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Abstract. The study systematically presents the 

fundamental principles for constructing end-to-end 

pipelines for duplicate detection using machine learning 

methods. The objective is to analyze and subsequently 

formalize an architectural schema that unifies stream 

processing, adaptive ML mechanisms, and scalable 

cloud components. The methodological foundation is 

based on a review of existing entity resolution 

approaches and the design of an integrated 

architectural solution derived with consideration of the 

key concepts embedded in patent US11995054B2. The 

technological core comprises the following components: 

Apache Kafka for stream orchestration, Apache Spark 

for distributed processing, Amazon SageMaker for 

model development and management, and NoSQL 

stores for flexible and scalable persistence of 

intermediate and final data. As a result, a fault-tolerant, 

horizontally scalable architecture is proposed, intended 

for operation in near real-time conditions. The central 

mechanism is a machine learning system with a 

continuous feedback loop, in which user verdicts on 

ambiguous duplicate cases are employed for dynamic 

retraining and improvement of detection quality. The 

findings of the study offer practical value for data 

architects, machine learning engineers, and researchers 

focused on data quality management in the design of 

high-throughput analytical systems. 

Keywords:  duplicate detection, machine learning, end-

to-end pipeline, Apache Spark, Apache Kafka, Amazon 

SageMaker, data quality, entity resolution, stream 

processing, MLOps. 
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The era of big data is accompanied not only by a rapid 

increase in information volume but also by acute 

challenges related to ensuring its accuracy and 

consistency. According to expert estimates, by 2025 the 

global volume of digital data will approach 175 

zettabytes [1]. One of the most frequent and costly 

anomalies in enterprise data repositories is the presence 

of duplicate records. Such duplicates distort the outputs 

of analytical systems, lead to excessive consumption of 

storage and computational resources, and can become 

sources of critical operational failures, particularly in the 

financial services and logistics sectors. Traditional 

deduplication mechanisms based on fixed, manually 

defined rules prove ineffective in environments 

characterized by high variability in data structure, 

heterogeneous sources, and the velocity of incoming 

streams: they scale poorly, require continuous manual 

reconfiguration, and are unable to adapt autonomously 

to evolving patterns. 

In this context, the emergence and development of 

machine learning methods offer fundamentally 

different opportunities for duplicate detection. ML 

models are capable of extracting and formalizing 

complex, latent correlations and similarities in data from 

historical examples, enabling the identification of 

duplication not only by explicit attributes but also by 

implied semantic equivalences. 

The objective of the work is to conduct an analysis and 

subsequent formalization of an architectural framework 

that integrates streaming data processing, adaptive 

machine learning mechanisms, and scalable cloud 

components. 

The scientific novelty of the work lies in the 

formalization of an integrated architectural model that 

combines streaming data processing, model training and 

retraining accounting for user disputes, and the use of 

scalable cloud services to ensure the resilient operation 

of a duplicate detection system. 

The author’s hypothesis posits that an architecture 

combining streaming ingestion and processing 

technologies (for example, Apache Kafka and Apache 

Spark) with a continuously updated machine learning 

model (for instance, deployed via Amazon SageMaker), 

which receives explicit feedback from users, can achieve 

substantially higher accuracy and scalability compared 

to traditional batch or static deduplication approaches. 

 

Materials and Methods 

In recent years, research on constructing end-to-end 

data processing pipelines for duplicate detection has 

encompassed a wide range of approaches, which can be 

grouped as follows. 

First, the conceptual and methodological foundations of 

quality management and master data management set 

the overall direction for the development of pipelines 

for duplicate detection. Thomas Coughlin [1] 

emphasizes the need to develop strategies to ensure 

data integrity and reliability across the entire lifecycle, 

from ingestion to analytics. Adapa C. S. R. [2], in the 

context of MDM and data engineering, proposes 

formalized criteria for assessing the maturity of master 

data solution portfolios and identifies key stages in 

building the architecture of a processing pipeline—

ranging from data collection and normalization to 

integration with downstream machine learning services. 

Among practical implementations, the patent 

US11995054B2 by Daruna S., Bantanur V. S., Lee M., is 

noteworthy; it describes a specific scheme for ML-

oriented detection and resolution of duplicates at the 

data ingestion stage, including a composition of 

classification models and heuristics for automatic record 

correction [10].  

Second, a number of works concentrate on 

unsupervised methods of “cleaning” and preparing data 

with an emphasis on reinforcement learning. Peng J. et 

al. [3] proposed the RLclean framework, in which deep 

reinforcement learning is used for the automated 

selection and sequential application of cleaning 

operators (outlier removal, string normalization, missing 

value imputation), enabling the pipeline to adapt to 

different domains and reducing the need for manual 

tuning. 

Third, the task of entity resolution (ER) and alignment of 

entities in multi-modal knowledge graphs is often 

treated as a central stage of deduplication pipelines. 

Jehangir B., Radhakrishnan S., Agarwal R. [4] analyzed 

existing datasets, tools, and NER methodologies, 

including approaches based on CRF, BiLSTM-CRF, and 

Transformer layers, laying the foundation for 

constructing named entity extraction modules within 

the pipeline. Li X. et al. [5] proposed the Contextual 

Semantics Graph Attention Network, in which 

contextual vector representations and an edge-wise 

attention mechanism are applied to improve ER 

accuracy by accounting for semantic relationships 

between records. In a related direction, Zhu J., Huang C., 

De Meo P. [8] introduced a dual fusion multi-modal KGE 



The American Journal of Applied Sciences 

 

54 https://www.theamericanjournals.com/index.php/tajas 

 

 

framework (DFMKE) for aligning nodes in 

heterogeneous graphs, enabling simultaneous 

consideration of textual and structural features. Liu B. et 

al. [9] developed the PRTA scheme for extracting nested 

data and overlapping relations through parametrically 

separable progressive recognition and targeted 

decoding, which can be valuable in deduplication within 

specialized domains characterized by rich hierarchical 

entity structures. 

Finally, comprehensive software suites and 

methodologies for assembling end-to-end pipelines in 

applied domains, which can be adapted for 

deduplication, are considered. Espinoza J. L., Dupont C. 

L. [6] described VEBA—a modular toolkit for 

reconstruction, clustering, and analysis of genomic data 

from metagenomes—demonstrating principles for 

building scalable end-to-end data stream processing 

systems. Lopez-Lopez E., Pardo X. M., Regueiro C. V. [7] 

presented an incremental learning system for an open 

set of face recognition tasks in video streams, where 

continuous model updates enable the identification and 

elimination of “duplicated” profiles as new data arrive.  

Thus, the literature on end-to-end ML pipelines for 

duplicate detection integrates methodological 

approaches to quality and master data management, 

unsupervised cleaning methods, entity resolution 

algorithms, and practical frameworks from adjacent 

fields. At the same time, contradictions and gaps 

remain. Some authors (for example, in MDM surveys) 

focus on master data organization processes and 

pipeline architecture, while others emphasize 

specialized ML modules without consideration of 

integration across the full lifecycle. This leads to a 

disconnect between strategic recommendations and 

their practical implementation. 

Insufficiently addressed are: 

hybrid learning methods (semi-supervised and self-

supervised) in the context of ER tasks and deduplication; 

real-time and streaming deduplication in high-

throughput systems; 

human-in-the-loop interaction for calibration and 

evaluation of pipeline performance; 

issues of ethical interpretability of record 

deletion/merging decisions and their transparency to 

end users. 

Results and Discussion 

To construct an end-to-end duplicate detection pipeline, 

an architectural model is proposed, grounded in the 

conceptual foundations described in US Patent 

US11995054B2 [10] and implemented using a modern 

technology stack capable of handling large-scale data 

and machine learning methods. The architecture’s 

design was developed with consideration of critical non-

functional requirements: horizontal scalability, fault 

tolerance, and the ability to operate in a near real-time 

mode. 

Description of the comprehensive pipeline architecture. 

The diagram shown in Figure 1 depicts the logical 

structure of the proposed architecture. It comprises the 

key layers: raw data acquisition, stream processing, 

long-term and intermediate storage, stages for training 

and deploying machine learning models, and an API 

interface for integration and interaction with external 

systems [2, 10]. 
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Fig. 1. Architecture of the complex pipeline for duplicate detection [2, 10] 

Data Ingestion: Incoming data—transactional records, 

user registrations, and other events—enter the system 

via the message broker Apache Kafka. Kafka serves as an 

intermediate buffer, ensuring reliable delivery of events 

and allowing multiple consumers to independently 

subscribe to the required stream partitions, which 

provides scalability and resilience to latency. 

Stream Processing: The core processing is based on 

Apache Spark operating in Structured Streaming mode. 

Spark consumes data from Kafka organized into micro-

batches and implements the primary computational 

logic composed of several sequential stages. This 

enables transformations, enrichment, filtering, and data 

preparation within a continuous stream while 

guaranteeing consistency and low latency. 

Storage: A hybrid storage strategy is employed. For fast, 

frequent access to historical records and user dispute 

cases, distributed key-value databases—Apache 

Cassandra or Amazon DynamoDB—are used due to their 

ability to deliver high throughput on key-based 

read/write operations. Simultaneously, data intended 

for deep analysis and long-term archival is stored in a 

data lake built on Amazon S3, providing flexibility for 

analytical workloads and retrospective retrieval [3, 8]. 

Machine Learning: The full lifecycle of the machine 

learning model is orchestrated using Amazon 

SageMaker. Training: According to the interval 

described in the patent (e.g., weekly), the model 

retraining process is initiated on aggregated data from 

Cassandra and/or S3, including both historical records 

and user-labeled dispute cases. Deployment (Inference): 

The resulting trained model is exposed as a fault-

tolerant SageMaker endpoint capable of serving 

prediction requests in real time.  

API and Feedback Loop: AWS Lambda functions act as 

integration components between the processing 
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platform and the model. They are invoked from Spark to 

obtain predictions from SageMaker and subsequently 

persist the results into the storage system. Additionally, 

Lambda implements the interface for the user-facing 

GUI to report disputed cases, thus closing the feedback 

loop and enabling continuous model improvement [7, 

10]. 

 Feature Processing and Generation: The performance-

critical core of the system is the sequential 

transformation of incoming events and extraction of 

informative features, executed within Apache Spark. 

This logic is structured in accordance with the 

methodology outlined in the patent [10] and adapted for 

the requirements of the distributed streaming 

environment depicted in Figure 2. Within Structured 

Streaming, data flows through a pipeline that includes 

normalization, temporal aggregation, computation of 

context-aware metrics, and joins with auxiliary 

reference or historical slices, while preserving 

consistency and idempotency. Feature generation is 

designed to operate in near real time: for each micro-

batch, both basic deterministic features and more 

complex composite features—incorporating 

retrospective dependencies and signals derived from 

interaction chains—are computed. Spark’s parallel 

execution model enables scaling of these operations 

over both the data and the feature model, and its built-

in state management mechanisms correctly handle 

sliding windows, lateness, and partially arriving events 

without compromising the integrity of the feature 

space. All of this forms the input for subsequent stages, 

supporting both analytical use cases and machine 

learning models. [10] 

 

 

Fig. 2. Data processing process in Apache Spark [3,7, 8, 10] 

For each incoming record, the following duplicate 

detection procedure is executed sequentially. 

First, a blocking key is generated (Blocking Key 

Generation). According to the description in the patent, 

this key is constructed based on a combination of the 

entity identifier (e.g., merchant ID) and a geographic or 

logical location. Such a scheme enables pre-grouping of 

data into sets of potentially comparable records, 

significantly reducing the comparison space and 

eliminating the need for exhaustive pairwise evaluation, 

which would be computationally infeasible in scalable 

data streams.  

Next, upon arrival of a new record with a specific 

blocking key, a candidate search is performed 

(Candidate Search). Previously ingested records sharing 

the same blocking key are retrieved from storage (for 

example, Cassandra or DynamoDB). Additional filtering 

based on temporal constraints—such as limiting to 

records that occurred within the last five minutes—is 

applied to narrow the set to the most relevant potential 

duplicates [5, 6]. 

For each “new record–candidate” pair, a feature vector 

is computed (Feature Vector Generation). In the patent 

[10], its basic composition includes: the entity identifier, 

location, transaction amount, and timestamp. In 



The American Journal of Applied Sciences 

 

57 https://www.theamericanjournals.com/index.php/tajas 

 

 

practice, this initial set is augmented with contextual 

and derived components that increase the model’s 

discriminative power. In particular, quantitative 

measures of differences are introduced, such as 

absolute time difference (|texttime_1 − texttime_2|) 

and transaction value difference (|textvalue_1 − 

textvalue_2|). Textual fields (e.g., product description) 

are compared using similarity metrics—such as Jaro-

Winkler or cosine similarity applied to TF-IDF 

representations—based on text analysis methodologies 

discussed in the author’s work. Additionally, categorical 

attributes (device type, merchant category, etc.) are 

encoded via one-hot encoding to allow proper 

incorporation into the numerical vector [10]. 

The resulting feature vector is passed to the model 

inference stage (Model Inference). It is sent to the 

appropriate endpoint in Amazon SageMaker, where a 

pre-trained model estimates the probability that the 

examined pair constitutes a duplicate. If the output 

exceeds a predefined threshold, the pair is classified as 

a duplicate and flagged accordingly for downstream 

processing. 

The overall effectiveness of the pipeline is heavily 

influenced by the chosen blocking strategy. Improper 

key definition can either result in missing true duplicates 

(reducing recall) or produce an excessively large 

candidate set (degrading performance). Table 1 

presents a comparison of various blocking approaches. 

 
Table 1. Comparison of blocking strategies for duplicate detection [4, 9] 

Strategy Description Advantages Disadvantages 

Standard 

Blocking 

Grouping records by 

exact match on one or 

more attributes. 

Simple to 

implement; high 

performance. 

Sensitive to errors and 

variations in key values 

(typos, abbreviations). 

Sorted 

Neighborhood 

Sorting records by a key 

and comparing records 

within a sliding window. 

Robust to minor 

variations in the sort 

key. 

Requires global sorting, 

which is challenging in 

streaming systems. 

Q-gram-based 

Blocking 

Indexing based on short 

substrings (q-grams) 

extracted from 

attributes. 

High resilience to 

typos and syntactic 

variations. 

Higher computational 

complexity; generates a 

larger number of candidate 

pairs. 

Canopy 

Clustering 

Preliminary clustering 

using a fast, 

approximate distance 

metric. 

Good balance 

between recall and 

efficiency. 

Requires tuning of two 

distance thresholds. 

The approach proposed in the patent for standard 

blocking based on entity identifier and its localization 

[10] constitutes a reliable starting point for a range of 

tasks (for example, credit card transactions); however, 

in contexts involving more variable string data (such as 

product names), methods like Q-gram or hybrid 

combined schemes may be required to achieve 

adequate matching and similarity detection. 

As the base classification model, the patent adopts 

Random Forest. This choice is justified: ensemble 

decision trees, including Random Forest and XGBoost, 

exhibit high effectiveness on tabular datasets, 

demonstrate robustness to outliers, do not necessitate 

complex prior feature normalization, and provide 

transparency of inference through feature importance 

assessment, which is critical in analyzing system 

decisions. 

A key advantage of the proposed architecture is its 

adaptability, realized through a feedback loop. When 

the system flags a record as a potential duplicate, the 

user is afforded the ability, via a graphical interface, to 

contest that conclusion. Information about such 

disputes (identifiers of the affected records and 

confirmation of “not duplicate” status) is persisted in a 

store such as Cassandra or DynamoDB. During 

subsequent scheduled model retraining, these refined 

and high-quality annotations are incorporated into the 

training set, allowing the system to account for evolving 

patterns and correct prior errors, thereby enabling 

evolutionary improvement of quality metrics. 
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The employed technology stack supports efficient 

horizontal scaling. Kafka, Spark, and 

Cassandra/DynamoDB are distributed solutions capable 

of handling petabyte-scale data volumes by increasing 

the number of nodes in the cluster. 

Thus, the developed architectural model, grounded in 

the conceptual principles of patent [10] and 

implemented with a modern technology stack, 

represents a coherent, scalable, and context-aware 

solution for duplicate detection in streaming data. It 

integrates carefully designed blocking and comparison 

mechanisms with advanced MLOps practices, delivering 

the required accuracy and high performance in 

industrial deployment. 

Conclusion 

The study systematized design principles for complex 

pipelines for duplicate detection using machine learning 

methods. Analysis of academic sources and practical 

implementations revealed the need for unified 

architectural solutions capable of operating efficiently 

under high-throughput streaming conditions and 

adapting to the dynamics of incoming data. 

The primary outcome was the construction of a 

formalized architectural model that integrates 

components for stream processing (Apache Kafka, 

Apache Spark), scalable distributed storage (Apache 

Cassandra / Amazon DynamoDB), and cloud services for 

managing the machine learning model lifecycle (Amazon 

SageMaker). The developed architecture, grounded in 

the conceptual foundations presented in patent 

US11995054B2, exhibits high scalability and stable 

performance, as evidenced by the results of the 

conducted simulation modeling. 

A fundamental contribution of the research is the 

emphasis on ensuring system adaptability through the 

implementation of a continuous feedback loop. The 

incorporated mechanism for users to submit appeals 

regarding system decisions and the subsequent 

integration of this feedback into the regular model 

retraining process establish a basis for systematic 

improvement of its accuracy and alignment with current 

conditions. This approach enables the architecture to 

evolve in tandem with data changes and 

transformations in business requirements. 

Thus, the initial objective of the study has been 

achieved: the proposed hypothesis regarding the 

superiority of an integrated streaming architecture with 

feedback over static solutions received empirical 

validation. The proposed model serves as a practical 

guide for data architects and machine learning 

engineers in designing robust and efficient data quality 

assurance systems in modern data-driven organizations. 
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