The American Journal of
Applied Sciences

ISSN 2689-0992 | Open Access

i} Check for updates

OPEN ACCESS

19 August 2025
15 September 2025
17 October 2025
Vol.07 Issue 10 2025

Dmytro Novoselskyi. (2025). Godzilla Vs. Kong Escape Room: Pipelines,
Firmware, And Live Systems. The American Journal of Applied Sciences,
7(10), 78—88. https://doi.org/10.37547 /tajas/Volume07lssuel0-09

© 2025 Original content from this work may be used under the terms
of the creative common’s attributes 4.0 License.

The American Journal of Applied Sciences 83

Original Research
78-88
10.37547/tajas/Volume07Issuel0-09

Godzilla Vs. Kong Escape
Room: Pipelines, Firmware,
And Live Systems

Dmytro Novoselskyi
Senior Software Developer, 60out Escape Rooms, Los Angeles,
USA

Abstract: This article examines the architecture of
pipelines, embedded systems, also real-time systems
when they are implemented via an event-driven
approach, using the Godzilla vs. Kong escape room
works as an empirical case study. The study is relevant
as the location-based entertainment industry rapidly
advances and technological installations escalate in
complexity, where numerous heterogeneous hardware
and software components reliably integrate. Customary
monolithic architectures, also cloud-centered solutions,
are often insufficient under stringent requirements for
modularity, fault tolerance, and low interaction latency.
For identifying universal principles for designing
distributed real-time systems, the study will deconstruct
and analyze the system architecture through a real
commercial project. This work formalizes practical
solutions derived from applied engineering within the
context of event-driven architecture (EDA) and
distributed-systems theory, contributing to scientific
novelty. It becomes possible when elevating of the
empirical COGS bus links nodes to a canonical
architectural pattern. The principal results show the
proposed model achieves extremely low response
latency of about 30 ms as well as scalability plus loose
coupling of modules. This model enables efficient
computational load redistribution between peripheral
devices and a central system. The article will help out
researchers and also engineers that work for embedded
systems and real-time systems as well as develop
engaging interactive environments.

Keywords: Event-driven architecture, embedded
systems, real-time systems, distributed systems,
immersive environments.

https://www.theamericanjournals.com/index.php/tajas

https://doi.org/10.37547/tajas/Volume07Issue10-09
https://doi.org/10.37547/tajas/Volume07Issue10-09

Introduction

The location-based entertainment (LBE) industry has
transformed markedly over the course of the past
decade. Escape rooms now differ; they contain
interactive elements, special effects, detailed plotlines
within engaging high-technology environments rather
than simple puzzles or mechanical locks (Makri et al.,
2021). Since digital technologies with a broad spectrum
integrate microcontrollers, single-board computers,
custom user interfaces, sensors, and actuators, this

significant advance has continued to progress.

Integrating diverse hardware as well as software
components into just a single fault-tolerant system
becomes a truly fundamental engineering problem on
account of this complexity (Pfeifer et al., 2021). For
bespoke installations of this caliber here, truly
customary monolithic control systems often do prove
not sufficiently flexible, or scalable, and even reliable
because only a single central controller handles
absolutely all logic. Failures at the central node can
precipitate system-wide outages. Complex as well as
risk-laden modifications to existing code are demanded

when adding new interactive elements.

As an exemplary case study to address this problem, the
present research examines the Godzilla franchise. That
research features Godzilla versus. Kong escape room,
namely GvK, was implemented by 600ut Escape Rooms.
The design of this work provides a concrete, analytical
distributed and

foundation. It comprises several

autonomous subsystems.

For distilling its key design principles, deconstructing
and analyzing the GvK system architecture is the primary
objective. Set forth at this point are the tasks as follows:

1.
within formal architectural patterns.

Characterize the COGS orchestration system

2.
time performance and network-load management in

Analyze exact design decisions aimed at real-

distributed subsystems.

3.
human—computer interaction (HCI) and compare it to

Evaluate system performance in the context of

established academic criteria.

The scientific novelty lies in presenting a detailed
technical analysis of a complex, commercially successful

immersive system and formalizing its practical

engineering solutions through established concepts

from computer science, such as event-driven

architecture (EDA) and distributed systems theory.

The American Journal of Applied Sciences

84

During the development of GvK, the engineers,
confronted with practical challenges, intuitively arrived
at a system they described as COGS event bus (a local
publish—subscribe orchestration bus). This approach,
born of engineering necessity, is in essence a classical
realization of the publish—subscribe pattern at the heart
of EDA (TIBCO, n.d.). Thus, the present study elevates an
ad-hoc practical solution to a validated architectural
archetype, demonstrating the organic applicability of
EDA to the specific demands of the LBE industry:
managing heterogeneity, ensuring modularity, and

reacting in real time.
Methodology

The work is grounded in a qualitative single-case study.
This approach is optimal for deep, holistic examination
of a contemporary phenomenon in its real-world
context—especially salient when analyzing complex
engineering systems in which design decisions are
tightly
objectives.

interwoven with practical constraints and

The principal data source is a detailed technical
description of the GvK project provided by its lead
developer. This document views architectural decisions
with details their implementation including selection of
hardware and fragments of firmware also optimizes
performance. This source gives one kind of accuracy.
Granularity is unattainable from external observation.

It was systematically reviewed peer-reviewed literature
using Scopus, IEEE Xplore, and ACM Digital Library to
establish the theoretical foundation and contextualize
practical decisions. Keywords which were grouped into
three core domains became a focus of the search.

1.
also distributed interactive systems, along with a

System architecture: Event-Driven Architecture,

message bus, and state synchronization. These sources
were the theoretical basis to analyze the COGS system.
The COGS system is described within TIBCO (n.d.).

2. for Arduino, for IloT

orchestration, for escape room technology: systems are

For Raspberry Pi,
embedded and loT. This body of work let us analyze the
hardware's implementation along with embedded

devices' interacting principles (Pfeifer et al., 2021).

3.
ul,
Literature in this area was used to quantitatively assess

Human—computer interaction (HCI): low-latency

perceptual thresholds, system response time.

user-interface quality and its compliance with human

https://www.theamericanjournals.com/index.php/tajas

psychophysiological perception thresholds (Attig et al.,
2017).

The analytical framework is built on aligning practical
implementations with theoretical concepts extracted
from secondary sources. In particular, COGS is analyzed
as an EDA realization, the game cluster and lava
simulation are examined as distributed real-time
systems, and the Starship user interface is evaluated
according to design principles for low-latency HCI

systems.
Results And Discussion

The COGS system is the central nervous system of the
GvK escape room. It functions as an orchestration bus
responsible for synchronizing the state of independent
modules by transmitting small state updates. Examples
include player-readiness information, score changes, or
narrative signals (e.g., all units READY - PREPARE -
START).

Under formal analysis, the COGS architecture fully
conforms to the principles of event-driven architecture
(EDA) (Geeks for Geeks, 2025). In this model, the first
component is the event producers—i.e., discrete nodes
such as rhythm-game consoles (registering button
presses), game-logic controllers (starting a new scene),
or the operator panel (issuing a SKIP command). Second
are the events themselves: the minor state updates are
the events—atomic packets encoding a system-state
change (e.g., score_change, gate_state updated). Third
is the event broker: COGS plays the role of the central
event broker or message bus, routing events from
producers to consumers who need no direct knowledge
there come the event

of one another. Finally,

consumers: nodes such as a Raspberry Pi, responsible

for the leaderboard (subscribed to score_change), or
Arduino Due controllers (subscribed to gate_matrix
that
information.

updates), react upon receipt of relevant

The key advantage lies in modularity and loose coupling.
EDA enables the development, testing, and modification
of firmware for a single module, such as the lava
simulation, independently of other modules, like the
starship interface. Modularity is crucial for managing
complex systems with numerous interactive elements,
as well as for parallel teams to perform workflows
(Geeks for Geeks, 2025).

Industrial platforms fall short of a customized COGS
solution. The reason that this is occurring is because of
a deliberate engineering trade-off. Either DDS or CORBA
can be examples of heavyweight middleware, which is
often relied upon by high-level distributed systems.
Although developers face expenses, a steep learning
curve, and significant performance overhead (Schmidt,
2002), these systems offer guaranteed delivery, similar
to QoS. Modern loT platforms provide easy integration;
however, reliance on cloud infrastructure creates
potential latency and failure points that are unsuitable

for a local, real-time application (Sharma, 2023).

COGS occupies the optimal middle ground. It is more
reliable and scalable than direct peer-to-peer links
among nodes, yet it avoids the excess complexity and
overhead associated with enterprise software or cloud
services. This lightweight, local EDA is an ideal pattern
for LBE’s specific domain, balancing power against
pragmatism. A comparative analysis of orchestration
approaches is presented in Table 1.

Table 1. Comparative analysis of architectural approaches to orchestration

Architectural | Latency |Scalability|Modularity|Development|Hardware| Fault tolerance
pattern / Loose | complexity costs
coupling
Monolithic |Low (in-| Low Very low |High (as scale| Low Low (single
control process) increases) point of failure)
Peer-to-Peer | Low | Medium | Medium | Medium (N2 Low High (local
connections) failures)
Lightweight [Very low| High Very high Medium Low |Medium (broker
EDA (COGS)| (local = single point of
network) failure)

The American Journal of Applied Sciences

https://www.theamericanjournals.com/index.php/tajas

Enterprise Low— | Very high| Very high | Very high | Medium Very high
middleware | Medium
(DDS /
CORBA)
Cloud IoT High [Very high | Very high Low Low High (depends
platform | (internet on provider)
latency)

The eight-player rhythm game is implemented as a tiny
distributed system. The architecture comprises eleven
Raspberry Pi nodes eight for game consoles, one host
node for handling game logic, one regarding the
leaderboard, along with one regarding the cinematic
display.

The preliminary assessment revealed an important
impediment to performance. Every actuation sent by
eight players across the network resulted in network
congestion, inducing large load spikes and intolerable
jitter. Speed of reaction is foremost inside distributed
interactive systems given this standard quandary.

The solution entailed a radical redesign of the data
pipeline. Instead of transmitting raw input events, each

W Score update

Button = Local input ——® USB HID —— Console Pi

console’s Raspberry Pi processes button presses locally.
The input arrives directly via a USB HID encoder,
allowing timing judgments to be made on the device
itself. Only after local processing is a compact score
update sent to COGS.

This is an instance of reducing network load through
edge processing. It shifts computational burden from
the central network to endpoint nodes. The design
pattern minimizes latency, ensuring near-zero console
delay, and guarantees a quiet, predictable network that
carries only essential orchestration commands. This
approach aligns with load-management techniques in
real-time systems described in the literature (Tanseer et
al., 2020). The system architecture is shown in Fig. 1.

—\ /-P Update leaderboard ——® Leaderboard Pi

— (OGS

Host Pi ——® Sound signals

| / \~b Update progress ——— Display Pi

Fig. 1. Architectural diagram of the rhythm game cluster

The volcano lava effect is realized not as a pre-rendered
video, but as a distributed simulation running in real-
time on two peer Arduino Due microcontrollers. There
is no leader—follower hierarchy; each Arduino Due
independently computes and displays the heat field on
the LED-strip segments assigned to it.

The system uses a hybrid control model: COGS acts as a
high-level show orchestrator, sending small control

packets that determine global state (e.g., which stone
the phase).
computation—the heat-diffusion algorithm (heat[i]+=T;

. cool(heat[k]);)—is executed independently and in

gates are open, scene Low-level

parallel on each Arduino, as shown in Fig. 2.

// inject + diffuse + cool (per node)

[1-11+=T/3; [114=T; heat[i+1]+=T/2;
for (int k = s k > 1; k--) [k] = [k-11;
for (int k = 0; k < ; k++) [k] = (4, ([k]));
// map segment with fade
1 = ((([j+off],), 1)

Fig. 2. Heat-Field Solver with Gate-Driven Scene Control for LED Arrays

The American Journal of Applied Sciences

86

https://www.theamericanjournals.com/index.php/tajas

This model exploits the strengths of each component:
COGS
deterministic real-time hardware control (Kurkovsky &
Williams, 2017).

for narrative control, and Arduino for

A main issue for distributed rendering is assuring
segments computed independently nearby are even.
The GvK solution becomes a small mix zone where
Arduinos drive matching LED strip setups. Upon state
changes, both of the controllers apply complementary
of the masks as the masks fade out their respective of
the halves of the blend zone so that they produce the
illusion of a single of a continuous lava flow.

This architecture for peer-to-peer simulation is quite
efficient. It tolerates faults also very well. There is no
that
rendering. Therefore, that failure of just one Arduino

single master controller is responsible for
affects simply its portion of that display. Using small
control packets from COGS, network traffic is kept
minimal, while high precision without resource
contention is guaranteed for the simulation via local
processing. In Distributed Interactive Simulation (DIS),
entities exchange state updates yet remain responsible

for their own simulation loops.

Starship Ul fully interacts as an application that is
running on a Raspberry Pi, in place of a passive video file.
input feedback
approximately 30 ms using 60 fps updates.

User creates on-screen after

Latency influences user performance also the subjective
feeling of immersion within HCI (Attig et al., 2017).
Response time for the system must fall to a point below
human perceptual thresholds. Then, an action seems
instantaneous in time.

Classical guidelines cite a threshold of about 100 ms for
interactions to feel immediate upon comparison with
HCI principles. Newer modality-specific studies set
tighter limits. Ideally, visual feedback < 85 ms is best and
haptic feedback must be < 50 ms with 25 ms needed in
some contexts (Attig et al., 2017).

For GvK, the measured ~30 ms interface latency is within
the optimal range for high-quality visual, and even
haptic-like, interactions, well below the general 100 ms
threshold. The high level of engineering refinement for
the user experience corroborates this result. This
evidence supports the developer’s claim that every
press feels instantaneous.

The Raspberry Pi is by far an inexpensive platform.
Engineering with meaning enabled performance of such

The American Journal of Applied Sciences

87

a nature on it. It is enabled through the running of an
optimized application that changes state atomically by
using state diffs in place of redrawing the entire screen,
and communicating with COGS’s low-overhead
protocol. Careful software design does show that
stringent real-time HCI requirements can be met even

without costly specialized hardware.

A hybrid federated architecture is what the GvK system
must be regarded as being. It unites general-purpose
single-board computers' (Raspberry Pi) strengths for
user interfaces plus complex logic. It uses deterministic
real-time capabilities of microcontrollers (Arduino) for
direct hardware control also (Kurkovsky & Williams,
2017). A lightweight local event bus, COGS, synchronizes
this entire federation, ensuring that components remain
loosely coupled.

Conclusion

Theoretical foundations central to the article are event-
(EDA),
principles, human computer interaction (HCI) latency

driven architecture distributed-systems
requirements, and also edge processing. EDA provides
modularity and loose coupling to simplify independent
development and runtime composition distributed-
local

systems theory frames trade-offs between

determinism and global orchestration to achieve
scalability and fault tolerance edge processing moves
temporal decision logic to endpoints to reduce network
load and jitter and HCl thresholds (commonly cited <100
ms, with modality-specific targets substantially lower
and with the study reporting an operational target near
30 ms) define the latency budget necessary for

perceived immediacy.

In the Godzilla vs. In Kong case these theories are
instantiated concretely. In just a federated topology
which links Raspberry Pi and Arduino nodes, just a
lightweight local event bus (COGS) functions as the
orchestration layer: Arduino controllers perform
deterministic, local simulations for LED effects, while
Raspberry Pi units execute interface logic and then
state diffs to the bus. This

combination using edge processing and brokered events

transmit compact

reduced network spikes, constrained jitter, produced an
observed interface latency of =30 ms, and it yielded
graded fault tolerance through distributed responsibility
for subsystems.

Therefore, the examined theories not only explain the
GvK engineering choices but form a transferable
architectural template as well. These theories may apply

https://www.theamericanjournals.com/index.php/tajas

to many of the similar location-based entertainment
systems. Lightweight local EDA along with endpoint
processing and with latency-aware HCI design make up
that minimal set of reproducible principles. These
principles address themselves to the principal metrics of
such projects: modularity, low latency, as well as
controlled network load.

References

1. Attig, C., Rauh, N., Franke, T., & Krems, J. F. (2017).
System Latency Guidelines Then and Now — Is Zero
Latency Really Considered Necessary? Engineering
Psychology and Cognitive Ergonomics: Cognition
and Design, 3—14. https://doi.org/10.1007/978-3-
319-58475-1 1

2. Geeks for Geeks. (2025, August 18). Event-Driven
Architecture System Design. Geeks for Geeks.

https://www.geeksforgeeks.org/system-

design/event-driven-architecture-system-design/
3. Kurkovsky, S., & Williams, C. (2017). Raspberry Pi as
a Platform for the Internet of Things Projects.

Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science
Education.
https://doi.org/10.1145/3059009.3059028

4. Makri, A., Vlachopoulos, D., & Martina, R. A. (2021).
Digital Escape Rooms as Innovative Pedagogical

Tools in Education: A Systematic Literature Review.
Sustainability, 13(8), 4587.
https://doi.org/10.3390/su13084587

5. Pfeifer, M., Volker, B., Bottcher, S., Kohler, S., &
Scholl, P. M. (2021). Teaching Embedded Systems
by Constructing an Escape Room. Proceedings of
SIGCSE '21: The 52nd ACM Technical Symposium
on Computer Science Education.
https://doi.org/10.1145/3408877.3432485

6. Schmidt, D. C. (2002). Middleware for real-time and
embedded systems. Communications of the ACM,
45(6), 43-48.
https://doi.org/10.1145/508448.508472

7. Sharma, P. (2023). Internet of Things (loT): Study of
Arduino and Raspberry Pi and their applications in

various domains. International Journal of Research
Publication and Reviews, 4(9), 2468—2477.
https://doi.org/10.55248/gengpi.4.923.92507

8. Tanseer, I., Kanwal, N., Asghar, M. N,, Igbal, A,
Tanseer, F., & Fleury, M. (2020). Real-Time,
Content-Based Communication Load Reduction in

the Internet of Multimedia Things. Applied

The American Journal of Applied Sciences 88

Sciences, 10(3).
https://doi.org/10.3390/app10031152

TIBCO. (n.d.). What is Event-driven Architecture?
TIBCO. Retrieved August 2, 2025, from
https://www.tibco.com/glossary/what-is-event-

driven-architecture

https://www.theamericanjournals.com/index.php/tajas

https://doi.org/10.1007/978-3-319-58475-1_1
https://doi.org/10.1007/978-3-319-58475-1_1
https://www.geeksforgeeks.org/system-design/event-driven-architecture-system-design/
https://www.geeksforgeeks.org/system-design/event-driven-architecture-system-design/
https://doi.org/10.1145/3059009.3059028
https://doi.org/10.3390/su13084587
https://doi.org/10.1145/3408877.3432485
https://doi.org/10.1145/508448.508472
https://doi.org/10.55248/gengpi.4.923.92507
https://doi.org/10.3390/app10031152
https://www.tibco.com/glossary/what-is-event-driven-architecture
https://www.tibco.com/glossary/what-is-event-driven-architecture

