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Abstract: This article presents an overview of methods
for analyzing and classifying errors in automated tests
using modern language models. The research is based
on a systematization of international publications that
examine the solutions RCACopilot, LogLLM, FlakyDoctor,
and LogGPT. It is shown that these approaches differ in
their architectural solutions and task formulations:
classification of incident root causes, anomaly detection
in repair of flaky tests, and real-time log
The study
preparation and training strategies that determine the
The

demonstrate high accuracy and practical applicability

logs,
interpretation. identifies specific data

models' effectiveness. presented metrics
but also point to significant limitations. Among them are
infrastructure and
prompt

parameters, and weak results in repairing NOD-type

a dependence on monitoring

computational resources, sensitivity to
tests. The analysis showed that integrating the models
into existing pipelines with filtering and validation allows
for minimizing risks and increasing the reliability of the
solutions. Practical implementation experience is noted,
which confirmed an increase in the stability of test runs
and a reduction in regression time. The article will be
useful for researchers and practitioners in the fields of
software engineering, automated testing, and quality

assurance.

Keywords: language models, automated testing, log
analysis, anomaly detection, test repair, software

quality.

Introduction

Modern software systems include thousands of
automated tests that accompany the entire
https://www.theamericanjournals.com/index.php/tajas
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development and operation cycle. The number of tests
is continuously growing, and with it, the volume of
errors recorded in logs and reports is also increasing. It
is becoming impossible for development and quality
engineering teams to conduct a full manual analysis of
this data. The errors are complex in nature. Some are
related to infrastructure, some to incorrect code logic,
and some to the execution environment. Under these
conditions, traditional methods for finding the causes of
errors are no longer sufficient. They require a lot of time
and vyield limited results. The emergence of large
language models has opened up new possibilities for
These
information, identify patterns, and draw conclusions

analysis. models can interpret textual
based on large datasets. Their application in the field of
software system testing is a logical next step.

Despite the potential, the use of modern language
models in the field of error analysis faces a number of
difficulties. The data from automated tests is diverse in
form and content. It includes both structured elements
and textual descriptions that may contain ambiguous
wording [4]. This complicates processing and requires
preparation stages.

classified by a multitude of characteristics, from

additional Errors in tests are
anomalies in logs to flaky tests with inconsistent
execution results. Automatically distinguishing such
cases remains a difficult task [11]. Modern language
models require significant computational resources.
Their integration into industrial testing processes is
associated with the high cost of training and
maintenance. Finally, the question of trust in the results
remains. Although language models show high accuracy,
their decisions are not sufficiently transparent and
require additional interpretation. Developers and
engineers need explainability to understand the causes
of the errors found and to apply corrective measures [1].
The objective of this study is to analyze existing
approaches to the application of large language models
for the analysis and classification of errors in automated
tests, to identify the architectural, logical, and
methodological aspects of their use in software quality
assurance systems, and to outline the prospects for the
transformation of testing processes in the context of the
growing complexity of software systems and increasing

data volumes.

Materials And Methods

This study is based on the methodology of a systematic
analytical review of modern approaches to using large
language models for the analysis and classification of
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errors in automated tests. The primary method is the
thematic synthesis of architectures, algorithms, and
applied solutions presented in peer-reviewed
publications.

The theoretical basis was formed by studies that
examine different aspects of applying LLMs to defect
detection and resolution tasks. The work of Alhanahnah
M.

effectiveness of pre-trained models

[6] conducted an empirical evaluation of the
in  repairing
declarative specifications, where the role of agents and
auto-prompts was tested. The study by Ardimento P. [3]
proposed an LLM-based classifier capable of predicting
the time to fix bugs in defect tracking systems, which
expands the possibilities for managing test cycles. Of
particular importance for the methodological part are
the works of Chen Y. [4], which describes an approach to
repairing flaky tests using LLMs, and the work of Chen Y.
[5], which presents a model for the automatic analysis
of incident root causes in cloud systems. These studies
showed that modern language models can be
considered both a tool for finding errors and a means for
their interpretation and resolution.

Boffa M. [2] and Qi J. [10] made a valuable contribution
to the systematization of data on the use of LLMs in log
The

methodology for the automated analysis of malicious

analysis. former  proposed LogPrécis—a
logs, while the latter developed LogGPT, for the first
time applying ChatGPT for anomaly detection in system
journals. Their approaches formed the basis for
comparing classical log processing methods with new
LLM-oriented solutions. The work of Cui T. [7] created a
large-scale test environment, LogEval, which allows for
the objective comparison of the performance of
language models in log analysis, serving as an additional
basis for our analysis.

The empirical part of the review was supplemented by
the developments of Sun Y. [11], who proposed
SemiSMAC—a semi-supervised system for anomaly
detection with automatic hyperparameter tuning, and
the study by Guan W. [8], which created the LogLLM
architecture, combining traditional log analysis with the
capabilities of LLMs. An additional direction was
considered in the work of Dakhama A. [7], which shows
how language models enhance error detection methods
in system simulators.

The methodological structure of the study is built on a
multi-dimensional comparison, from the repair of
formal specifications to log analysis and the resolution
of flaky tests. For comparison with academic solutions,

an industrial installation was used, which combines log
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analysis and test run management in a single CI/CD loop.
The architecture includes an MCP server for request
orchestration and results caching, Amazon Q CLI for
forming queries to the logs, and Claude 4 for the
semantic grouping of errors and analysis of failure
causes. The integration is implemented on top of an
existing pipeline (Cypress, Allure), which allowed for the
centralization of incident processing and a reduction in
tool fragmentation. The system is deployed on "nightly"
runs and generates reports with prioritization and
suitable for further

aggregated "error templates"

retrospectives and auto-classification.

Results

An analysis of modern approaches to using language
models in automated testing shows that researchers
formulate tasks and build architectures in different
ways. The study by Chen Y. [5] presents the RCACopilot
system, which performs root cause analysis of incidents.
It uses summaries of diagnostic information, and the
GPT-4 model itself is used in a few-shot learning mode
with This
application demonstrates that a language model can

elements of step-by-step reasoning.
perform the role of a classifier for incident categories.
The work by Guan W. [8] proposes the LoglLLM
architecture. It is built on a combination of an encoder
and a decoder: input log sequences undergo
normalization, then a multi-stage fine-tuning scheme is
used, and to reduce resource intensity, optimization
with a reduced computational volume is applied. The
study by Chen Y. [4] describes the FlakyDoctor method,

which is designed to repair flaky tests. The system is

implemented as an iterative process: the language
model generates a fix, and a built-in validator checks its
correctness and, if necessary, triggers a re-generation.
The study by Qi J. [10] developed LogGPT, where
ChatGPT is used for anomaly detection in logs. Different
options for representing the input data are used—from
raw messages to cleaned and aggregated sequences.
The task is formulated in the form of a prompt, and the
model makes a decision about normality or anomaly and
provides an explanation for the result.

The solutions under review demonstrate a wide range of
directions. Some are focused on identifying the root
causes of incidents, others on detecting anomalies in
logs, and still others on repairing tests or interpreting
detected failures. The role of the language model in
these systems varies. In some cases, it acts as a classifier;
in others, it generates fixes or explanations. The
preparation of input data also differs. For incident
analysis, a brief summary of diagnostic information is
used; for logs, normalization of sequences is applied;
and in testing, parsing and failure localization are
important. The training methods also differ. Some
solutions are based on using a small number of examples
with step-by-step reasoning, while others require
additional model training or combined architectures
that unite encoders and decoders. Differences are also
observed in the target outputs. Some works record the
root cause category, others determine a binary
distinction between normal and anomalous behavior,
and in studies on testing, the result is a decision on
whether the test was successfully repaired. A structured
comparison is presented in Table 1.

Table 1 — Architectures and tasks of LLM-based approaches (Compiled by the author based on sources: [7, 8, 9,

10])
Method Input Model / training Output task
RCACopilot Summaries from GPT-4, training on a small Root cause category
diagnostic handlers, k-NN number of examples with (Micro-F1/Macro-F1)
with FastText step-by-step reasoning
LogLLM Log sequences (RE BERT - projector - Llama; Binary “normal /
normalization) three-stage additional anomaly”
training; QLoRA
FlakyDoctor Test runs, traces, failure GPT-4, iterative repair with “Repaired / not
localization validation repaired” by
OD/ID/NOD classes
LogGPT Raw / content / event log ChatGPT, prompt-based “Normal / anomaly”
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sequences formulation, window, JSON with explanation

format

The comparison shows that the approaches differ in
their technical implementation and the concept of
applying language models. RCACopilot demonstrates
the capabilities of classifying root causes based on
diagnostic information [7]. LoglLLM shows the
effectiveness of hybrid schemes that combine an
encoder and a generative decoder [8]. FlakyDoctor
reveals the potential of iterative strategies for repairing
flaky tests [9]. LogGPT confirms that even without
additional training, with a correctly formulated task, it is
possible to successfully detect anomalies and generate
explanations [10]. The analysis confirms that there is no
universal solution. Effectiveness directly depends on the
quality of data preparation, the choice of architecture,
and the training methods. Language models prove
successful in various tasks, but their application requires
adaptation to the specifics of particular testing
scenarios.

An analysis of data published in peer-reviewed sources
demonstrates differences in the effectiveness and
application conditions of language models. The study by
Chen Y. [5] presents the RCACopilot system, designed
for root cause analysis of incidents in cloud systems.
Experiments were conducted on a sample of 653
incidents, and the use of GPT-4 achieved a Micro-F1 of
0.766 and a Macro-F1 of 0.533. The average inference
time was 4.205 seconds, which reflects a balance
between classification quality and computational load.
The work by Guan W. [8] describes the LoglLLM
architecture, oriented towards detecting anomalies in
logs. The results were obtained on four datasets: HDFS

(F1 =0.997), BGL (F1 = 0.916), Liberty (F1 = 0.958), and
Thunderbird (F1 = 0.966). Additionally, cases of
exceeding memory limits on large samples were
recorded, which underscores the scalability limitations
and points to the need for optimization in industrial
implementation. The study by Chen Y. [4] examined the
FlakyDoctor method, aimed at repairing flaky tests. For
tests of the OD-Victim category, the repair success rate
was 78%; for OD-Brittle, it was 51%. For ID-type tests,
the overall rate was 58%. A separate comparison on the
DexFix dataset showed the advantage of FlakyDoctor
(55% successful repairs versus 46% for the original
DexFix method). Practical approbation was conducted in
open-source projects: developers submitted 61 pull
requests with repaired tests, of which 19 were accepted.
This confirms the applied value of the method beyond
laboratory experiments.

The study by Qi J. [10] presents the LogGPT system,
which uses ChatGPT for log analysis. With a
configuration of window=50 and the second prompt
scheme on the BGL dataset, an F1 score of 0.618 was
achieved with a recall of 1.000 and a specificity of 0.087.
On the Spirit dataset in few-shot mode, the F1 score was
0.694 with the same recall of 1.000 and a specificity of
0.348. These results show that the model can
successfully detect anomalies even without fine-tuning,
but the high recall is accompanied by an increase in the
number of false positive classifications. Table 2
examines the relationship between the metrics and
experimental conditions for all four approaches.

Table 2 — Summary of metrics and experimental settings (Compiled by the author based on sources: [4, 5, 8,

10])
Method Dataset / condition Reported metrics
RCACopilot 653 incidents; GPT-4 Micro-F1 0.766; Macro-F1 0.533; inference
4,205 s
LoglLLM HDFS F10.997
BGL F10.916
Liberty F10.958
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Thunderbird

F10.966

FlakyDoctor OD-Victim

78% repaired

OD-Brittle

51%

ID total

58%; DexFix set: 55% vs 46% (DexFix)

LogGPT
2/few-shot

BGL, window=50, Prompt-

F1 0.618; Recall 1.000; Specificity 0.087

2/few-shot

Spirit, window=50, Prompt-

F1 0.694; Recall 1.000; Specificity 0.348

A shows that RCACopilot

demonstrates stable results in root cause classification

comparative analysis
tasks with a moderate load [5]. LogLLM achieves high
accuracy on various datasets but is accompanied by
limitations [1]. FlakyDoctor
noticeable improvement in test repair compared to
approaches [2]. LogGPT the
applicability of universal language models to the task of

resource provides a

previous confirms

log analysis, although a significant number of false
[11]. The
performance indicators, in aggregate, point to the high

positive classifications are observed
potential of integrating language models into testing
processes, but at the same time, they record the
presence of limitations that require the adaptation of

solutions to specific application conditions.

Discussion

The analysis of the sources conducted shows that the
choice of method for working with errors in automated
tests directly depends on the type of task and the
Different of
language models produce results only when considering

application conditions. architectures
the specifics of the input data and the goals of the
analysis. For root cause analysis of incidents, the most
appropriate approach is to use a pipeline that includes
processing signals from different diagnostic sources,
summarizing them, and then categorizing them with a
language model. This approach is implemented in the
study by Chen Y. [5], where RCACopilot showed the
ability to combine different types of data and to classify
with high accuracy. The
application of such a solution is justified in large

root cause categories

infrastructure projects where the volume of information
from logs, traces, and monitoring systems exceeds the
capabilities of traditional manual analysis.

The American Journal of Applied Sciences

When working with long log sequences and unstable
patterns, a hybrid-type architecture that combines an
encoder and a decoder proves to be more effective. The
efficiency of the hybrid scheme observed in operational
data confirms the conclusions about the advisability of
separating the representation and decoding functions.
In a production environment, the role of a "lightweight"
embedder and router is performed by the MCP server
and Amazon Q CLI, while the interpretation and
summarization functions are handled by Claude 4. Such
a separate loop reduces the load on central computing
nodes and simplifies scaling by source type (journals,
traces, report artifacts), while maintaining the quality of
grouping and prioritization. The study by Guan W. [8]
demonstrated that LogLLM can achieve almost perfect
accuracy on different datasets by using memory
optimization through an embedder and a projector. This
result confirms that when processing large arrays of
logs, the combination of sequence representation and
decoding mechanisms is critically important, as it
reduces the load on computational resources and
preserves the quality of the analysis. The practical value
of such an approach is that it is applicable in systems
with a large number of similar events, where it is
necessary to quickly separate normal processes from
anomalies.

For test errors of types OD and ID, a promising direction
is the application of iterative test repair with verification
of the fixes. The study by Chen Y. [4] showed that
FlakyDoctor successfully repairs more than half of flaky
This
advantage over previous methods and is particularly

tests. approach demonstrates a significant
useful in projects with long regression testing cycles,
where the time to fix errors directly affects the release

of new product versions. However, for tests of type

https://www.theamericanjournals.com/index.php/tajas
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NOD, the results remain weak. Automation does not yet
allow for reliable fixes, which indicates the need for
additional research.

When a quick check and explanation of what is
happening in the logs "on the fly" is required, a possible
solution is to use the method of formulating the task
through a prompt. In operational use, the prioritization
of test runs is implemented through an analysis of the
history of failures and commit descriptions in natural
language. Claude 4 identifies related risk areas, and the
MCP server forms a shortened list of runs. This reduces
the load on the test stands during peak hours and
provides faster feedback to developers without
degrading defect penetration rates.

The study by Qi J. [10] showed that LogGPT can find
anomalies without fine-tuning, providing high recall
rates, but at the cost of sacrificing specificity. This
approach can be used for rapid analysis in systems

where speed is important and the ability to get an

explanation is valuable, even if the risk of false positive
classifications increases.

A comparison of these methods allows us to assert that
each solution should be selected for a specific scenario.
For root cause analysis, pipelines with pre-processing
and categorization are suitable. For large arrays of logs,
hybrid architectures with resource optimization are
effective. For repairing automated tests, the iterative
process with validation of fixes shows the greatest
effect. For quick and explainable answers, the scenario
of using prompts remains in demand. In aggregate, this
forms a holistic understanding of the boundaries and
capabilities of modern language models in software
quality management.

The analysis of the results allows for the identification of
a number of limitations that affect the possibility of
applying modern language practical
conditions. The key risks and limitations are summarized
in Table 3.

models in

Table 3 - Limitations and risks across studies (Compiled by the author based on sources: [4, 5, 8, 10])

training time requirements;

Method Limitations (from sources)
RCACopilot Dependence on monitor triggers and availability of handlers; limited applicability
without a detector; variability of LLM responses; transferability between
services remains an open issue
LoglLLM Out-of-memory errors when feeding long sequences into Llama; high GPU and

to window size and configuration

reliance on labeled data for supervision; sensitivity

FlakyDoctor

NOD-flaky tests remain largely unrepaired; costly reproduction and validation;
risk of “fixes at any cost” (e.g., removing assertions), which require oversight

LogGPT

High rate of false positives; sensitivity to prompts and window size; risk of
hallucinations and unreliable outputs; constraints from response length limits

The limitations presented in Table 3 are directly
reflected in the practical use of the described methods.
For RCACopilot, the key barrier is the dependence on the
completeness of the data coming from monitors and
handlers [2]. If the diagnostic infrastructure is not fully
deployed, the model does not receive enough
information for the correct categorization of root
causes.

In the case of LogLLM, the main difficulty lies in its
resource intensity [8]. High accuracy is achieved by
processing long log sequences, but direct feeding of data

into Llama results in out-of-memory errors. This makes
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the model sensitive to the volume and form of input
data and increases the requirements for graphics
accelerators. At the same time, a dependence on the
labeled which
complicates implementation in companies without pre-

availability of samples remains,
prepared datasets. FlakyDoctor showed a high result on
tests of types OD and ID, but it was not possible to
completely cope with NOD tests [4]. An additional
problem is the high cost of reproducing and validating
The

separately, where the model eliminates a failure by

such errors. risk of incorrect fixes is noted

removing important checks, which can lead to a
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decrease in trust in the system. LogGPT demonstrated
its value for the rapid analysis of logs, but the results are
high
classifications [10]. The sensitivity to the wording of

accompanied by a rate of false positive
prompts and the choice of a window confirms that the
model remains dependent on engineering decisions in
the area of prompts. An additional limitation is the
response length limits, which make it difficult to
interpret the results with large volumes of data.

The combination of these factors shows that the
practical implementation of the considered solutions
requires not the autonomous launch of models, but
their
threshold values, and procedures for validating patches

integration into existing pipelines. Filters,
are necessary to reduce the risk of false alarms and
errors in automatic fixes. In addition, the high sensitivity
of the models to parameters indicates the importance of
MLOps practices, where issues of calibration, control of
computational and verification of the
reliability of results should be considered as part of the

standard operation process.

resources,

Conclusion
The study the
systematization of modern methods for analyzing and

conducted has allowed for
classifying errors in automated tests using language
models. The approaches considered demonstrated a
variety of architectural solutions, data preparation
methods, and training strategies, which made it possible
to identify their strengths and weaknesses. It has been
established that the integration of models into testing
processes provides an expansion of the capabilities for
diagnosing and repairing errors, but the effectiveness of
their application directly depends on the type of tasks
and the operating conditions.

The analysis of academic sources confirmed the
importance of using pipelines with data pre-processing
for the classification of incident root causes and the
effectiveness of hybrid architectures when working with
long and unstable log sequences. In the area of test
repair, the effectiveness of iterative fixing with
mandatory validation of changes was shown, which is
particularly important for the stability of regression
runs. Alongside this, it was established that a priority on
rapid response can be ensured by methods based on
formulating tasks through prompts, although such
solutions are accompanied by an increase in the number
of false alarms.

The systematization of risks showed that the limitations
for practical implementation remain the dependence on
infrastructure, for

monitoring requirements
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computational resources, the complexity of reproducing
flaky tests, and high sensitivity to prompt parameters.
These factors indicate the need to integrate methods
not in isolation, but as part of comprehensive pipelines
where filtering, threshold mechanisms, and validation
procedures are implemented. Such an approach allows
for minimizing operational costs and reducing the risk of
unreliable results.

Of particular importance is the consideration of practical
experience, which confirms that the implementation of
Al models can significantly increase the stability of
nightly runs, reduce the overall time for regression
testing, and decrease the load on QA teams. Practice has
shown that the combination of an MCP server, Amazon
Q CLI, and Claude 4 is transferable between teams with
minimal adaptation. A unified orchestration loop is
maintained, and the settings for log sources and report
templates are parameterized at the integration stage.
This facilitates scaling within the organization and
reduces the time to bring new projects up to the quality
standard.

Thus, language models can be considered a promising
tool for improving the quality of automated testing, but
their use requires adaptation to specific scenarios and
the development of a supporting infrastructure.
Prospects for further research are related to the in-
depth development of approaches to repairing flaky
tests of the NOD category, improving methods for
reducing false positive classifications in log analysis, and
integrating MLOps practices to ensure the sustainable
application of language models in scalable industrial
systems.
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