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Abstract: As the COVID-19 pandemic and the financial 

crisis of 2008 have shown, liquidity risk is still an 

important factor in maintaining financial stability. 

Although buffers were enhanced by the Liquidity 

Coverage Ratio (LCR) and the Net Stable Funding Ratio 

(NSFR), day-to-day monitoring is still dependent on 

scenario analysis, which relies on historical assumptions, 

and stress testing. This research has gathered 

information from universities, government 

organizations, and companies to find out whether AI 

may help close that gap. Across studies, Long Short-

Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

Transformer models generally outperform statistical 

baselines such as ARIMA and GARCH, cutting forecast 

errors by roughly 20–40% and improving predictions of 

cash flows, LCR components, and liquidity shortfalls. 

Technically, continuous, low-latency monitoring is 

possible with event-driven data stacks like Apache Kafka 

with Flink, but there have been few practical 

installations for liquidity risk. With the use of AI-enabled 

monitoring, which seems to be more accurate and 

responsive, institutions are moving toward a unified, 

real-time view of financing risk. This development 

enables banks to efficiently manage risk and enhance 

systemic regulatory monitoring. Still, regulator-

auditable compliance procedures, data-quality controls, 
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model-risk governance, and flexibility will likely be 

necessary for adoption. 

Keywords:  Liquidity risk, Liquidity Coverage Ratio (LCR), 

Real-time analytics, Risk management, Artificial 

intelligence in finance, Deep learning, Financial Stability, 

Liquidity shortfall 

1. Introduction 

1.1 Liquidity Risk and Financial Stability 

The likelihood that a company would incur losses that 

are too high to justify its short-term commitments is 

known as liquidity risk (Safiyari & Nabati, 2023). Market 

liquidity may disappear in an instant, driving financially 

stable institutions to collapse (Heuver, 2020); ten years 

later, the COVID-19 shock demonstrated how sudden 

financing constraints and cash-flow disruptions can have 

far-reaching effects (Farooq et al., 2023). According to 

(Barongo & Mbelwa, 2023), Basel III imposed stricter 

regulations, with the Liquidity Coverage Ratio aiming for 

a stress horizon of 30 days and the Net Stable financial 

Ratio concentrating on financial resilience for a year. 

Despite their effective uses, these metrics have not been 

able to solve the issue entirely. 

1.2 Limitations of Traditional Monitoring Approaches 

Inspite of the changes and developments to traditional 

methods, limitations like stress testing, scenario 

exercises, and gap analyses still exist. They don't supply 

live feed but rather repose on predetermined 

assumptions and rely on delayed reporting cycles for 

updates (Heuver, 2020). There is minimal opportunity 

for early intervention or dynamic hedging in fast-moving 

markets since developing pressure is sometimes only 

identified after it is too late to move (Dionne et al., 

2015). 

Because of how fast technology is developing, the 

financial sector is becoming increasingly resilient and 

complex. Because of this, financial institutions should 

implement more flexible and real-time liquidity 

management strategies (Safiyari & Nabati, 2023). Banks 

and regulators were clearly exposed to a high risk of 

unforeseen liquidity crises due to the conventional 

methods' reliance on slow and outdated historical data. 

The employment of robust AI technology is now vital for 

proactive risk management and the stability of the 

financial system in the face of constant change, rather 

than just a creative exercise (Heuver, 2020). 

1.3 Emergence of AI and the Research Gap 

Better adaptive monitoring is possible because of 

advancements in AI, especially deep learning. Research 

depicts that when it comes to financial time-series 

applications, Long Short-Term Memory networks, Gated 

Recurrent Units, and Transformers often beat statistical 

baselines like as ARIMA and GARCH (Phien & Platoš, 

2023). While conventional approaches often fail to 

account for non-linear, state-dependent correlations, 

these models may be able to include a wide variety of 

inputs. Concurrently, streaming infrastructures (such as 

Kafka for event handling or Flink for stateful processing) 

potentially allow for real-time score and intake 

(Gontarska et al., 2021). 

Even so, current applications are fragmented. Many 

studies focus on a single problem, such as cash-flow 

forecasting, deposit run-off, or LCR components, 

without tying results to shortfall detection or a full LCR 

trajectory. Operational issues also get limited 

treatment: interpretability for supervisors, model-risk 

governance, data quality, and the realities of production 

deployment are often left at the margins (Fritz-

Morgenthal et al., 2022; Maple et al., 2023). 

1.4 Objectives and Contributions of the Study 

This study systematically reviews and synthesizes 

sources from academia, government, and business to 

examine the stated findings, compare AI performance to 

conventional approaches, and assesses the usability of 

real-time frameworks in banking situations. 

Contributions include: 

Findings on cash-flow forecasting, LCR estimation, and 

shortfall detection were integrated into a single 

conceptual framework. 

Assessing streaming analytics platforms and 

deployment patterns for proactive, low-latency 

monitoring. 

Identifying interpretability, data governance, and 

model-risk controls as the key hurdles for regulatory 

acceptance. 

2. Literature Review 

2.1 Traditional Approaches to Liquidity Risk 

Management 

Stress tests, scenario analyses, and gap analyses has 

been the toolkit for financial institutions to monitor 
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their liquidity for a long time (Safiyari & Nabati, 2023). 

These tools map asset–liability mismatches, simulate 

adverse conditions, and size buffers for severe but 

plausible shocks (Tammenga & Haarman, 2020). Post-

2008, Basel III raised the floor. The LCR and NSFR pushed 

institutions to hold larger, better-quality liquidity 

cushions (Barongo & Mbelwa, 2023). The baseline is 

stronger. Even so, the toolkit is mostly deterministic and 

backward-looking, which means it can lag fast-moving 

markets where risk builds intraday, not quarter to 

quarter (Heuver, 2020). 

2.2 Quantitative Forecasting Models 

Classical forecasting centers on ARIMA and GARCH for 

cash flows and liquidity ratios, with regressions and 

Monte Carlo simulations estimating HQLA and stressed 

outflows. These methods perform acceptably when 

relationships are stable. They are prone to de-calibration 

when non-linearities, volatility clustering, and regime 

transitions take front stage under stress (Rubio et al., 

2023). Structural breaks, changing run-off elasticities, 

and feedback loops (e.g., margin calls tightening 

liquidity) are exactly where their predictive power 

appears to wane (Mariani et al., 2018). 

2.3 AI and Machine Learning in Financial Applications 

AI already underpins fraud screening (Kulatilleke, 2022), 

credit scoring (Aniceto et al., 2020), trading, and 

portfolio construction (Aziz & Dowling, 2018). Default 

prediction, volatility estimate, and operational loss 

detection are all areas of risk that have been enhanced 

by machine-learning algorithms (Ndikum, 2020). That 

said, many ML setups still rely on heavy feature 

engineering (Kim et al., 2019) and may struggle with 

long-range temporal dependence (Wittenbach et al., 

2020), leakage risks, or drift (Jarquin et al., 2022). These 

are limitations that become visible precisely when 

conditions change fastest (Chen et al., 2023). 

2.4 Deep Learning for Financial Forecasting 

Deep learning addresses several of those pain points. 

LSTM and GRU networks learn sequential structure 

directly from time-series data (Liu & Long, 2020), while 

Transformers use attention to capture both short- and 

long-horizon relationships (Chen et al., 2023). Overall, 

these deep learning methods tend to outperform 

simpler statistical models on things like stock returns, 

volatility, and how likely a borrower is to default. In 

liquidity risk specifically, they’ve shown better accuracy 

for cash-flow (Weytjens et al., 2019) and deposit run-off 

forecasting than regressions or ARIMA. However, most 

treatments are still siloed with one model per task so 

LCR and shortfall dynamics are rarely integrated with 

cash-flow forecasts in a single, decision-ready view. 

2.5 Real-Time Analytics in Financial Operations 

Streaming stacks such as Kafka for events (Greco et al., 

2018), Flink (Kalogerakis et al., 2022) or Spark Streaming 

(Carcillo et al., 2017) for stateful processing can let 

institutions ingest, transform, and score high-frequency 

data as it arrives (Fu & Soman, 2021). Where millisecond 

latencies come into effect, they are already supporting 

payment monitoring, fraud detection, and algorithmic 

trading (Kalogerakis et al., 2022). Extending the same 

architecture to liquidity monitoring seems feasible in 

principle, but documented production deployments are 

thin (Milojević & Redžepagić, 2021). Practical hurdles 

include stateful joins across ledgers and collateral 

systems (Scheinert et al., 2023), P99 latency and 

throughput targets (Xu et al., 2023), and feature 

pipelines that won’t drift as booking practices evolve 

(Netti et al., 2022). 

2.6 Identified Gaps in the Literature 

Three gaps stand out. 

Integration: Cash flows, LCR, and shortfall risk are 

commonly modeled in isolation; few works propose a 

unified framework that links them end-to-end (Cont et 

al., 2020). 

Real time: Despite mature streaming tools, evidence on 

genuinely low-latency liquidity monitoring (with live 

features and on-demand scoring) is limited (Zhang et al., 

2009). 

Governance: Explainability (Deza et al., 2021), data 

lineage/quality (Chen, 2021), and model-risk controls 

(Fritz-Morgenthal et al., 2022) remain underexplored 

relative to what supervisors are likely to require (Sarker 

& Bhowmik, 2021). 

3. Methodology 

3.1 Research Approach 

This study took a structured literature-review route 

(Snyder, 2019) with secondary data analysis (Johnston, 

2017). We study scholarly articles, reports from 

businesses, and publications that deal with regulations 
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side by side to compile our evidence. Wherever possible, 

we favored sources that reported concrete metrics so 

performance claims could be compared. We did not 

clean or link bank-internal data. The goal was breadth 

and external validity, not institution-specific depth. That 

choice broadens coverage but may sacrifice some 

granularity. 

3.2 Data Sources 

We derived data from four main sources: 

Writings for academic journals and books covering 

topics including liquidity risk, financial time series 

forecasting, and artificial intelligence/deep learning in 

the financial sector (Özbayoğlu et al., 2020). 

Papers pertaining to regulation, such as those pertaining 

to Basel III, the European Banking Authority, the Federal 

Reserve, and other studies published by central banks 

(KV, 2023). 

Case studies, reference designs, and industry white 

papers on artificial intelligence (AI) for risk functions 

have been compiled by banks, consultants, and vendors 

(Jáuregui-Velarde et al., 2023). 

The following datasets are available to the public: LCR 

disclosures, summaries of regulatory stress tests, and 

market data used to show liquidity trends. 

3.3 Data Collection Process 

We used a three-stage process: 

Identification (2010–present). Searches on SSRN, 

ScienceDirect, and official regulatory repositories 

combined terms such as liquidity risk, LCR/NSFR, cash-

flow forecasting, run-off, deep 

learning/LSTM/GRU/Transformer, and real-

time/Kafka/Flink. 

Screening. Titles/abstracts were checked for relevance 

to (i) liquidity measurement or forecasting, (ii) AI/ML 

methods for financial time series, or (iii) real-

time/streaming architectures (Hazel et al., 2021; Pérez-

Moure et al., 2023). Items lacking empirical content or 

method detail were set aside; duplicates and 

superseded drafts were removed. 

Categorization. There were five topics that were used to 

for the sources: (i) classic liquidity models, (ii) statistical 

forecasting, (iii) applications of AI and ML, (iv) 

architectures of real-time systems, and (v) governance 

and interpretability. Within each theme we noted model 

families, features, validation windows, and evaluation 

metrics to enable cross-study comparisons. 

3.4 Analytical Method 

We used comparative synthesis (Schick‐Makaroff et al., 

2016) to benchmark findings across sources (Bartz–

Beielstein et al., 2020). Reported metrics (e.g., LSTM vs. 

ARIMA error reductions, classification performance for 

shortfall detection, latency for streaming pipelines) 

were extracted and viewed against regulatory 

expectations for liquidity monitoring (e.g., timeliness for 

LCR oversight, early-warning utility). Evidence from case 

studies and technical reports was analyzed to judge 

operational feasibility and to surface regulatory 

implications around explainability, governance, and 

model-risk management. Where results depended 

heavily on design choices (feature sets, retraining 

cadence, backtest windows), we note that sensitivity 

explicitly. 

 

Figure 1. Flow chart representing research methodology 

DescriptionStep

Systematic literature review & secondary data analysisResearch Approach

Academic studies, regulatory reports, industry whitepapers, public liquidity disclosuresData Sources

Identification, screening, categorization into themes (traditional, AI models, real-time, governance)Data Collection

Comparative synthesis of findings; benchmarking AI vs traditional modelsAnalysis
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4. Results and Discussion 

4.1 Predictive Accuracy from Existing Studies 

Across the literature, AI models generally beat 

traditional statistical baselines. For cash-flow 

forecasting, LSTM and GRU architectures cut error rates 

by roughly 20–40% relative to ARIMA and GARCH. In LCR 

estimation, deep learning models more reliably 

captured drivers like deposit run-off and contingent 

drawdowns, which translated into tighter forward-

looking ratio calculations. Exactly when classical models 

have a tendency to lose calibration—in the face of 

turbulent conditions—these benefits seem to expand. 

That said, performance still hinges on sensible feature 

design (e.g., segmenting retail vs. wholesale flows), data 

quality, and retraining cadence (Artificial Intelligence, 

Machine Learning, and Deep Learning Models for Risk 

Management, 2022). One of the main reasons why deep 

learning models outperform conventional approaches 

when it comes to prediction accuracy is their remarkable 

capacity to automatically learn and extract complicated 

characteristics from input data. 

 

Figure 2. Model Comparison 

4.2 Evidence from Case Studies 

Case studies point to a broader pattern which included 

techniques that work for credit risk, default prediction 

(Du & Shu, 2023), or volatility which translated to 

liquidity monitoring (Heuver, 2020). Several 

implementations reported detecting likely LCR breaches 

one to two weeks before traditional stress-testing 

workflows would have flagged them. For example, an 

LCRisk measure demonstrated a 48% probability of 

illiquidity a few days before a bank underwent 

resolution, providing a crucial early warning signal 

(Lusby & Stidsen, 2022). The early signal seems to come 

from models that update continuously as new 

transactions and market quotes arrive, rather than 

waiting for end-of-day batches (Heuver, 2020). 

Transferability isn’t automatic, though; label definitions, 

horizons, and cost of false alarms need to be re-tuned 

for liquidity use. These models leverage broad sets of 

liquidity measures and classification techniques for 

higher predictive accuracy, adapting insights from high-

frequency trading to the liquidity domain. 

4.3 Real-Time Analytics Infrastructure 

Public reports suggest the pipeline is in place. Flink (also 

known as Spark Streaming) allows for low-latency 

feature creation and stateful joins, while Apache Kafka 

is capable of streaming events with a high frequency. 

These stacks already power fraud screening (Artificial 

Intelligence, Machine Learning, and Deep Learning 

Models for Risk Management, 2022) and high-frequency 

trading, so extending them to liquidity monitoring looks 

technically feasible (Arner et al., 2017). AI technologies 

can be integrated into existing fintech systems, such as 

high-frequency trading platforms and derivative trading 

platforms, to incorporate liquidity effects into volatility 

forecasting (Ding et al., 2021). Furthermore, the 

adoption of cloud technology provides significant 

benefits in data processing, real-time analytics, and 

scalability, fundamentally altering how banks manage 

liquidity risk by centralizing vast amounts of data and 

enabling sophisticated AI/ML models on demand. The 

harder parts are operational - guaranteeing P99 latency 

targets, keeping feature pipelines stable as booking 

practices evolve, and scaling model serving without 

accuracy drift. Production-grade examples for liquidity 

remain scarce (Milojević & Redžepagić, 2021), but 

nothing in the stack appears to be a showstopper. New 

treasury ecosystems backed by AI are envisioned to 

connect banks, suppliers, customers, and regulators in a 

Model Strengths Limitations Reported Performance

ARIMA Simple, interpretable, widely used Assumes linearity, weak under volatility Baseline; higher forecast error

GARCH Captures volatility clustering Focus on volatility, limited in structural shifts Baseline; higher forecast error

LSTM Captures long-term temporal dependencies Black-box, data intensive, requires tuning 20–40% error reduction vs ARIMA/GARCH

GRU Computationally efficient with similar benefits to LSTM Still black-box, less mature in literature Similar to LSTM; faster training

Transformer Handles long-range dependencies via attention Computationally demanding, less adoption in liquidity risk Promising but less empirical liquidity evidence



The American Journal of Applied Sciences 

 

61 https://www.theamericanjournals.com/index.php/tajas 

The American Journal of Applied Sciences 

 

seamless network of financial intelligence, enabling real-

time cash flow forecasting across multiple entities. 

4.4 Regulatory and Governance Considerations 

Model opacity is the recurring concern. Complex neural 

nets can feel like “black boxes,” which complicates 

supervisory review, especially when outputs inform LCR 

decisions (Maple et al., 2023). Post-hoc tools (e.g., SHAP, 

LIME) help explain feature influence but may not fully 

satisfy expectations for traceable, auditable logic (Fritz-

Morgenthal et al., 2022). Data governance matters just 

as much. 

To prevent undetected deterioration, it is crucial to have 

documented retraining processes, evaluate quality, 

monitor drift, and look at lineage (Kurshan et al., 2020; 

Maple et al., 2023) Fewer false positives and more 

fruitful oversight conversations were observed by 

institutions that used a combination of main and 

challenger models, alert levels, and transparent 

escalation playbooks (Fritz-Morgenthal et al., 2022). 

4.5 Synthesis of Findings 

Enhanced predictive accuracy. Deep learning models 

tend to outperform classical statistics, with the 

advantage most visible in volatile regimes. Quantitative 

evidence indicates improvements ranging from 20-40% 

in forecast error reduction and significant gains in 

predictive accuracy. Results, however, depend on data 

quality, feature choices, and retraining discipline. Real-

time is feasible. Modern streaming infrastructure can 

support continuous liquidity surveillance when tightly 

integrated with predictive models. Cloud platforms are 

often used in this integration to analyze high-frequency 

data and give real-time insights. This is achieved by 

linking AI models to current finance and treasury 

management systems. Problems often arise with 

dependability and integration rather than with raw 

technology. Deficiencies persist. It is unusual to find 

completely integrated, real-time frameworks in the 

literature that simulate cash flows, LCR, and shortfall risk 

simultaneously. Still, the most significant obstacles to 

regulatory acceptance are model-risk practices (Kurshan 

et al., 2020), governance, and explainability (Fritz-

Morgenthal et al., 2022). 

5. Contributions and Limitations 

5.1 Contributions of the Study 

This paper adds to the liquidity-risk and fintech 

literature in four ways: 

Bringing the pieces together. Prior work tends to treat 

cash-flow forecasting, LCR estimation, and shortfall 

detection as separate problems. This review pulls them 

into a single lens, showing how an AI-enabled 

framework could address all three at once and why that 

matters for day-to-day monitoring (Cont et al., 2020). 

Real-time feasibility, not just theory. Drawing on 

technical reports and case evidence, we show that 

streaming stacks (e.g., Kafka + Flink) can plausibly 

support low-latency model serving for liquidity use cases 

(Heuver, 2020). The open questions are integration and 

ownership rather than raw capability. 

Regulatory and governance through-lines. The review 

connects technical gains to supervisory expectations 

highlighting that adoption will likely hinge as much on 

governance design as on model accuracy (Fritz-

Morgenthal et al., 2022). 

Input to the stability debate. By benchmarking AI 

results against traditional approaches, the paper offers 

a starting point for practitioners and regulators weighing 

systemic implications of moving from static ratios to 

adaptive, model-driven monitoring (Maple et al., 2023). 

5.2 Limitations of the Study 

The limitations of the study are: 

Reliance on secondary sources. Published academic, 

regulatory, and business articles were used to gather the 

data. That option increases coverage overall but 

restricts findings that are particular to certain 

institutions (Achter et al., 2023). 

Heterogeneous study designs. Metrics, horizons, and 

datasets vary across sources, which challenges like-for-

like comparisons. We therefore emphasize directional 

results and effect sizes rather than exact point estimates 

(Chow et al., 2023). 

Limited operational validation. While real-time stacks 

are well documented in adjacent domains (fraud, 

trading), there are few production-grade examples for 

liquidity monitoring itself. The gap between technical 

feasibility and sustained live performance remains to be 

closed (Heuver, 2020). 

Changing regulatory policies. Changes are ongoing in 

the expectations around model-risk management, 
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explainability, and governance. Current 

recommendations are included in this assessment; 

however, future requirements for supervision or 

enforcement techniques cannot be entirely anticipated 

(Maple et al., 2023). 

6. Conclusion 

6.1 Summary of Findings 

On balance, the literature points in the same direction: 

deep learning tends to beat classical baselines on 

financial time-series tasks that matter for liquidity 

(Michańków et al., 2023). Studies report meaningful 

error reductions on cash-flow forecasts (Dadteev et al., 

2020) and better estimates of LCR components such as 

deposit run-offs and contingent outflows. Several case 

reports also show earlier flags for potential shortfalls—

sometimes a week or two ahead of what static stress 

tests would have caught (KV, 2023). On the plumbing 

side, event-driven stacks like Kafka with stateful 

processors such as Flink appear technically capable of 

supporting continuous monitoring (Kontaxakis et al., 

2021), even if production use for liquidity remains 

relatively rare (Lee et al., 2020). 

6.2 Implications for Practice 

The takeaway for financial institutions is the need to 

unify their disparate models into a unified, future-

oriented perspective. When fed low-latency data (such 

as intraday deposits, credit-line drawdowns, collateral 

haircuts), merging cash-flow projections, LCR 

trajectories, and shortfall alarms into a single process 

might improve accuracy and accelerate decision-

making. Having said that, a handful of less glamorous 

aspects are likely to determine success: feature pipelines 

that remain stable (Bohlke‐Schneider et al., 2020), 

thresholds that are adjusted according to the monetary 

consequences of false alarms for the company, and 

dashboards that enable risk teams to easily go from top-

line LCR to segment-level drivers with a single click. 

Interpretability remains the biggest sticking point; 

without auditable reasoning behind alerts, supervisors 

and risk committees will be hesitant (Fritz-Morgenthal et 

al., 2022). 

6.3 Implications for Policy and Regulation 

For policymakers, the promise is earlier, more reliable 

warning signals that could improve system resilience. 

The challenge, however, is governance: complex models 

can look like black boxes (Mirestean et al., 2021). 

Standards may need to evolve to spell out 

documentation, challenger-model expectations, 

periodic back-testing, and explainability sufficient for 

decisions tied to LCR compliance (Fritz-Morgenthal et 

al., 2022). Clear guidance on data lineage, retraining 

cadence, and escalation playbooks would lower 

adoption friction while keeping safeguards intact. 

6.4 Directions for Future Research 

Three research gaps stand out, but they differ in 

urgency. The most immediate need is for integrated 

frameworks that jointly forecast cash flows, Liquidity 

Coverage Ratios (LCR), and shortfalls, as most studies 

still treat these dimensions separately; testing such 

frameworks head-to-head against current supervisory 

practice would provide the clearest evidence of added 

value (Heuver, 2020). The second priority is to generate 

operational evidence on real-time deployment. While 

conceptual diagrams of streaming architectures 

abound, rigorous demonstrations of latency budgets, 

stateful joins across systems, and drift monitoring in 

regulated environments remain scarce, even though 

liquidity crises can escalate within hours (Heuver, 2020). 

The third area of focus is explainable AI. This field has to 

go beyond post-hoc visualizations to approaches that 

supervisors can put into practice, including reliable local 

and global attributions, diagnostics that are in line with 

policy triggers, and so on (Fritz-Morgenthal et al., 2022). 

Public standards, such as shared datasets and defined 

prediction horizons, are essential to all three goals 

because they provide credible technique comparisons 

and speed up the process of translating research into 

practice (Arner et al., 2017). 
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