
The American Journal of Applied Sciences

96 https://www.theamericanjournals.com/index.php/tajas

TYPE Original Research

PAGE NO. 96-103

DOI 10.37547/tajas/Volume07Issue10-11

 OPEN ACCESS

SUBMITED 28 August 2025

ACCEPTED 18 September 2025

PUBLISHED 19 October 2025

VOLUME Vol.07 Issue 10 2025

CITATION

Taras Buriak. (2025). Methods for Analysis and Classification of Errors in

Automated Tests Using Modern LLM Models. The American Journal of

Applied Sciences, 7(10), 96–103.

https://doi.org/10.37547/tajas/Volume07Issue10-11

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Methods for Analysis and
Classification of Errors in
Automated Tests Using
Modern LLM Models

Taras Buriak

Senior Software Development Enginee Austin, Texas,

USA

Abstract: This article presents an overview of methods

for analyzing and classifying errors in automated tests

using modern language models. The research is based

on a systematization of international publications that

examine the solutions RCACopilot, LogLLM, FlakyDoctor,

and LogGPT. It is shown that these approaches differ in

their architectural solutions and task formulations:

classification of incident root causes, anomaly detection

in logs, repair of flaky tests, and real-time log

interpretation. The study identifies specific data

preparation and training strategies that determine the

models' effectiveness. The presented metrics

demonstrate high accuracy and practical applicability

but also point to significant limitations. Among them are

a dependence on monitoring infrastructure and

computational resources, sensitivity to prompt

parameters, and weak results in repairing NOD-type

tests. The analysis showed that integrating the models

into existing pipelines with filtering and validation allows

for minimizing risks and increasing the reliability of the

solutions. Practical implementation experience is noted,

which confirmed an increase in the stability of test runs

and a reduction in regression time. The article will be

useful for researchers and practitioners in the fields of

software engineering, automated testing, and quality

assurance.

Keywords: language models, automated testing, log

analysis, anomaly detection, test repair, software

quality.

Introduction

https://doi.org/10.37547/tajas/Volume07Issue10-11
https://doi.org/10.37547/tajas/Volume07Issue10-11

The American Journal of Applied Sciences

97 https://www.theamericanjournals.com/index.php/tajas

Modern software systems include thousands of

automated tests that accompany the entire

development and operation cycle. The number of tests

is continuously growing, and with it, the volume of

errors recorded in logs and reports is also increasing. It

is becoming impossible for development and quality

engineering teams to conduct a full manual analysis of

this data. The errors are complex in nature. Some are

related to infrastructure, some to incorrect code logic,

and some to the execution environment. Under these

conditions, traditional methods for finding the causes of

errors are no longer sufficient. They require a lot of time

and yield limited results. The emergence of large

language models has opened up new possibilities for

analysis. These models can interpret textual

information, identify patterns, and draw conclusions

based on large datasets. Their application in the field of

software system testing is a logical next step.

Despite the potential, the use of modern language

models in the field of error analysis faces a number of

difficulties. The data from automated tests is diverse in

form and content. It includes both structured elements

and textual descriptions that may contain ambiguous

wording [4]. This complicates processing and requires

additional preparation stages. Errors in tests are

classified by a multitude of characteristics, from

anomalies in logs to flaky tests with inconsistent

execution results. Automatically distinguishing such

cases remains a difficult task [11]. Modern language

models require significant computational resources.

Their integration into industrial testing processes is

associated with the high cost of training and

maintenance. Finally, the question of trust in the results

remains. Although language models show high accuracy,

their decisions are not sufficiently transparent and

require additional interpretation. Developers and

engineers need explainability to understand the causes

of the errors found and to apply corrective measures [1].

The objective of this study is to analyze existing

approaches to the application of large language models

for the analysis and classification of errors in automated

tests, to identify the architectural, logical, and

methodological aspects of their use in software quality

assurance systems, and to outline the prospects for the

transformation of testing processes in the context of the

growing complexity of software systems and increasing

data volumes.

Materials And Methods

This study is based on the methodology of a systematic

analytical review of modern approaches to using large

language models for the analysis and classification of

errors in automated tests. The primary method is the

thematic synthesis of architectures, algorithms, and

applied solutions presented in peer-reviewed

publications.

The theoretical basis was formed by studies that

examine different aspects of applying LLMs to defect

detection and resolution tasks. The work of Alhanahnah

M. [6] conducted an empirical evaluation of the

effectiveness of pre-trained models in repairing

declarative specifications, where the role of agents and

auto-prompts was tested. The study by Ardimento P. [3]

proposed an LLM-based classifier capable of predicting

the time to fix bugs in defect tracking systems, which

expands the possibilities for managing test cycles. Of

particular importance for the methodological part are

the works of Chen Y. [4], which describes an approach to

repairing flaky tests using LLMs, and the work of Chen Y.

[5], which presents a model for the automatic analysis

of incident root causes in cloud systems. These studies

showed that modern language models can be

considered both a tool for finding errors and a means for

their interpretation and resolution.

Boffa M. [2] and Qi J. [10] made a valuable contribution

to the systematization of data on the use of LLMs in log

analysis. The former proposed LogPrécis—a

methodology for the automated analysis of malicious

logs, while the latter developed LogGPT, for the first

time applying ChatGPT for anomaly detection in system

journals. Their approaches formed the basis for

comparing classical log processing methods with new

LLM-oriented solutions. The work of Cui T. [7] created a

large-scale test environment, LogEval, which allows for

the objective comparison of the performance of

language models in log analysis, serving as an additional

basis for our analysis.

The empirical part of the review was supplemented by

the developments of Sun Y. [11], who proposed

SemiSMAC—a semi-supervised system for anomaly

detection with automatic hyperparameter tuning, and

the study by Guan W. [8], which created the LogLLM

architecture, combining traditional log analysis with the

capabilities of LLMs. An additional direction was

considered in the work of Dakhama A. [7], which shows

how language models enhance error detection methods

in system simulators.

The methodological structure of the study is built on a

multi-dimensional comparison, from the repair of

The American Journal of Applied Sciences

98 https://www.theamericanjournals.com/index.php/tajas

formal specifications to log analysis and the resolution

of flaky tests. For comparison with academic solutions,

an industrial installation was used, which combines log

analysis and test run management in a single CI/CD loop.

The architecture includes an MCP server for request

orchestration and results caching, Amazon Q CLI for

forming queries to the logs, and Claude 4 for the

semantic grouping of errors and analysis of failure

causes. The integration is implemented on top of an

existing pipeline (Cypress, Allure), which allowed for the

centralization of incident processing and a reduction in

tool fragmentation. The system is deployed on "nightly"

runs and generates reports with prioritization and

aggregated "error templates" suitable for further

retrospectives and auto-classification.

Results

An analysis of modern approaches to using language

models in automated testing shows that researchers

formulate tasks and build architectures in different

ways. The study by Chen Y. [5] presents the RCACopilot

system, which performs root cause analysis of incidents.

It uses summaries of diagnostic information, and the

GPT-4 model itself is used in a few-shot learning mode

with elements of step-by-step reasoning. This

application demonstrates that a language model can

perform the role of a classifier for incident categories.

The work by Guan W. [8] proposes the LogLLM

architecture. It is built on a combination of an encoder

and a decoder: input log sequences undergo

normalization, then a multi-stage fine-tuning scheme is

used, and to reduce resource intensity, optimization

with a reduced computational volume is applied. The

study by Chen Y. [4] describes the FlakyDoctor method,

which is designed to repair flaky tests. The system is

implemented as an iterative process: the language

model generates a fix, and a built-in validator checks its

correctness and, if necessary, triggers a re-generation.

The study by Qi J. [10] developed LogGPT, where

ChatGPT is used for anomaly detection in logs. Different

options for representing the input data are used—from

raw messages to cleaned and aggregated sequences.

The task is formulated in the form of a prompt, and the

model makes a decision about normality or anomaly and

provides an explanation for the result.

The solutions under review demonstrate a wide range of

directions. Some are focused on identifying the root

causes of incidents, others on detecting anomalies in

logs, and still others on repairing tests or interpreting

detected failures. The role of the language model in

these systems varies. In some cases, it acts as a classifier;

in others, it generates fixes or explanations. The

preparation of input data also differs. For incident

analysis, a brief summary of diagnostic information is

used; for logs, normalization of sequences is applied;

and in testing, parsing and failure localization are

important. The training methods also differ. Some

solutions are based on using a small number of examples

with step-by-step reasoning, while others require

additional model training or combined architectures

that unite encoders and decoders. Differences are also

observed in the target outputs. Some works record the

root cause category, others determine a binary

distinction between normal and anomalous behavior,

and in studies on testing, the result is a decision on

whether the test was successfully repaired. A structured

comparison is presented in Table 1.

Table 1 – Architectures and tasks of LLM-based approaches (Compiled by the author based on sources: [7, 8, 9,

10])

Method Input Model / training Output task

RCACopilot Summaries from

diagnostic handlers, k-NN

with FastText

GPT-4, training on a small

number of examples with

step-by-step reasoning

Root cause category

(Micro-F1/Macro-F1)

LogLLM Log sequences (RE

normalization)

BERT → projector → Llama;

three-stage additional

training; QLoRA

Binary “normal /

anomaly”

FlakyDoctor Test runs, traces, failure

localization

GPT-4, iterative repair with

validation

“Repaired / not

repaired” by

OD/ID/NOD classes

The American Journal of Applied Sciences

99 https://www.theamericanjournals.com/index.php/tajas

LogGPT Raw / content / event log

sequences

ChatGPT, prompt-based

formulation, window, JSON

format

“Normal / anomaly”

with explanation

The comparison shows that the approaches differ in

their technical implementation and the concept of

applying language models. RCACopilot demonstrates

the capabilities of classifying root causes based on

diagnostic information [7]. LogLLM shows the

effectiveness of hybrid schemes that combine an

encoder and a generative decoder [8]. FlakyDoctor

reveals the potential of iterative strategies for repairing

flaky tests [9]. LogGPT confirms that even without

additional training, with a correctly formulated task, it is

possible to successfully detect anomalies and generate

explanations [10]. The analysis confirms that there is no

universal solution. Effectiveness directly depends on the

quality of data preparation, the choice of architecture,

and the training methods. Language models prove

successful in various tasks, but their application requires

adaptation to the specifics of particular testing

scenarios.

An analysis of data published in peer-reviewed sources

demonstrates differences in the effectiveness and

application conditions of language models. The study by

Chen Y. [5] presents the RCACopilot system, designed

for root cause analysis of incidents in cloud systems.

Experiments were conducted on a sample of 653

incidents, and the use of GPT-4 achieved a Micro-F1 of

0.766 and a Macro-F1 of 0.533. The average inference

time was 4.205 seconds, which reflects a balance

between classification quality and computational load.

The work by Guan W. [8] describes the LogLLM

architecture, oriented towards detecting anomalies in

logs. The results were obtained on four datasets: HDFS

(F1 = 0.997), BGL (F1 = 0.916), Liberty (F1 = 0.958), and

Thunderbird (F1 = 0.966). Additionally, cases of

exceeding memory limits on large samples were

recorded, which underscores the scalability limitations

and points to the need for optimization in industrial

implementation. The study by Chen Y. [4] examined the

FlakyDoctor method, aimed at repairing flaky tests. For

tests of the OD-Victim category, the repair success rate

was 78%; for OD-Brittle, it was 51%. For ID-type tests,

the overall rate was 58%. A separate comparison on the

DexFix dataset showed the advantage of FlakyDoctor

(55% successful repairs versus 46% for the original

DexFix method). Practical approbation was conducted in

open-source projects: developers submitted 61 pull

requests with repaired tests, of which 19 were accepted.

This confirms the applied value of the method beyond

laboratory experiments.

The study by Qi J. [10] presents the LogGPT system,

which uses ChatGPT for log analysis. With a

configuration of window=50 and the second prompt

scheme on the BGL dataset, an F1 score of 0.618 was

achieved with a recall of 1.000 and a specificity of 0.087.

On the Spirit dataset in few-shot mode, the F1 score was

0.694 with the same recall of 1.000 and a specificity of

0.348. These results show that the model can

successfully detect anomalies even without fine-tuning,

but the high recall is accompanied by an increase in the

number of false positive classifications. Table 2

examines the relationship between the metrics and

experimental conditions for all four approaches.

Table 2 – Summary of metrics and experimental settings (Compiled by the author based on sources: [4, 5, 8,

10])

Method Dataset / condition Reported metrics

RCACopilot 653 incidents; GPT-4 Micro-F1 0.766; Macro-F1 0.533; inference

4.205 s

LogLLM HDFS F1 0.997

BGL F1 0.916

Liberty F1 0.958

The American Journal of Applied Sciences

100 https://www.theamericanjournals.com/index.php/tajas

Thunderbird F1 0.966

FlakyDoctor OD-Victim 78% repaired

OD-Brittle 51%

ID total 58%; DexFix set: 55% vs 46% (DexFix)

LogGPT BGL, window=50, Prompt-

2/few-shot

F1 0.618; Recall 1.000; Specificity 0.087

Spirit, window=50, Prompt-

2/few-shot

F1 0.694; Recall 1.000; Specificity 0.348

A comparative analysis shows that RCACopilot

demonstrates stable results in root cause classification

tasks with a moderate load [5]. LogLLM achieves high

accuracy on various datasets but is accompanied by

resource limitations [1]. FlakyDoctor provides a

noticeable improvement in test repair compared to

previous approaches [2]. LogGPT confirms the

applicability of universal language models to the task of

log analysis, although a significant number of false

positive classifications are observed [11]. The

performance indicators, in aggregate, point to the high

potential of integrating language models into testing

processes, but at the same time, they record the

presence of limitations that require the adaptation of

solutions to specific application conditions.

Discussion

The analysis of the sources conducted shows that the

choice of method for working with errors in automated

tests directly depends on the type of task and the

application conditions. Different architectures of

language models produce results only when considering

the specifics of the input data and the goals of the

analysis. For root cause analysis of incidents, the most

appropriate approach is to use a pipeline that includes

processing signals from different diagnostic sources,

summarizing them, and then categorizing them with a

language model. This approach is implemented in the

study by Chen Y. [5], where RCACopilot showed the

ability to combine different types of data and to classify

root cause categories with high accuracy. The

application of such a solution is justified in large

infrastructure projects where the volume of information

from logs, traces, and monitoring systems exceeds the

capabilities of traditional manual analysis.

When working with long log sequences and unstable

patterns, a hybrid-type architecture that combines an

encoder and a decoder proves to be more effective. The

efficiency of the hybrid scheme observed in operational

data confirms the conclusions about the advisability of

separating the representation and decoding functions.

In a production environment, the role of a "lightweight"

embedder and router is performed by the MCP server

and Amazon Q CLI, while the interpretation and

summarization functions are handled by Claude 4. Such

a separate loop reduces the load on central computing

nodes and simplifies scaling by source type (journals,

traces, report artifacts), while maintaining the quality of

grouping and prioritization. The study by Guan W. [8]

demonstrated that LogLLM can achieve almost perfect

accuracy on different datasets by using memory

optimization through an embedder and a projector. This

result confirms that when processing large arrays of

logs, the combination of sequence representation and

decoding mechanisms is critically important, as it

reduces the load on computational resources and

preserves the quality of the analysis. The practical value

of such an approach is that it is applicable in systems

with a large number of similar events, where it is

necessary to quickly separate normal processes from

anomalies.

For test errors of types OD and ID, a promising direction

is the application of iterative test repair with verification

of the fixes. The study by Chen Y. [4] showed that

FlakyDoctor successfully repairs more than half of flaky

tests. This approach demonstrates a significant

advantage over previous methods and is particularly

useful in projects with long regression testing cycles,

where the time to fix errors directly affects the release

of new product versions. However, for tests of type

The American Journal of Applied Sciences

101 https://www.theamericanjournals.com/index.php/tajas

NOD, the results remain weak. Automation does not yet

allow for reliable fixes, which indicates the need for

additional research.

When a quick check and explanation of what is

happening in the logs "on the fly" is required, a possible

solution is to use the method of formulating the task

through a prompt. In operational use, the prioritization

of test runs is implemented through an analysis of the

history of failures and commit descriptions in natural

language. Claude 4 identifies related risk areas, and the

MCP server forms a shortened list of runs. This reduces

the load on the test stands during peak hours and

provides faster feedback to developers without

degrading defect penetration rates.

The study by Qi J. [10] showed that LogGPT can find

anomalies without fine-tuning, providing high recall

rates, but at the cost of sacrificing specificity. This

approach can be used for rapid analysis in systems

where speed is important and the ability to get an

explanation is valuable, even if the risk of false positive

classifications increases.

A comparison of these methods allows us to assert that

each solution should be selected for a specific scenario.

For root cause analysis, pipelines with pre-processing

and categorization are suitable. For large arrays of logs,

hybrid architectures with resource optimization are

effective. For repairing automated tests, the iterative

process with validation of fixes shows the greatest

effect. For quick and explainable answers, the scenario

of using prompts remains in demand. In aggregate, this

forms a holistic understanding of the boundaries and

capabilities of modern language models in software

quality management.

The analysis of the results allows for the identification of

a number of limitations that affect the possibility of

applying modern language models in practical

conditions. The key risks and limitations are summarized

in Table 3.

Table 3 – Limitations and risks across studies (Compiled by the author based on sources: [4, 5, 8, 10])

Method Limitations (from sources)

RCACopilot Dependence on monitor triggers and availability of handlers; limited applicability

without a detector; variability of LLM responses; transferability between

services remains an open issue

LogLLM Out-of-memory errors when feeding long sequences into Llama; high GPU and

training time requirements; reliance on labeled data for supervision; sensitivity

to window size and configuration

FlakyDoctor NOD-flaky tests remain largely unrepaired; costly reproduction and validation;

risk of “fixes at any cost” (e.g., removing assertions), which require oversight

LogGPT High rate of false positives; sensitivity to prompts and window size; risk of

hallucinations and unreliable outputs; constraints from response length limits

The limitations presented in Table 3 are directly

reflected in the practical use of the described methods.

For RCACopilot, the key barrier is the dependence on the

completeness of the data coming from monitors and

handlers [2]. If the diagnostic infrastructure is not fully

deployed, the model does not receive enough

information for the correct categorization of root

causes.

In the case of LogLLM, the main difficulty lies in its

resource intensity [8]. High accuracy is achieved by

processing long log sequences, but direct feeding of data

into Llama results in out-of-memory errors. This makes

the model sensitive to the volume and form of input

data and increases the requirements for graphics

accelerators. At the same time, a dependence on the

availability of labeled samples remains, which

complicates implementation in companies without pre-

prepared datasets. FlakyDoctor showed a high result on

tests of types OD and ID, but it was not possible to

completely cope with NOD tests [4]. An additional

problem is the high cost of reproducing and validating

such errors. The risk of incorrect fixes is noted

separately, where the model eliminates a failure by

removing important checks, which can lead to a

The American Journal of Applied Sciences

102 https://www.theamericanjournals.com/index.php/tajas

decrease in trust in the system. LogGPT demonstrated

its value for the rapid analysis of logs, but the results are

accompanied by a high rate of false positive

classifications [10]. The sensitivity to the wording of

prompts and the choice of a window confirms that the

model remains dependent on engineering decisions in

the area of prompts. An additional limitation is the

response length limits, which make it difficult to

interpret the results with large volumes of data.

The combination of these factors shows that the

practical implementation of the considered solutions

requires not the autonomous launch of models, but

their integration into existing pipelines. Filters,

threshold values, and procedures for validating patches

are necessary to reduce the risk of false alarms and

errors in automatic fixes. In addition, the high sensitivity

of the models to parameters indicates the importance of

MLOps practices, where issues of calibration, control of

computational resources, and verification of the

reliability of results should be considered as part of the

standard operation process.

Conclusion

The study conducted has allowed for the

systematization of modern methods for analyzing and

classifying errors in automated tests using language

models. The approaches considered demonstrated a

variety of architectural solutions, data preparation

methods, and training strategies, which made it possible

to identify their strengths and weaknesses. It has been

established that the integration of models into testing

processes provides an expansion of the capabilities for

diagnosing and repairing errors, but the effectiveness of

their application directly depends on the type of tasks

and the operating conditions.

The analysis of academic sources confirmed the

importance of using pipelines with data pre-processing

for the classification of incident root causes and the

effectiveness of hybrid architectures when working with

long and unstable log sequences. In the area of test

repair, the effectiveness of iterative fixing with

mandatory validation of changes was shown, which is

particularly important for the stability of regression

runs. Alongside this, it was established that a priority on

rapid response can be ensured by methods based on

formulating tasks through prompts, although such

solutions are accompanied by an increase in the number

of false alarms.

The systematization of risks showed that the limitations

for practical implementation remain the dependence on

monitoring infrastructure, requirements for

computational resources, the complexity of reproducing

flaky tests, and high sensitivity to prompt parameters.

These factors indicate the need to integrate methods

not in isolation, but as part of comprehensive pipelines

where filtering, threshold mechanisms, and validation

procedures are implemented. Such an approach allows

for minimizing operational costs and reducing the risk of

unreliable results.

Of particular importance is the consideration of practical

experience, which confirms that the implementation of

AI models can significantly increase the stability of

nightly runs, reduce the overall time for regression

testing, and decrease the load on QA teams. Practice has

shown that the combination of an MCP server, Amazon

Q CLI, and Claude 4 is transferable between teams with

minimal adaptation. A unified orchestration loop is

maintained, and the settings for log sources and report

templates are parameterized at the integration stage.

This facilitates scaling within the organization and

reduces the time to bring new projects up to the quality

standard.

Thus, language models can be considered a promising

tool for improving the quality of automated testing, but

their use requires adaptation to specific scenarios and

the development of a supporting infrastructure.

Prospects for further research are related to the in-

depth development of approaches to repairing flaky

tests of the NOD category, improving methods for

reducing false positive classifications in log analysis, and

integrating MLOps practices to ensure the sustainable

application of language models in scalable industrial

systems.

References

1. Alhanahnah, M., Hasan, M. R., Xu, L., et al. (2025).

An empirical evaluation of pre-trained large

language models for repairing declarative formal

specifications. Empirical Software Engineering, 30,

149. https://doi.org/10.1007/s10664-025-10687-1

2. Ardimento, P., Capuzzimati, M., Casalino, G.,

Schicchi, D., & Taibi, D. (2025). A novel LLM-based

classifier for predicting bug-fixing time in bug

tracking systems. Journal of Systems and Software,

230, 112569.

https://doi.org/10.1016/j.jss.2025.112569

3. Boffa, M., Drago, I., Mellia, M., Vassio, L., Giordano,

D., Valentim, R., & Ben Houidi, Z. (2024). LogPrécis:

Unleashing language models for automated

malicious log analysis: Précis: A concise summary of

essential points, statements, or facts. Computers &

https://doi.org/10.1007/s10664-025-10687-1
https://doi.org/10.1016/j.jss.2025.112569

The American Journal of Applied Sciences

103 https://www.theamericanjournals.com/index.php/tajas

Security, 141, 103805.

https://doi.org/10.1016/j.cose.2024.103805

4. Chen, Y. (2024, May 23). Flakiness repair in the era

of large language models. In ICSE-Companion ’24:

Proceedings of the 2024 IEEE/ACM 46th

International Conference on Software Engineering:

Companion Proceedings (pp. 441–443). ACM.

https://doi.org/10.1145/3639478.3641227

5. Chen, Y., Xie, H., Ma, M., Kang, Y., Gao, X., Shi, L.,

Cao, Y., Gao, X., Fan, H., Wen, M., & others. (2024,

April 22). Automatic root cause analysis via large

language models for cloud incidents. In EuroSys

’24: Proceedings of the Nineteenth European

Conference on Computer Systems (pp. 674–688).

ACM. https://doi.org/10.1145/3627703.3629553

6. Cui, T., Ma, S., Chen, Z., Xiao, T., Tao, S., Liu, Y.,

Zhang, S., Lin, D., Liu, C., Cai, Y., Meng, W., Sun, Y.,

& Pei, D. (2024). LogEval: A comprehensive

benchmark suite for large language models in log

analysis. arXiv.

https://doi.org/10.48550/arXiv.2407.01896

7. Dakhama, A., Even-Mendoza, K., Langdon, W., et al.

(2025). Enhancing search-based testing with LLMs

for finding bugs in system simulators. Automated

Software Engineering, 32, 63.

https://doi.org/10.1007/s10515-025-00531-7

8. Guan, W., Cao, J., Qian, S., Gao, J., & Ouyang, C.

(2025). LogLLM: Log-based anomaly detection

using large language models. arXiv.

https://doi.org/10.48550/arXiv.2411.08561

9. Kang, S., Chen, B., Yoo, S., et al. (2025). Explainable

automated debugging via large language model-

driven scientific debugging. Empirical Software

Engineering, 30, 45.

https://doi.org/10.1007/s10664-024-10594-x

10. Qi, J., Huang, S., Luan, Z., Fung, C., Yang, H., & Qian,

D. (2023). LogGPT: Exploring ChatGPT for log-based

anomaly detection. arXiv.

https://doi.org/10.48550/arXiv.2309.01189

11. Sun, Y., Keung, J. W., Yang, Z., Liu, S., & Liao, Y.

(2025). SemiSMAC: A semi-supervised framework

for log anomaly detection with automated

hyperparameter tuning. Information and Software

Technology, 187, 107869.

https://doi.org/10.1016/j.infsof.2025.107869.

https://doi.org/10.1016/j.cose.2024.103805
https://doi.org/10.1145/3639478.3641227
https://doi.org/10.1145/3627703.3629553
https://doi.org/10.48550/arXiv.2407.01896
https://doi.org/10.1007/s10515-025-00531-7
https://doi.org/10.48550/arXiv.2411.08561
https://doi.org/10.1007/s10664-024-10594-x
https://doi.org/10.48550/arXiv.2309.01189
https://doi.org/10.1016/j.infsof.2025.107869

