
The American Journal of Applied Sciences

83 https://www.theamericanjournals.com/index.php/tajas

TYPE Original Research

PAGE NO. 78-88

DOI 10.37547/tajas/Volume07Issue10-09

 OPEN ACCESS

SUBMITED 19 August 2025

ACCEPTED 15 September 2025

PUBLISHED 17 October 2025

VOLUME Vol.07 Issue 10 2025

CITATION

Dmytro Novoselskyi. (2025). Godzilla Vs. Kong Escape Room: Pipelines,

Firmware, And Live Systems. The American Journal of Applied Sciences,

7(10), 78–88. https://doi.org/10.37547/tajas/Volume07Issue10-09

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Godzilla Vs. Kong Escape
Room: Pipelines, Firmware,
And Live Systems

Dmytro Novoselskyi
Senior Software Developer, 60out Escape Rooms, Los Angeles,

USA

Abstract: This article examines the architecture of

pipelines, embedded systems, also real-time systems

when they are implemented via an event-driven

approach, using the Godzilla vs. Kong escape room

works as an empirical case study. The study is relevant

as the location-based entertainment industry rapidly

advances and technological installations escalate in

complexity, where numerous heterogeneous hardware

and software components reliably integrate. Customary

monolithic architectures, also cloud-centered solutions,

are often insufficient under stringent requirements for

modularity, fault tolerance, and low interaction latency.

For identifying universal principles for designing

distributed real-time systems, the study will deconstruct

and analyze the system architecture through a real

commercial project. This work formalizes practical

solutions derived from applied engineering within the

context of event-driven architecture (EDA) and

distributed-systems theory, contributing to scientific

novelty. It becomes possible when elevating of the

empirical COGS bus links nodes to a canonical

architectural pattern. The principal results show the

proposed model achieves extremely low response

latency of about 30 ms as well as scalability plus loose

coupling of modules. This model enables efficient

computational load redistribution between peripheral

devices and a central system. The article will help out

researchers and also engineers that work for embedded

systems and real-time systems as well as develop

engaging interactive environments.

Keywords: Event-driven architecture, embedded

systems, real-time systems, distributed systems,

immersive environments.

https://doi.org/10.37547/tajas/Volume07Issue10-09
https://doi.org/10.37547/tajas/Volume07Issue10-09

The American Journal of Applied Sciences

84 https://www.theamericanjournals.com/index.php/tajas

Introduction

The location-based entertainment (LBE) industry has

transformed markedly over the course of the past

decade. Escape rooms now differ; they contain

interactive elements, special effects, detailed plotlines

within engaging high-technology environments rather

than simple puzzles or mechanical locks (Makri et al.,

2021). Since digital technologies with a broad spectrum

integrate microcontrollers, single-board computers,

custom user interfaces, sensors, and actuators, this

significant advance has continued to progress.

Integrating diverse hardware as well as software

components into just a single fault-tolerant system

becomes a truly fundamental engineering problem on

account of this complexity (Pfeifer et al., 2021). For

bespoke installations of this caliber here, truly

customary monolithic control systems often do prove

not sufficiently flexible, or scalable, and even reliable

because only a single central controller handles

absolutely all logic. Failures at the central node can

precipitate system-wide outages. Complex as well as

risk-laden modifications to existing code are demanded

when adding new interactive elements.

As an exemplary case study to address this problem, the

present research examines the Godzilla franchise. That

research features Godzilla versus. Kong escape room,

namely GvK, was implemented by 60Out Escape Rooms.

The design of this work provides a concrete, analytical

foundation. It comprises several distributed and

autonomous subsystems.

For distilling its key design principles, deconstructing

and analyzing the GvK system architecture is the primary

objective. Set forth at this point are the tasks as follows:

1. Characterize the COGS orchestration system

within formal architectural patterns.

2. Analyze exact design decisions aimed at real-

time performance and network-load management in

distributed subsystems.

3. Evaluate system performance in the context of

human–computer interaction (HCI) and compare it to

established academic criteria.

The scientific novelty lies in presenting a detailed

technical analysis of a complex, commercially successful

immersive system and formalizing its practical

engineering solutions through established concepts

from computer science, such as event-driven

architecture (EDA) and distributed systems theory.

During the development of GvK, the engineers,

confronted with practical challenges, intuitively arrived

at a system they described as COGS event bus (a local

publish–subscribe orchestration bus). This approach,

born of engineering necessity, is in essence a classical

realization of the publish–subscribe pattern at the heart

of EDA (TIBCO, n.d.). Thus, the present study elevates an

ad-hoc practical solution to a validated architectural

archetype, demonstrating the organic applicability of

EDA to the specific demands of the LBE industry:

managing heterogeneity, ensuring modularity, and

reacting in real time.

Methodology

The work is grounded in a qualitative single-case study.

This approach is optimal for deep, holistic examination

of a contemporary phenomenon in its real-world

context—especially salient when analyzing complex

engineering systems in which design decisions are

tightly interwoven with practical constraints and

objectives.

The principal data source is a detailed technical

description of the GvK project provided by its lead

developer. This document views architectural decisions

with details their implementation including selection of

hardware and fragments of firmware also optimizes

performance. This source gives one kind of accuracy.

Granularity is unattainable from external observation.

It was systematically reviewed peer-reviewed literature

using Scopus, IEEE Xplore, and ACM Digital Library to

establish the theoretical foundation and contextualize

practical decisions. Keywords which were grouped into

three core domains became a focus of the search.

1. System architecture: Event-Driven Architecture,

also distributed interactive systems, along with a

message bus, and state synchronization. These sources

were the theoretical basis to analyze the COGS system.

The COGS system is described within TIBCO (n.d.).

2. For Raspberry Pi, for Arduino, for IoT

orchestration, for escape room technology: systems are

embedded and IoT. This body of work let us analyze the

hardware's implementation along with embedded

devices' interacting principles (Pfeifer et al., 2021).

3. Human–computer interaction (HCI): low-latency

UI, perceptual thresholds, system response time.

Literature in this area was used to quantitatively assess

user-interface quality and its compliance with human

The American Journal of Applied Sciences

85 https://www.theamericanjournals.com/index.php/tajas

psychophysiological perception thresholds (Attig et al.,

2017).

The analytical framework is built on aligning practical

implementations with theoretical concepts extracted

from secondary sources. In particular, COGS is analyzed

as an EDA realization, the game cluster and lava

simulation are examined as distributed real-time

systems, and the Starship user interface is evaluated

according to design principles for low-latency HCI

systems.

Results And Discussion

The COGS system is the central nervous system of the

GvK escape room. It functions as an orchestration bus

responsible for synchronizing the state of independent

modules by transmitting small state updates. Examples

include player-readiness information, score changes, or

narrative signals (e.g., all units READY → PREPARE →

START).

Under formal analysis, the COGS architecture fully

conforms to the principles of event-driven architecture

(EDA) (Geeks for Geeks, 2025). In this model, the first

component is the event producers—i.e., discrete nodes

such as rhythm-game consoles (registering button

presses), game-logic controllers (starting a new scene),

or the operator panel (issuing a SKIP command). Second

are the events themselves: the minor state updates are

the events—atomic packets encoding a system-state

change (e.g., score_change, gate_state_updated). Third

is the event broker: COGS plays the role of the central

event broker or message bus, routing events from

producers to consumers who need no direct knowledge

of one another. Finally, there come the event

consumers: nodes such as a Raspberry Pi, responsible

for the leaderboard (subscribed to score_change), or

Arduino Due controllers (subscribed to gate_matrix

updates), that react upon receipt of relevant

information.

The key advantage lies in modularity and loose coupling.

EDA enables the development, testing, and modification

of firmware for a single module, such as the lava

simulation, independently of other modules, like the

starship interface. Modularity is crucial for managing

complex systems with numerous interactive elements,

as well as for parallel teams to perform workflows

(Geeks for Geeks, 2025).

Industrial platforms fall short of a customized COGS

solution. The reason that this is occurring is because of

a deliberate engineering trade-off. Either DDS or CORBA

can be examples of heavyweight middleware, which is

often relied upon by high-level distributed systems.

Although developers face expenses, a steep learning

curve, and significant performance overhead (Schmidt,

2002), these systems offer guaranteed delivery, similar

to QoS. Modern IoT platforms provide easy integration;

however, reliance on cloud infrastructure creates

potential latency and failure points that are unsuitable

for a local, real-time application (Sharma, 2023).

COGS occupies the optimal middle ground. It is more

reliable and scalable than direct peer-to-peer links

among nodes, yet it avoids the excess complexity and

overhead associated with enterprise software or cloud

services. This lightweight, local EDA is an ideal pattern

for LBE’s specific domain, balancing power against

pragmatism. A comparative analysis of orchestration

approaches is presented in Table 1.

Table 1. Comparative analysis of architectural approaches to orchestration

Architectural

pattern

Latency Scalability Modularity

/ Loose

coupling

Development

complexity

Hardware

costs

Fault tolerance

Monolithic

control

Low (in-

process)

Low Very low High (as scale

increases)

Low Low (single

point of failure)

Peer-to-Peer Low Medium Medium Medium (N²

connections)

Low High (local

failures)

Lightweight

EDA (COGS)

Very low

(local

network)

High Very high Medium Low Medium (broker

= single point of

failure)

The American Journal of Applied Sciences

86 https://www.theamericanjournals.com/index.php/tajas

Enterprise

middleware

(DDS /

CORBA)

Low–

Medium

Very high Very high Very high Medium Very high

Cloud IoT

platform

High

(internet

latency)

Very high Very high Low Low High (depends

on provider)

The eight-player rhythm game is implemented as a tiny

distributed system. The architecture comprises eleven

Raspberry Pi nodes eight for game consoles, one host

node for handling game logic, one regarding the

leaderboard, along with one regarding the cinematic

display.

The preliminary assessment revealed an important

impediment to performance. Every actuation sent by

eight players across the network resulted in network

congestion, inducing large load spikes and intolerable

jitter. Speed of reaction is foremost inside distributed

interactive systems given this standard quandary.

The solution entailed a radical redesign of the data

pipeline. Instead of transmitting raw input events, each

console’s Raspberry Pi processes button presses locally.

The input arrives directly via a USB HID encoder,

allowing timing judgments to be made on the device

itself. Only after local processing is a compact score

update sent to COGS.

This is an instance of reducing network load through

edge processing. It shifts computational burden from

the central network to endpoint nodes. The design

pattern minimizes latency, ensuring near-zero console

delay, and guarantees a quiet, predictable network that

carries only essential orchestration commands. This

approach aligns with load-management techniques in

real-time systems described in the literature (Tanseer et

al., 2020). The system architecture is shown in Fig. 1.

Fig. 1. Architectural diagram of the rhythm game cluster

The volcano lava effect is realized not as a pre-rendered

video, but as a distributed simulation running in real-

time on two peer Arduino Due microcontrollers. There

is no leader–follower hierarchy; each Arduino Due

independently computes and displays the heat field on

the LED-strip segments assigned to it.

The system uses a hybrid control model: COGS acts as a

high-level show orchestrator, sending small control

packets that determine global state (e.g., which stone

gates are open, the scene phase). Low-level

computation—the heat-diffusion algorithm (heat[i]+=T;

… cool(heat[k]);)—is executed independently and in

parallel on each Arduino, as shown in Fig. 2.

Fig. 2. Heat-Field Solver with Gate-Driven Scene Control for LED Arrays

The American Journal of Applied Sciences

87 https://www.theamericanjournals.com/index.php/tajas

This model exploits the strengths of each component:

COGS for narrative control, and Arduino for

deterministic real-time hardware control (Kurkovsky &

Williams, 2017).

A main issue for distributed rendering is assuring

segments computed independently nearby are even.

The GvK solution becomes a small mix zone where

Arduinos drive matching LED strip setups. Upon state

changes, both of the controllers apply complementary

of the masks as the masks fade out their respective of

the halves of the blend zone so that they produce the

illusion of a single of a continuous lava flow.

This architecture for peer-to-peer simulation is quite

efficient. It tolerates faults also very well. There is no

single master controller that is responsible for

rendering. Therefore, that failure of just one Arduino

affects simply its portion of that display. Using small

control packets from COGS, network traffic is kept

minimal, while high precision without resource

contention is guaranteed for the simulation via local

processing. In Distributed Interactive Simulation (DIS),

entities exchange state updates yet remain responsible

for their own simulation loops.

Starship UI fully interacts as an application that is

running on a Raspberry Pi, in place of a passive video file.

User input creates on-screen feedback after

approximately 30 ms using 60 fps updates.

Latency influences user performance also the subjective

feeling of immersion within HCI (Attig et al., 2017).

Response time for the system must fall to a point below

human perceptual thresholds. Then, an action seems

instantaneous in time.

Classical guidelines cite a threshold of about 100 ms for

interactions to feel immediate upon comparison with

HCI principles. Newer modality-specific studies set

tighter limits. Ideally, visual feedback ≤ 85 ms is best and

haptic feedback must be < 50 ms with 25 ms needed in

some contexts (Attig et al., 2017).

For GvK, the measured ~30 ms interface latency is within

the optimal range for high-quality visual, and even

haptic-like, interactions, well below the general 100 ms

threshold. The high level of engineering refinement for

the user experience corroborates this result. This

evidence supports the developer’s claim that every

press feels instantaneous.

The Raspberry Pi is by far an inexpensive platform.

Engineering with meaning enabled performance of such

a nature on it. It is enabled through the running of an

optimized application that changes state atomically by

using state diffs in place of redrawing the entire screen,

and communicating with COGS’s low-overhead

protocol. Careful software design does show that

stringent real-time HCI requirements can be met even

without costly specialized hardware.

A hybrid federated architecture is what the GvK system

must be regarded as being. It unites general-purpose

single-board computers' (Raspberry Pi) strengths for

user interfaces plus complex logic. It uses deterministic

real-time capabilities of microcontrollers (Arduino) for

direct hardware control also (Kurkovsky & Williams,

2017). A lightweight local event bus, COGS, synchronizes

this entire federation, ensuring that components remain

loosely coupled.

Conclusion

Theoretical foundations central to the article are event-

driven architecture (EDA), distributed-systems

principles, human computer interaction (HCI) latency

requirements, and also edge processing. EDA provides

modularity and loose coupling to simplify independent

development and runtime composition distributed-

systems theory frames trade-offs between local

determinism and global orchestration to achieve

scalability and fault tolerance edge processing moves

temporal decision logic to endpoints to reduce network

load and jitter and HCI thresholds (commonly cited ≤100

ms, with modality-specific targets substantially lower

and with the study reporting an operational target near

30 ms) define the latency budget necessary for

perceived immediacy.

In the Godzilla vs. In Kong case these theories are

instantiated concretely. In just a federated topology

which links Raspberry Pi and Arduino nodes, just a

lightweight local event bus (COGS) functions as the

orchestration layer: Arduino controllers perform

deterministic, local simulations for LED effects, while

Raspberry Pi units execute interface logic and then

transmit compact state diffs to the bus. This

combination using edge processing and brokered events

reduced network spikes, constrained jitter, produced an

observed interface latency of ≈30 ms, and it yielded

graded fault tolerance through distributed responsibility

for subsystems.

Therefore, the examined theories not only explain the

GvK engineering choices but form a transferable

architectural template as well. These theories may apply

The American Journal of Applied Sciences

88 https://www.theamericanjournals.com/index.php/tajas

to many of the similar location-based entertainment

systems. Lightweight local EDA along with endpoint

processing and with latency-aware HCI design make up

that minimal set of reproducible principles. These

principles address themselves to the principal metrics of

such projects: modularity, low latency, as well as

controlled network load.

References

1. Attig, C., Rauh, N., Franke, T., & Krems, J. F. (2017).

System Latency Guidelines Then and Now – Is Zero

Latency Really Considered Necessary? Engineering

Psychology and Cognitive Ergonomics: Cognition

and Design, 3–14. https://doi.org/10.1007/978-3-

319-58475-1_1

2. Geeks for Geeks. (2025, August 18). Event-Driven

Architecture System Design. Geeks for Geeks.

https://www.geeksforgeeks.org/system-

design/event-driven-architecture-system-design/

3. Kurkovsky, S., & Williams, C. (2017). Raspberry Pi as

a Platform for the Internet of Things Projects.

Proceedings of the 2017 ACM Conference on

Innovation and Technology in Computer Science

Education.

https://doi.org/10.1145/3059009.3059028

4. Makri, A., Vlachopoulos, D., & Martina, R. A. (2021).

Digital Escape Rooms as Innovative Pedagogical

Tools in Education: A Systematic Literature Review.

Sustainability, 13(8), 4587.

https://doi.org/10.3390/su13084587

5. Pfeifer, M., Völker, B., Böttcher, S., Köhler, S., &

Scholl, P. M. (2021). Teaching Embedded Systems

by Constructing an Escape Room. Proceedings of

SIGCSE ’21: The 52nd ACM Technical Symposium

on Computer Science Education.

https://doi.org/10.1145/3408877.3432485

6. Schmidt, D. C. (2002). Middleware for real-time and

embedded systems. Communications of the ACM,

45(6), 43–48.

https://doi.org/10.1145/508448.508472

7. Sharma, P. (2023). Internet of Things (IoT): Study of

Arduino and Raspberry Pi and their applications in

various domains. International Journal of Research

Publication and Reviews, 4(9), 2468–2477.

https://doi.org/10.55248/gengpi.4.923.92507

8. Tanseer, I., Kanwal, N., Asghar, M. N., Iqbal, A.,

Tanseer, F., & Fleury, M. (2020). Real-Time,

Content-Based Communication Load Reduction in

the Internet of Multimedia Things. Applied

Sciences, 10(3).

https://doi.org/10.3390/app10031152

9. TIBCO. (n.d.). What is Event-driven Architecture?

TIBCO. Retrieved August 2, 2025, from

https://www.tibco.com/glossary/what-is-event-

driven-architecture

https://doi.org/10.1007/978-3-319-58475-1_1
https://doi.org/10.1007/978-3-319-58475-1_1
https://www.geeksforgeeks.org/system-design/event-driven-architecture-system-design/
https://www.geeksforgeeks.org/system-design/event-driven-architecture-system-design/
https://doi.org/10.1145/3059009.3059028
https://doi.org/10.3390/su13084587
https://doi.org/10.1145/3408877.3432485
https://doi.org/10.1145/508448.508472
https://doi.org/10.55248/gengpi.4.923.92507
https://doi.org/10.3390/app10031152
https://www.tibco.com/glossary/what-is-event-driven-architecture
https://www.tibco.com/glossary/what-is-event-driven-architecture

