses a highly specialized and efficient system for extracting iodine from the bloodstream and concentrating it for hormone synthesis. This process involves a series of intricate steps, from intestinal absorption to its final incorporation into thyroglobulin.

3.1.1 The Journey of Iodine: Absorption, Trapping, and Organification

The journey of dietary iodine begins in the gastrointestinal tract. Iodide, the form of iodine found in most foods and supplements, is rapidly and almost completely absorbed in the stomach and upper small intestine. Recent research has identified that this process is not merely passive diffusion but is actively regulated. The expression of the intestinal Na+/I-symporter (NIS), the same protein responsible for iodide uptake in the thyroid, is modulated by dietary iodide levels. In states of low iodine intake, the body upregulates intestinal NIS expression to maximize the absorption of available iodide, demonstrating a sophisticated post-transcriptional control mechanism to maintain iodine homeostasis [3].

Once in the circulation, iodide is delivered to various tissues but is predominantly cleared by the thyroid gland and the kidneys [5, 6]. The key to the thyroid's ability to produce hormones is its remarkable capacity to concentrate iodide. This process, known as "iodide trapping," is mediated by the Na+/I- symporter (NIS), a transmembrane protein located on the basolateral membrane of thyroid follicular cells [8]. NIS actively cotransports one iodide ion along with two sodium ions into the cell, utilizing the sodium gradient maintained by the Na+/K+-ATPase pump. This active transport mechanism allows the thyroid to achieve intracellular iodide concentrations that are 20 to 40 times higher than those in the plasma [9]. The expression and activity

of NIS are primarily regulated by the thyroid-stimulating hormone (TSH), which ensures that in states of iodine deficiency or increased hormone demand, the gland's ability to trap iodide is enhanced [10]. The efficiency of this trapping mechanism was historically one of the first aspects of thyroid function to be studied using radioactive iodine (I-131), a method that provided foundational insights into thyroidal and renal plasma clearance rates and served as an early diagnostic tool for thyroid dysfunction [6, 7].

After being trapped within the thyrocyte, iodide must be transported across the apical membrane into the follicular lumen, where hormone synthesis occurs. This efflux is facilitated by another crucial transporter known as Pendrin (also SLC26A4) [13]. Pendrin functions as an iodide-specific apical porter, and its characterization helped complete the picture of how iodide moves through the thyrocyte and into the colloid [12, 13]. the follicular lumen, the process "organification" takes place. The enzyme thyroid peroxidase (TPO), located on the apical membrane, oxidizes iodide to a reactive iodine species. This highly reactive iodine is then immediately incorporated into tyrosine residues within thyroglobulin (Tg), a large glycoprotein that serves as the scaffold for hormone synthesis. This organification process is a critical step, locking the iodine within the gland for hormone production [4].

3.1.2 Autoregulation of the Thyroid Gland

Beyond the primary regulation by TSH, the thyroid gland possesses intrinsic autoregulatory mechanisms to adapt to wide variations in iodide supply. The most well-known of these is the Wolff-Chaikoff effect, first described in 1948 [11]. When the thyroid is exposed to a large, acute load of iodide, there is a temporary inhibition of iodide organification and, consequently, a reduction in thyroid hormone synthesis. This physiological block prevents the gland from producing an excessive amount of hormone in the presence of surplus iodine. Normally, after a period of 1-2 days, the thyroid "escapes" from the Wolff-Chaikoff effect by downregulating NIS expression, which reduces further iodide uptake and allows hormone synthesis to resume [53]. This elegant autoregulatory mechanism protects the body from iodine-induced hyperthyroidism. However, individuals with underlying autoimmune thyroid disease or other thyroid pathologies, this escape mechanism may fail, leading to sustained, iodine-induced hypothyroidism.

3.2 Dietary Iodine: Sources, Requirements, and Population Assessment

The concentration of iodine in the environment is highly variable, which directly impacts its content in food and water and, ultimately, human iodine status.

3.2.1 Natural Sources and Bioavailability

The primary determinant of iodine content in terrestrial food systems is the geochemistry of the local soil. Regions that were once glaciated or are prone to flooding, such as mountainous areas and inland river valleys, often have iodine-depleted soils. As a result, crops grown in these areas and the livestock that consume them have low iodine content [14]. In contrast, the ocean is a vast reservoir of iodine, making marine foods the richest natural source. Seafood, including fish contains and seaweed, significantly concentrations of iodine than most terrestrial foods [17]. For example, studies in the UK and Norway have confirmed that fish and other seafood are major contributors to dietary iodine intake [17, 18].

In many non-coastal populations, dairy products have become a significant source of dietary iodine. This is not because milk is naturally rich in iodine, but due to the use of iodine-containing disinfectants (iodophors) for cleaning milking equipment and teat-dipping, as well as the supplementation of cattle feed with iodine [16, 19]. The bioavailability of iodine from dairy products is high, making them a crucial contributor to iodine sufficiency in many Western countries [19]. Eggs can also contribute to iodine intake [18].

Conversely, certain dietary patterns can place individuals at risk of deficiency. Vegetarians, and particularly vegans, who avoid both seafood and dairy products, are at a higher risk of inadequate iodine intake. Studies have consistently shown lower iodine status in these groups compared to omnivores [15, 48].

3.2.2 Recommended Intake and Assessment Methods

To prevent IDD, dietary reference intakes for iodine have been established. For most adults, the recommended daily allowance (RDA) is 150 micrograms (μ g) per day. This requirement increases significantly during pregnancy (to 220 μ g/day) and lactation (to 290 μ g/day) to meet the needs of the developing fetus and infant, who are entirely dependent on maternal supply [23, 49].

Assessing the iodine status of a population is critical for public health monitoring. Because over 90% of ingested iodine is eventually excreted in the urine, the median

urinary iodine concentration (UIC) in a representative sample of the population is the most practical and widely accepted biomarker for assessing recent iodine intake [25]. The World Health Organization (WHO) has established criteria based on median UIC to classify the iodine status of a population, with a median of 100-199 μ g/L in school-aged children indicating iodine sufficiency [28, 29]. While individual UIC can fluctuate based on daily intake and hydration, the population median provides a reliable snapshot of iodine nutrition [21]. In addition to UIC, thyroid volume, typically measured by ultrasound, can serve as a longer-term functional indicator of iodine status, as the gland enlarges (goiter) in response to chronic iodine deficiency [22].

3.3 The Spectrum of Iodine Deficiency Disorders (IDD)

The term Iodine Deficiency Disorders (IDD) encompasses all the adverse health effects of inadequate iodine intake, which can occur at any stage of life but are most damaging during fetal development and early childhood.

3.3.1 Goiter and Hypothyroidism

The most visible sign of chronic iodine deficiency is goiter, the enlargement of the thyroid gland. In an effort to compensate for the lack of iodine, the pituitary gland increases its secretion of TSH. This chronic TSH stimulation causes the thyroid cells to hypertrophy and hyperproliferate, leading to a diffuse enlargement of the gland [40]. If the deficiency is severe and prolonged, this can progress to multinodular goiter. The primary consequence of iodine deficiency is inadequate production of thyroid hormones, resulting hypothyroidism. While the initial stages may be subclinical (elevated TSH with normal T4), severe deficiency leads to overt hypothyroidism with symptoms such as fatigue, weight gain, cold intolerance, and cognitive slowing. Importantly, studies have shown that in cases of endemic goiter and hypothyroidism caused by iodine deficiency, the condition can be reversed with adequate iodine supplementation, particularly in younger individuals [42]. This was demonstrated in patients with endemic cretinism, where iodine treatment could restore thyroid function [42]. The etiology of goiter in endemic regions is often multifactorial, sometimes involving dietary goitrogens in addition to iodine deficiency [44].

3.3.2 Neurological and Cognitive Consequences

While goiter is the most conspicuous sign of iodine deficiency, the most devastating consequences are

silent, irreversible, and occur during the critical window of brain development [34]. Thyroid hormones act as master orchestrators of central nervous system (CNS) maturation, and their insufficiency during fetal and early neonatal life leads to a spectrum of neurological and cognitive deficits. The developing human brain is exquisitely sensitive to thyroid hormone levels, which regulate a cascade of crucial developmental processes, including neuronal proliferation, migration from the ventricular zone to the cerebral cortex, synaptogenesis, dendritic arborization, and myelination [39]. An inadequate supply of maternal thyroid hormone, resulting from iodine deficiency, disrupts this finely tuned program, leading to permanent structural and functional brain abnormalities.

The window of vulnerability begins in the first trimester of pregnancy. During this early period, the fetal thyroid gland is not yet functional, making the developing brain entirely dependent on the transfer of maternal T4 across the placenta [41]. Studies detecting thyroid hormones in embryonic cavities as early as the first trimester underscore this critical dependence [41]. Consequently, maternal hypothyroxinemia (low T4 levels), even if subclinical, can have profound adverse effects. This highlights the paramount importance of ensuring iodine sufficiency in women before conception and throughout pregnancy [49].

Large-scale, long-term cohort studies have provided robust evidence linking maternal iodine status with child cognitive outcomes. The Avon Longitudinal Study of Parents and Children (ALSPAC) in the UK, a landmark investigation, found a significant association between mild-to-moderate iodine deficiency in pregnant women (defined by a urinary iodine-to-creatinine ratio <150 μg/g) and a higher risk of their children having lower verbal IQ, poorer reading accuracy, and reduced reading comprehension at ages 8-9 [36]. These findings are critical because they demonstrate that even marginal iodine deficiency, far less severe than that which causes cretinism, can have lasting and meaningful impacts on a child's intellectual capacity. Similar associations between maternal iodine intake and offspring neurodevelopment have been observed in other populations, reinforcing the global relevance of these findings [52].

The severity of the neurological insult is directly proportional to the severity and timing of the iodine deficiency. Severe in-utero deficiency is associated with the most extreme outcomes, including endemic

cretinism, but the broader public health concern lies in the subtle downward shift in cognitive potential across entire populations affected by less severe deficiency [34, 37]. Postnatally, iodine status continues to be important. Neonatal thyroid-stimulating hormone (TSH) concentration, often measured in newborn screening programs to detect congenital hypothyroidism, has been systematically reviewed as a potential marker for iodine status and has been associated with later neurodevelopmental and growth outcomes [35]. This suggests that the brain's developmental trajectory remains sensitive to thyroid hormone availability in the early years of life.

Beyond general intelligence and academic achievement, iodine deficiency has been linked to more specific neurological deficits. Impairments in auditory function, including hearing deficits and deaf-mutism in severe cases, are a recognized component of IDD. A systematic review of the literature suggests a connection between iodine status during child development and hearing ability, likely due to the role of thyroid hormones in the development of the cochlea and auditory pathways [38]. Furthermore, deficits in motor function, including poor coordination, spasticity, and impaired gross and fine motor skills, are also well-documented consequences, particularly in more severe cases of neurological endemic cretinism [39]. The collective evidence paints a stark picture: iodine deficiency is the single most important preventable cause of brain damage worldwide, and its impact on neuropsychological development represents an enormous loss of human potential [34].

3.3.3 Endemic Cretinism

In regions of severe, long-standing iodine deficiency, endemic cretinism represents the most extreme manifestation of IDD. Historically described in the early 20th century in severely deficient regions like the Himalayas [43], endemic cretinism is characterized by profound mental retardation, often accompanied by a mixture of other clinical signs. Two main types have been described: the neurological form, which includes severe mental and motor deficits, deaf-mutism, and spasticity, and the myxedematous form, which is dominated by signs of severe hypothyroidism, including stunted growth and delayed sexual maturation. Cretinism is a direct result of severe iodine deficiency during the critical period of fetal and neonatal brain development and represents a preventable tragedy.

3.4 Factors Influencing Iodine Metabolism and Thyroid Function

While iodine intake is the primary determinant of thyroid health, other dietary and environmental factors can influence iodine metabolism and thyroid function, either by interfering with iodine uptake or by affecting hormone synthesis and metabolism.

3.4.1 Dietary Goitrogens and Environmental Disruptors

Certain foods contain naturally occurring substances known as goitrogens, which can interfere with thyroid function, particularly in the context of coexisting iodine deficiency. The most well-known are the thiocyanates and isothiocyanates found in cruciferous vegetables (e.g., cabbage, broccoli, cassava). These compounds competitively inhibit the NIS, reducing the thyroid's ability to trap iodide [30, 44]. In populations with borderline or deficient iodine intake, high consumption of these foods can contribute to the development of goiter [44].

In addition to natural goitrogens, a growing number of man-made environmental chemicals are recognized as endocrine disruptors that can affect the thyroid axis. Perchlorate, an industrial chemical that contaminates some water supplies and food, is a potent competitive inhibitor of NIS and can significantly reduce iodide uptake by the thyroid [31]. Other environmental pollutants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), have structures similar to thyroid hormones and can interfere with their transport and metabolism [33]. These endocrine-disrupting chemicals represent an emerging area of concern for thyroid health [32].

3.4.2 The Role of Other Micronutrients

Optimal thyroid function is dependent not only on iodine but also on an adequate supply of other essential micronutrients, most notably selenium and iron [51]. Selenium is a crucial component of the deiodinase enzymes, which are responsible for converting T4 (the less active prohormone) into the biologically active T3. Selenium deficiency can impair this conversion, exacerbating the effects of iodine deficiency [45]. Furthermore, the glutathione peroxidases, which are also selenoenzymes, protect the thyroid gland from oxidative damage generated during the process of hormone synthesis. Coexisting iodine and selenium deficiency can increase the risk of thyroid autoimmune disease and damage [45].

Iron is also essential for thyroid function, as the enzyme thyroid peroxidase (TPO), which catalyzes the organification of iodine, is an iron-dependent heme enzyme. Iron deficiency can impair TPO activity, reducing the efficiency of thyroid hormone synthesis [46]. Therefore, concurrent iron-deficiency anemia can worsen the hypothyroidism caused by iodine deficiency. The interplay of these micronutrients highlights the importance of overall nutritional status for maintaining thyroid health [46, 51].

3.5 Public Health Strategies: Supplementation and Monitoring

The recognition of IDD as a major preventable public health problem led to the development of highly effective global strategies centered on ensuring adequate iodine intake for all populations.

3.5.1 Universal Salt Iodization (USI)

The most successful and cost-effective strategy for the elimination of IDD has been Universal Salt Iodization (USI). The rationale for using salt as a vehicle for iodine fortification is compelling: salt is consumed by nearly everyone in relatively consistent amounts, production is often centralized, making fortification feasible, and the addition of iodine does not affect its taste or appearance [24]. The WHO, UNICEF, and other international partners have promoted USI since the early 1990s, establishing guidelines and indicators for program implementation and monitoring [28, 29]. The health and economic benefits of USI programs are immense. By preventing the cognitive losses associated with iodine deficiency, USI has been shown to improve educational outcomes and economic productivity, making it one of the most high-impact public health interventions of all time [27].

3.5.2 Monitoring and Challenges

While USI has led to a dramatic reduction in IDD globally, the job is not complete. Continuous monitoring of population iodine status through regular UIC surveys is essential to ensure that salt iodization programs are effective and that iodine intake remains within the optimal range [50]. Over-correction can also be a problem. In populations that have been chronically iodine deficient for a long time, the sudden introduction of iodine can trigger hyperthyroidism, a phenomenon known as the Jod-Basedow effect. This typically occurs in older individuals with long-standing multinodular goiters, where areas of the thyroid have become autonomous and overproduce hormones when

provided with ample substrate [20]. This risk is generally transient and manageable, but it highlights the need for careful monitoring when fortification is introduced [20]. Furthermore, assessing and understanding the potential effects of excess iodine intake is also important, as chronically high levels can lead to hypothyroidism and autoimmune thyroiditis in susceptible individuals [54]. Sustaining the success of USI requires ongoing political commitment, quality control in the salt industry, and public education to ensure continued consumption of iodized salt.

4.0 Discussion

4.1 Synthesis of Key Findings

This review consolidates a wide body of evidence affirming the central and indispensable role of iodine in thyroid physiology and human health. The results underscore a clear and causal pathway: dietary iodine is the essential substrate for the synthesis of thyroid hormones [2], which are, in turn, fundamental regulators of metabolism and, most critically, neurodevelopment [34]. The intricate molecular machinery of the thyroid gland, featuring transporters like NIS and Pendrin [8, 13], is exquisitely designed to capture and utilize this scarce element. However, when dietary supply is insufficient, this system falters, leading to a cascade of pathologies collectively known as IDD.

The most profound finding reiterated throughout the literature is the devastating impact of iodine deficiency on the developing brain. The link between maternal iodine insufficiency and impaired cognitive outcomes in children is robust and unequivocal [36, 37, 52]. The consequences, ranging from subtle decreases in IQ to the severe neurological deficits of endemic cretinism [43], represent an irreversible loss of human potential. This review also highlights the multifactorial nature of thyroid health, where the effects of iodine deficiency can be compounded by the presence of environmental goitrogens [30, 31] and deficiencies in other key micronutrients like selenium and iron [45, 46].

4.2 Public Health Implications and Successes

The battle against IDD stands as one of the great success stories of modern public health. The global adoption of Universal Salt Iodization (USI) has proven to be a remarkably effective, simple, and cost-efficient strategy for delivering adequate iodine to vast populations [27]. The progress made in the last three decades has saved millions of children from preventable cognitive impairment and significantly reduced the prevalence of

goiter worldwide. This success demonstrates the power of combining scientific understanding with political will and international cooperation.

However, the success of USI should not lead to complacency. The findings underscore the critical importance of sustained monitoring. Population iodine status is dynamic and can change with shifts in dietary habits, food production practices, and the effectiveness of salt iodization programs [50]. Vulnerable groups, particularly pregnant women and those on restrictive diets like veganism, require special attention to ensure their increased iodine needs are met [15, 49]. Furthermore, the risk of iodine-induced hyperthyroidism following the introduction of iodized salt into severely deficient populations, while transient, necessitates careful surveillance [20]. The ultimate goal is not just the elimination of deficiency but the maintenance of optimal iodine nutrition for all.

4.3 Gaps in the Literature and Future Research Directions

Despite decades of research, several important questions remain. While the effects of severe iodine deficiency are well-documented, there is a need for more research on the long-term neurodevelopmental consequences of mild-to-moderate iodine deficiency during pregnancy. As overt deficiency becomes rarer, understanding the impact of marginal iodine status becomes increasingly important for optimizing child development.

A second major area for future investigation is the impact of endocrine-disrupting chemicals on thyroid function. The literature points to a growing list of environmental pollutants, such as perchlorates and PCBs, that can interfere with the thyroid axis [31, 33]. The cumulative and synergistic effects of exposure to these chemicals, especially in the context of varying iodine status, are not yet fully understood and represent a significant potential threat to thyroid health.

Finally, while USI is the cornerstone of IDD prevention, research into alternative or complementary strategies for hard-to-reach or specific vulnerable populations is warranted. This could include exploring the efficacy of iodine-biofortified crops or targeted supplementation for women of childbearing age in certain regions.

4.4 Limitations

This review, by design, is constrained by its reliance on the 56 provided references. While these sources provide a comprehensive and historically rich overview of the topic, they may not capture the absolute latest findings or nascent research trends that have emerged since their publication. The heterogeneity of the source materials, which include biochemical studies, large-scale epidemiological surveys, and clinical case reports, means that the synthesis is narrative and does not lend itself to quantitative meta-analysis. The conclusions drawn are therefore based on a qualitative integration of the evidence presented in this specific body of literature.

4.5 Conclusion

The evidence synthesized in this review paints a clear picture: adequate iodine nutrition is a fundamental pillar of public health. The journey of this single micronutrient from the environment, through the food chain, and into the thyroid gland is a process that is vital for human health, growth, and intellectual capacity. The consequences of its deficiency are severe but, crucially, they are preventable. The global success of salt iodization programs is a testament to what can be achieved when scientific knowledge is translated into effective public policy. The challenge for the future lies in sustaining these achievements through vigilant monitoring, addressing the needs of vulnerable groups, and deepening our understanding of new threats to thyroid health. By ensuring optimal iodine nutrition for every population, we can protect the thyroid health of current and future generations.

References

- Dunn J.T. (1998). What's happening to our iodine?
 J. Clin. Endocrinol. Metab. 83:3398-3400.
- 2. Larsen P.R., Davies T.F., Hay I.D. (1998). The thyroid gland. In: Wilson J.D., Foster D.W., Kronenberg H.M., Larsen P.R., editors. Williams Textbook of Endocrinology. 9th ed. W.B. Saunders Company; Philadelphia, PA, USA: 389-515.
- **3.** Nicola J.P., Reyna-Neyra A., Carrasco N., Masini-Repiso A.M. (2012). Dietary iodide controls its own absorption through post-transcriptional regulation of the intestinal Na+/I- symporter. J. Physiol. 590:6013-6026.
- **4.** DeGroot L.J. (1996). Kinetic analysis of iodine metabolism. J. Clin. Endocrinol. Metab. 26:149-173.
- **5.** Perry W.F., Hughes J.F.S. (1952). The urinary excretion and thyroid uptake of iodine in renal disease. J. Clin. Investig. 31:457-463.
- **6.** Berson S.A., Yalow R.S., Sorrentino J., Roswit B. (1952). The determination of thyroidal and renal

- plasma I131 clearance rates as a routine diagnostic test of thyroid dysfunction. J. Clin. Investig. 31:141-158
- **7.** Pochin E.E. (1950). Investigation of thyroid function and disease with radioactive iodine. Lancet. 2:84-91
- **8.** Nilsson M. (2001). Iodide handling by the thyroid epithelial cell. Exp. Clin. Endocrinol. Diabetes. 109:13-17.
- **9.** Berson S.A., Yalow R.S. (1955). The iodide trapping and binding functions of the thyroid. J. Clin. Investig. 34:186-204.
- **10.** Spitzweg C., Joba W., Morris J.C., Heufelder A.E. (1999). Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid. 9:821-830.
- **11.** Wolff J., Chaikoff I.L. (1948). Plasma inorganic iodide, a chemical regulator of normal thyroid function. Endocrinology. 42:468-471.
- **12.** Rodriguez A.M., Perron B., Lacroix L., Caillou B., Leblanc G., Schlumberger M., Bidart J.M., Pourcher T. (2002). Identification and characterization of a putative human iodide transporter located at the apical membrane of thyrocytes. J. Clin. Endocrinol. Metab. 87:3500-3503.
- **13.** Yoshida A., Taniguchi S., Hisatome I., Royaux I.E., Green E.D., Kohn L.D., Suzuki K. (2002). Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J. Clin. Endocrinol. Metab. 87:3356-3361.
- **14.** Fuge R., Johnson C.C. (1986). The geochemistry of iodine—A review. Environ. Geochem. Health. 8:31-54.
- **15.** Krajcovicová-Kudlácková M., Bucková K., Klimes I., Seboková E. (2003). Iodine deficiency in vegetarians and vegans. Ann. Nutr. Metab.47:183-185.
- **16.** Downer J.V., Hemken R.W., Fox J.D., Bull L.S. (1981). Effect of dietary iodine on tissue iodine content in the bovine. J. Anim. Sci. 52:413-417.
- **17.** Sprague M., Chau T.C., Givens D.I. (2002). Iodine Content of Wild and Farmed Seafood and Its Estimated Contribution to UK Dietary Iodine Intake. Nutrients. 14:195.
- **18.** Nerhus I., Wik Markhus M., Nilsen B.M., Øyen J., Maage A., Ødegård E.R., Midtbø L.K., Frantzen S., Kögel T., Graff I.E., et al. (2018). Iodine content of six fish species, Norwegian dairy products and hen's egg. Food Nutr. Res.
- **19.** Jahreis G., Hausmann W., Kiessling G., Franke K., Leiterer M. (2001). Bioavailability of iodine from normal diets rich in dairy products—Results of balance studies in women. Exp. Clin. Endocrinol.

- Diabetes. 109:163-167.
- 20. Petersen M., Knudsen N., Carlé A., Andersen S., Jørgensen T., Perrild H., Ovesen L., Rasmussen L.B., Thuesen B.H., Pedersen I.B. (2018) Thyrotoxicosis after iodine fortification. A 21-year Danish population-based study. Clin. Endocrinol. 89:360-366.
- **21.** Als C., Haldimann M., Burgi E., Donati F., Gerber H. (2003). and Zimmerli, B. Swiss pilot study of individual seasonal fluctuations of urinary iodine concentration over two years: Is age-dependency linked to the major source of dietary iodine? Eur. J. Clin. Nutr. 57:636-646.
- 22. Wiersinga W.M., Podoba J., Srbecky M., van Vessem M., van Beeren H.C., Platvoet-Ter and Schiphorst M.C. (2001). A survey of iodine intake and thyroid volume in Dutch schoolchildren: Reference values in an iodine-sufficient area and the effect of puberty. Eur. J. Endocrinol. 144:595-603.
- **23.** Trumbo P., Yates A.A., Schlicker S., Poos M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 101:294-301.
- **24.** Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders. World Health Organization; Geneva, Switzerland: (2014).
- 25. Rohner F., Zimmermann M., Jooste P., Pandav C., Caldwell K., Raghavan R., Raiten D.J. (2014). Biomarkers of nutrition for development--iodine review. J. Nutr. 144:1322-1342. Iodine Deficiency. (2023).
- 26. Gorstein J.L., Bagriansky J., Pearce E.N., Kupka R., Zimmermann M.B. (2020). Estimating the Health and Economic Benefits of Universal Salt Iodization Programs to Correct Iodine Deficiency Disorders. Thyroid. 30:1802-1809.
- 27. World Health Organization, International Council for Control of Iodine Deficiency Disorders & United Nations Children's Fund (UNICEF) Indicators for Assessing Iodine Deficiency Disorders and Their Control through Salt Iodization. World Health Organization; Geneva, Switzerland: 1994.
- 28. World Health Organization . Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers. 2nd ed. World Health Organization; Geneva, Switzerland: (2001).
- 29. Monte A., Greer M.D. (1957). Goitrogenic

- Substances in Food. Am. J. Clin. Nutr. 5:440-444.
- **30.** Lisco G., De Tullio A., Giagulli V.A., De Pergola G., Triggiani V. (2020). Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients.
- **31.** Lisco G., Giagulli V.A., Iovino M., Guastamacchia E., De Pergola G., Triggiani V. (2022). Endocrine-Disrupting Chemicals: Introduction to the Theme. Endocr. Metab. Immune Disord. Drug Targets. 22:677-685.
- **32.** Pearce E.N., Braverman L.E. (2009). Environmental pollutants and the thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 23:801-813.
- **33.** Hetzel B.S. lodine and neuropsychological development. J. Nutr. (2000);130((Suppl. 2S)):493-495.
- **34.** Wassie M.M., Smithers L.G., Zhou S.J. (2022). Association Between Newborn Thyroid-Stimulating-Hormone Concentration and Neurodevelopment and Growth: A Systematic Review. Biol. Trace Elem. Res. 200:473-487.
- **35.** Bath S.C., Steer C.D., Golding J., Emmett P., Rayman M.P. (2013). Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: Results from the Avon Longitudinal Study of Parents and Children (ALSPAC) Lancet. 382:331-337
- **36.** Toloza F.J.K., Motahari H., Maraka S. (2020). Consequences of Severe Iodine Deficiency in Pregnancy: Evidence in Humans. Front. Endocrinol. 11:409.
- **37.** Dineva M., Hall A., Tan M., Blaskova A., Bath S.C. (2022). Iodine status during child development and hearing ability: A systematic review. Br. J. Nutr. 1-8.
- **38.** DeLong R. Neurological involvement in Iodine Deficiency Disorders. In: Hetzel B.S., Dunn J.T., Stanbury J.B., editors. (1987). The Prevention and Control of Iodine Deficiency Disorders. Elsevier Publ.; Amsterdam, Netherlands. 49-63.
- **39.** Delange F. Endemic Goitre and Thyroid Function in Central Africa. Monographs in Pediatrics. S. Karger Publ.; Basel, Switzerland: 1974. pp. 1–171.
- **40.** Contempre B., Jauniaux E., Calvo R., Jurkovic D., Campbell S. (1993). Morreale de Escobar G. Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 77:1719-1722.
- **41.** Vanderpas J.B., Rivera-Vanderpas M.T., Bourdoux P., Luvivila K., Lagasse R., Perlmutter C.N., Delange F., Lanoie A.M., Ermans A.-M., Thilly C.H. (1986). Reversibility of severe hypothyroidism with

- supplementary iodine in patients with endemic cretinism. N. Engl. J. Med. 315:791-795.
- **42.** McCarrison R. Observations on Endemic Cretinism in the Chitral and Gilgit Valleys. Ind. Med. Gaz. 1908;43:441-449.
- **43.** Delange F., Ermans A.M. (1971). Role of a dietary goitrogen in the etiology of endemic goiter on Idjw Island. Am. J. Clin. Nutr. 1971;24:1354-1360.
- **44.** Zimmermann M.B., Köhrle J. (2002). The impact of iron and selenium deficiencies on iodine and thyroid metabolism: Biochemistry and relevance to public health. Thyroid. 12:867-878.
- **45.** Hess S.Y. (2010). The impact of common micronutrient deficiencies on iodine and thyroid metabolism: The evidence from human studies. Best Pract. Res. Clin. Endocrinol. Metab. 2010;24:117-132.
- **46.** Delange F. (2002). Iodine deficiency in Europe and its consequences: An update. Eur. J. Nucl. Med. Mol. Imaging. 29:404-416.
- **47.** Leung A.M., Lamar A., He X., Braverman L.E., Pearce E.N. (2013). Iodine status and thyroid function of Boston-area vegetarians and vegans. J. Clin. Endocrinol. Metab. 96:1303-1307.
- **48.** Rodriguez-Diaz E., Pearce E.N. (2020). Iodine status and supplementation before, during, and after pregnancy. Best Pract. Res. Clin. Endocrinol. Metab. 34:101430.
- **49.** Bath S.C., Verkaik-Kloosterman J., Sabatier M., Ter Borg S., Eilander A., Hora K., Aksoy B., Hristozova N., van Lieshout L., Tanju Besler H., et al. (2022). A systematic review of iodine intake in children, adults, and pregnant women in Europe-comparison against dietary recommendations and evaluation of dietary iodine sources. Nutr. Rev. 80:2154-2177.
- **50.** Triggiani V., Tafaro E., Giagulli V.A., Sabbà C., Resta F., Licchelli B., Guastamacchia E. (2009). Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord. Drug Targets. 9:277-294.
- **51.** Hisada A., Takatani R., Yamamoto M., Nakaoka H., Sakurai K., Mori C. (2022). The Japan Environment And Children's Study Jecs Group. Maternal lodine Intake and Neurodevelopment of Offspring: The Japan Environment and Children's Study. Nutrients. 14:1826.
- **52.** Braverman L.E. (1994). Iodine and the thyroid: 33 years of study. Thyroid. 4:351-356.
- **53.** Farebrother J., Zimmermann M.B., Andersson M. (2019). Excess iodine intake: Sources, assessment, and effects on thyroid function. Ann. N. Y. Acad. Sci. 1446:44-65.

- **54.** Rosenfeld L. (2000). Discovery and early uses of iodine. J. Chem. Educ. 77:984-987.
- **55.** Carpenter J.K. (2005). David Marine and the Problem of Goiter. J. Nutr. 135:675-680.