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Abstract: The paper analyses core data-management 

strategies that ensure a consistent, scalable, and cost-

efficient transition from on-premises or monolithic 

relational databases to Amazon Aurora Serverless. 

Drawing on recent peer-reviewed research and industry 

reports, the study first frames serverless Aurora within a 

microservice-centric architecture, emphasising the 

“database-per-service” pattern, CAP-theorem trade-

offs, and the complementary roles of transactional 

stores, data lakes, and data warehouses. The second 

section evaluates mechanisms for maintaining data 

integrity during and after migration, contrasting ACID 

guarantees in Aurora with BASE-oriented eventual 

consistency at the system boundary, and detailing 

patterns such as sagas and event sourcing for cross-

service coordination. The third part (retained in full) 

offers a practice-oriented synthesis of automation 

techniques: AWS Database Migration Service for zero-

downtime change-data-capture, AWS Schema 

Conversion Tool for heterogeneous schema conversion, 

and Infrastructure-as-Code pipelines for repeatable 

cluster provisioning and continuous delivery. Empirical 

evidence from large-scale migrations—including multi-

billion-row financial and media platforms—is used to 

quantify benefits (e.g., up to 40 % cost reduction and 

sub-minute fail-over times) and to highlight common 

pitfalls. The paper concludes with a set of actionable 

guidelines that align architectural decisions, consistency 

requirements, and automation practices, demonstrating 

that a properly orchestrated move to Aurora Serverless 

not only preserves, but often enhances enterprise data 

reliability and agility. 

Keywords:  Serverless databases, Amazon Aurora, data 

migration, data consistency, ACID vs BASE, CAP theorem, 
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microservices architecture, AWS DMS, schema 

conversion. 

Introduction  

Modern enterprises are migrating their data and 

applications to the cloud at an accelerated pace, 

including mission-critical database systems. Gartner 

projects that by 2025 up to 85 % of all databases will run 

on cloud platforms [1]. This transition is driven by 

demands for elastic scaling, reduced operational 

overhead, and access to advanced cloud services. A 

particularly noteworthy innovation is the emergence of 

serverless database engines, which dynamically allocate 

resources and charge solely based on actual usage. 

Amazon Aurora Serverless epitomizes this category: a 

cloud-native relational database compatible with 

MySQL and PostgreSQL that can “scale to hundreds of 

thousands of transactions in a fraction of a second” and 

automatically adjust its compute capacity to match 

workload fluctuations without manual intervention [2]. 

By abstracting infrastructure concerns—such as server 

provisioning, patch management, and capacity 

reservation—Aurora Serverless enables teams to focus 

on business logic while preserving ACID transactional 

guarantees and robust fault tolerance. 

Adopting Aurora Serverless is especially compelling for 

organizations transitioning from high-throughput 

monolithic architectures to microservices. Traditional 

monolithic database deployments (for example, legacy 

Oracle installations) often require downtime and incur 

substantial costs when scaling [3], whereas a 

microservices approach with distributed processing 

demands a more agile, scalable data backbone. Industry 

analysts observe that “the next generation of 

distributed microservices applications requires a 

centralized cloud database as the backbone for state 

management and data exchange between services,” 

capable of supporting geo-distributed workloads 

without sacrificing data integrity [4]. In this context, 

Aurora Serverless excels, offering virtually unlimited 

horizontal scalability on a pay-per-use model [2, 5]. 

Indeed, several large-scale migrations have already been 

completed successfully: one global platform serving tens 

of millions of users migrated from a monolithic Oracle 

database to an Aurora Serverless cluster, achieving 

faster response times and simplifying future scalability 

(implementation details are provided in this paper). 

This work examines key data management strategies for 

migrating to Amazon Aurora’s serverless architecture. 

First, it explores architectural patterns for organizing 

data when moving from monolithic systems to cloud-

native microservices, emphasizing the unique 

characteristics of Aurora Serverless. Next, it analyzes 

mechanisms for ensuring data consistency and 

integrity—from ACID transactional properties to 

eventual consistency and the CAP theorem—within a 

serverless environment. Finally, it describes automation 

and orchestration techniques for migration using AWS 

tools (such as DMS, SCT, and others), supported by 

examples drawn from the author’s practical experience 

in building serverless infrastructures and optimizing 

system scalability and resilience. 

1. Architectural Approaches to Data Management 

when Migrating to Aurora Serverless 

The transition from a monolithic architecture to 

microservices entails radical changes in data 

management strategies. The central principle becomes 

weak coupling of services and strict isolation of their 

data. The “Database per Service” pattern recommends 

that each microservice employ its own data store 

optimally suited to its needs [6]. This may involve a 

relational database (for example, Aurora) for 

transactional services, a NoSQL store (such as 

DynamoDB or Cassandra) for highly scalable 

components, or a NewSQL or analytical database for 

specialized workloads—depending on the 

characteristics of the data. Independent databases 

remove bottlenecks and single points of failure, since 

schema changes or load spikes in one service do not 

directly impact others [6]. Furthermore, this pattern 

enhances overall resilience: failure in one data store 

affects only its corresponding service rather than the 

entire platform [6]. 

Figure 1 schematically illustrates an example in which 

three microservices (“Sales”, “Customer”, 

“Compliance”) each leverage different database types 

(Aurora, DynamoDB, RDS for SQL Server) tailored to 

their functional requirements, interacting exclusively 

through APIs without direct access to each other’s data. 

 



The American Journal of Applied Sciences 

 

170 https://www.theamericanjournals.com/index.php/tajas 

 

 

 

Figure 1. The “Database-per-Service” pattern in a microservice architecture: each service uses its own database 

(Aurora for the Sales service, DynamoDB for the Customer service, Microsoft SQL Server for the Compliance 

service). Communication occurs via an API Gateway; IAM policies isolate access, ensuring loose coupling of 

components [6]. 

In migration practice, it is often necessary to decompose 

a large monolithic database into multiple smaller 

databases aligned with distinct domain contexts. A 

phased approach is employed: identifying modules 

suitable for extraction as standalone services, and 

gradually “cutting over” to them (the Strangler Fig 

pattern). For example, in one initiative a monolithic e-

commerce database was divided into “Orders”, 

“Catalog”, “Payments”, and other services, each of 

which received its own schema in Aurora or, when 

required, a separate data store. Temporary dual writes 

ensured data synchronization between the legacy and 

new systems during the transition period, and once the 

new services stabilized, the monolith was 

decommissioned. This experience underscored that 

early planning of service boundaries and data models is 

critical: mistakes in decomposition can lead to inter-

service dependencies and complications in data 

aggregation. 

When designing data architectures for microservices, it 

is also essential to consider the constraints imposed by 

the CAP theorem (Consistency, Availability, Partition 

Tolerance). In a distributed system—particularly one 

with geographically dispersed microservices—it is 

impossible to guarantee strict consistency and 

availability simultaneously in the presence of network 

partitions [7]. A trade-off must be made: either the 

system prioritizes consistency at the expense of 

availability during a partition (CP mode), or it prioritizes 

availability at the expense of temporary data 

inconsistencies (AP mode). 

In traditional monolithic DBMS deployments—

particularly those running on a single node—this 

dilemma is less apparent. However, in a microservices 

environment with isolated databases and no end-to-end 

transactions, these trade-offs become acutely visible [6]. 

Under the Database-per-Service pattern, orchestrating 

distributed transactions that span multiple services 
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poses a significant challenge [6]. Teams typically must 

either denormalize and duplicate data across services 

(accepting eventual drift and eventual consistency) or 

employ saga patterns and other coordination 

mechanisms in place of a monolithic ACID transaction. 

The CAP theorem then serves as a design compass: each 

data store must satisfy at least two of the three CAP 

properties [6], and architects must decide in advance 

where the system can temporarily sacrifice consistency 

for availability and where strict data agreement is non-

negotiable. 

The Amazon Aurora architecture itself is engineered to 

minimize CAP compromises within a single cluster. 

Aurora guarantees strong read-write consistency in its 

primary availability zone by synchronously replicating 

data across multiple storage nodes. In an Aurora cluster, 

a write to the primary (writer) node is acknowledged 

only after it has been durably stored in at least four of 

six replicas spread across three availability zones—a 4/6 

quorum mechanism [8, 9]. This design delivers high 

durability and fault tolerance: even the loss of an entire 

zone or several replicas does not result in data loss. If 

the primary node fails, Aurora automatically fails over to 

one of the reader replicas; because all instances share 

the same distributed storage, the newly promoted 

writer immediately sees the same committed data state 

[8, 10]. Thus, within a single region, Aurora achieves 

consistency and partition tolerance (CP mode) while 

maximizing availability. 

In Figure 2, a simplified Aurora architecture is shown: 

compute instances (primary and reader) share a 

distributed storage layer that replicates each data 

segment sixfold across three availability zones. Writes 

are synchronously committed to a quorum of replicas to 

ensure durability, and reads from any replica incur 

minimal latency. Continuous backups to Amazon S3 

further secure long-term data preservation [10]. 

 

 

Figure 2. Simplified Amazon Aurora cluster architecture: compute layer separated from distributed storage [10]. 

In Figure 2, the primary node (Writer) and two reader 

nodes (Reader) in different AZs all access a single shared 

storage volume composed of six segment replicas (data 

fragments are color-coded). A write is acknowledged 

once at least four of the six copies have been 

synchronously committed (quorum), after which the 

data becomes immediately available for reading on all 

instances. Reader nodes in other AZs receive updates 

almost instantaneously via the shared storage, providing 

low-latency reads. Continuous backups to Amazon S3 

are also depicted [8–10]. 

It should be noted that global data distribution (multi-

region) introduces an element of eventual consistency: 

when Aurora is deployed as a Global Database (with 
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read-only replicas in other regions for disaster recovery 

and local reads), cross-region replication occurs 

asynchronously. Under normal operation, reads from a 

remote region may lag the primary write by a few tenths 

of a second. However, in the event of a failure, a fast 

cross-region failover mechanism is available—in the 

latest Aurora versions this completes in under 30 

seconds, substantially improving the overall availability 

of global deployments [11]. Consequently, when 

designing a data architecture, an organization must 

decide whether it requires globally distributed replicas 

(for user-proximate reads and DR) and, if so, account for 

the slight consistency delay between regions. Overall, 

Aurora Serverless combines the benefits of vertical 

scaling (a powerful ACID-compliant cluster) with 

horizontal distribution (replication across AZs and 

regions), making it an ideal solution for high-throughput 

enterprise systems demanding both reliability and 

scalability. 

A further strategic decision during migration is the 

separation of operational and analytical workloads 

between the transactional database and dedicated data 

stores. The concepts of Data Warehouse (DW) and Data 

Lake (DL) represent two distinct approaches to 

corporate information storage. A Data Warehouse is a 

structured repository into which filtered and aggregated 

data are loaded for specific analytical purposes. In 

contrast, a Data Lake is a raw pool of heterogeneous 

data without a predefined schema or target use case 

[12]. Within the context of an Aurora migration, this 

means that transactional system data (operations, 

accounts, orders, etc.) are best retained in Aurora—

optimized for Online Transaction Processing and 

ensuring ACID integrity—while historical records, event 

logs, and large volumes of unstructured data are 

offloaded to a Data Lake on object storage (for example, 

Amazon S3) or into a specialized Data Warehouse (such 

as Amazon Redshift) for subsequent BI analysis. This 

bifurcated approach relieves the production Aurora 

database of heavy analytical queries, preserving its 

performance for current transactional workloads. 

Moreover, a Data Lake’s ability to store data in its native 

form is invaluable for machine learning and exploratory 

analysis. Thus, a strategic integration of Aurora into the 

enterprise data landscape positions it as the System of 

Record, complemented by Data Lake/DW platforms for 

analytics—with appropriate ETL/ELT pipelines between 

them. Literature emphasizes that DW and DL are 

complementary: the lake serves as the raw repository, 

while the warehouse provides a refined, decision-ready 

view [12]. When managed correctly, this layered 

architecture achieves an optimal balance between data 

storage flexibility and analytical efficiency. 

To illustrate these architectural choices, consider a 

generalized case study from practical experience. A large 

financial institution migrated its monolithic core banking 

system to a cloud-native microservices platform. The 

monolithic application—backed by a single Oracle 

database—was refactored into multiple domain services 

(customers, accounts, transactions, reporting, etc.). 

Each service was provisioned with its own data store: 

transaction processing was moved to Aurora PostgreSQL 

Serverless (for ACID compliance and scalability), log 

history was archived in Amazon S3 (Data Lake) with 

downstream analysis in Redshift, and user session state 

was managed in Redis (for low-latency access). During 

migration, data from the legacy database was streamed 

into the new stores using Kafka for event streams and 

AWS DMS for initial bulk loading. This enabled the team 

to incrementally switch each service over to its new 

database without system downtime. The outcomes 

confirmed that service-specific databases eliminated 

resource contention between components, while 

Aurora Serverless automated capacity scaling to 

accommodate peak loads (for example, month-end 

billing cycles)—in one month the cluster’s capacity auto-

scaled nearly threefold within minutes, with no manual 

intervention. Furthermore, data separation simplified 

compliance with security requirements: the customer 

data service had tightly scoped access, isolated from 

analytics services, in accordance with the principle of 

least privilege and GDPR mandates. 

 

2. Ensuring Data Consistency and Integrity in a 

Serverless DBMS 

When migrating mission-critical data to a new platform, 

preserving both consistency and integrity is paramount. 

Enterprise systems—Internet banking, telecom billing, 

e-commerce, and the like—demand that every 

operation be durably recorded (durability), adhere to 

business rules (consistency), execute in isolation from 

concurrent transactions, and never leave partial updates 

(atomicity). These requirements are captured by the 

ACID acronym: Atomicity, Consistency, Isolation, 

Durability. While traditional relational databases 

(Oracle, PostgreSQL, MySQL, etc.) strive to uphold ACID 

in full, many NoSQL and distributed stores instead 
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embrace BASE: Basically Available, Soft state, Eventual 

consistency [13]. Let us explore how these paradigms 

map onto Aurora Serverless and which strategies ensure 

data integrity during migration. 

Aurora, as a MySQL- and PostgreSQL-compatible engine, 

is firmly ACID-compliant. It guarantees transaction 

atomicity, enforces defined consistency constraints, 

isolates concurrent operations (offering isolation levels 

up to Serializable), and ensures the durability of 

committed results. For example, in a banking 

application, a funds transfer between accounts on 

Aurora will either debit one account and credit the other 

in its entirety or roll back entirely—no half-measures. 

Under the hood, write-ahead logging (WAL) combined 

with multi-node replication delivers durability: once a 

transaction commits, its data persist even if a storage 

node or entire data center fails. Crucially, running 

Aurora in Serverless mode does not compromise these 

guarantees; autoscaling happens transparently, and the 

same logging and locking mechanisms continue to 

protect transactional integrity. Transaction isolation in 

Aurora mirrors that of standard RDS 

MySQL/PostgreSQL—MySQL defaults to REPEATABLE 

READ with MVCC, while PostgreSQL operates at READ 

COMMITTED or higher—preventing dirty reads and 

related anomalies. In practice, this means that moving 

to Aurora Serverless imposes no new transactional 

model on developers: ACID guarantees remain intact, 

underpinning stable business operations. 

That said, it is important to account for scaling behavior. 

Aurora Serverless v2 can adjust its compute capacity 

units (ACUs) on the fly—without pausing active 

transactions—thanks to implementation optimizations 

that avoid the need for “quiet points” (unlike v1) [14]. 

While consistency remains uncompromised, very long-

running transactions can still pose challenges: they may 

delay change propagation to replicas or tie up compute 

resources. As a rule of thumb during migration, review 

your application workflows for excessively long 

transactions and, where possible, break them into 

shorter steps or adopt asynchronous processing 

patterns. 

By contrast, the BASE model—widespread in NoSQL 

systems and large-scale web applications—prioritizes 

availability over strict consistency. BASE stands for 

“Basically Available, Soft state, Eventual consistency,” 

meaning the system strives to remain responsive 

(avoiding operation blocking) but allows temporary data 

discrepancies without instant consistency guarantees 

[13]. Under eventual consistency, when updates cease, 

all replicas will converge to the same state over time. A 

familiar example is distributed caching or loosely 

synchronized replication: if User A updates their profile, 

User B might see the old data briefly until the update has 

rippled through every node. Although Aurora Serverless 

itself enforces ACID, eventual consistency can surface at 

external layers—caches like Amazon ElastiCache being a 

prime case. If cache invalidation lags behind Aurora 

writes, stale data may be served to readers. To 

safeguard integrity, you must implement 

synchronization measures: disable caching for critical 

operations, employ write-through protocols, or set very 

short TTLs so any inconsistency window remains 

measured in milliseconds. In sum, even within an ACID 

database, architects must pinpoint zones of potential 

eventual consistency—typically in integrations with 

other systems, asynchronous message queues, caches, 

and similar components. 

As already noted, Aurora implements a CP model within 

a region—favoring consistency over availability in the 

event of a network partition. In practice, this means that 

if fewer than four of the six replicas acknowledge a 

write, the system will pause processing (waiting for 

quorum restoration) rather than accept divergent data. 

From the CAP theorem perspective, this represents a 

deliberate choice in favor of strict consistency and 

partition tolerance—appropriate for financial and other 

mission-critical workloads where incorrect data are 

unacceptable. The alternative AP mode (always 

responding, even with stale data) is characteristic of 

some NoSQL systems—for example, Cassandra can be 

configured to accept writes with a lower quorum, 

increasing availability but allowing “split-brain” data. 

During migration, requirements must be defined clearly: 

if the business cannot tolerate any anomalies, Aurora’s 

CP behavior is the correct solution. If temporary 

divergence is acceptable for uninterrupted operation 

(for instance, social-media like counters that may briefly 

differ between users), other technologies or 

architectural patterns can be layered atop the database. 

In sum, data consistency is not only a technical property 

of the DBMS but also an architectural decision that must 

align with application needs and user expectations. [6] 

A separate challenge is ensuring data consistency 

throughout the migration process to Aurora. Migration 

typically proceeds in several stages: export/copy, 

verification, change data capture (CDC), and final 
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cutover. At each step, it is critical not to lose or corrupt 

data. The following strategy is recommended: 

● Initial load: perform a full data export 

from the legacy system and load it into Aurora (manually 

or using AWS DMS). Thereafter, compare checksums or 

record counts on key tables between source and 

target—for example, order counts or balance totals—to 

verify that all data have been transferred and match 

exactly. 

● Change replication (CDC): enable 

change-data capture on the source database (via binlog 

for MySQL/Oracle or transactional logs). AWS Database 

Migration Service supports a full-load + CDC mode, 

continuing to replicate new transactions to the target 

Aurora instance in real time. This ensures both 

databases remain synchronized until migration 

completes. In Samsung’s experience migrating 1.1 

billion account records, this approach allowed 

uninterrupted service—DMS migrated approximately 2–

4 TB of data over several days while keeping the source 

up to date without downtime. [3] 

● Data validation: before cutting over 

traffic to the new database, conduct spot checks to 

verify consistency. For example, execute a suite of 

business operations in a test Aurora environment and 

compare results against expectations, or use built-in 

validation tools (AWS DMS offers a data validation 

feature for post-migration comparison). 

● Cutover: schedule during a low-usage 

window. First quiesce the application; then confirm that 

all source-DB changes have been applied to Aurora 

(DMS provides replication-lag metrics). Once data 

currency is validated, reconfigure the application to 

point at Aurora and resume operations. Ideally, 

downtime is measured in seconds or minutes. 

Samsung’s full regional migrations took around 22 

weeks, yet each cutover incurred minimal downtime—

users barely noticed the transition. [3] 

Aurora supports all the standard integrity mechanisms: 

primary and foreign keys, unique constraints, CHECK 

constraints, triggers, and stored procedures. During 

migration, it is essential to verify that every business rule 

is enforced either at the Aurora database level or within 

the application. For instance, if the source database 

employed cascading constraints, these must be 

reproduced in the target system. In heterogeneous 

migrations (e.g. Oracle → Aurora PostgreSQL), the AWS 

Schema Conversion Tool will translate the schema 

automatically and flag any incompatibilities for manual 

remediation. It is not uncommon for legacy systems to 

disable certain constraints for performance reasons, 

relying instead on application logic to maintain integrity; 

in such cases, enabling those constraints in Aurora—

whose performance often accommodates them without 

degradation—yields a clear consistency benefit. 

Finally, once the system has been refactored into 

microservices with separate databases, it is crucial to 

design interservice communication so that global data 

consistency is preserved. Achieving full atomicity across 

services is impractical—distributed transactions are 

overly complex and do not scale—so compensating 

transactions and event-driven reconciliation are 

employed. For example, in a ticketing system the 

“Booking” and “Payments” services operate 

independently: booking immediately reserves a seat, 

and payment may complete seconds later. If the 

payment fails, the Payments service emits a cancelation 

event, and the Booking service releases the seat. This 

achieves eventual consistency: data may temporarily 

conflict (a seat held without payment), but the system 

ultimately converges on the correct state. When 

architecting on Aurora, such scenarios must be 

anticipated by embedding coordination patterns (e.g. 

sagas). Here the BASE principle—“soft state” and 

eventual consistency—applies [13]. However, 

leveraging Aurora’s reliable WAL and guaranteed event 

delivery via SQS, EventBridge, or similar services ensures 

that no events are lost and that the system attains 

consistency within a short window. 

In summary, an integrity strategy for migrating to Aurora 

Serverless entails preserving transactional rigor where it 

is critical (ACID within each Aurora-backed service) and 

managing asynchronous processes thoughtfully where 

synchronous guarantees are infeasible (interservice 

interactions, integrations, caches). Aurora provides a 

robust foundation—“data are always consistent and 

durable within the cluster”—while architectural 

patterns and mature migration tools address the rest. 

When executed correctly, moving to serverless Aurora 

not only maintains consistency but enhances overall 

reliability by eliminating human error (through 

automated scaling and fault tolerance) and employing 

modern data governance mechanisms. 

3. Automation and Orchestration of Migration to 

Aurora Using AWS Tools 
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Migrating an enterprise database is a multifaceted 

endeavor whose success hinges on the level of 

automation applied. Hand-rolling schema definitions, 

data transfers, and business-logic migration is fraught 

with risk and can lead to lengthy downtime. As a result, 

modern practice leans heavily on purpose-built tools 

and managed services to streamline this transition. 

Within the AWS ecosystem, a powerful toolset is 

available: AWS Database Migration Service (DMS), AWS 

Schema Conversion Tool (SCT), AWS Data Pipeline, AWS 

Snowball (for offline transfer of large datasets), and 

infrastructure-as-code frameworks (CloudFormation, 

Terraform) for repeatable environment provisioning. 

This section explores best practices for orchestrating a 

migration to Aurora Serverless, drawing on the 

capabilities of these services. 

The linchpin for data movement is AWS DMS—a 

managed, serverless service that can replicate data 

between source and target with virtually no application 

downtime. DMS accommodates both homogeneous 

migrations (for example, MySQL → Aurora MySQL) and 

heterogeneous migrations (Oracle → Aurora 

PostgreSQL), automatically transforming data types and 

applying ongoing changes in real time. When migrating 

to Aurora, DMS is invaluable for minimizing outage 

windows: in Full Load + CDC mode, it first performs a 

complete bulk load of the existing dataset and then 

switches to continuous change-data-capture, streaming 

all new transactions to the target Aurora cluster [15]. 

This approach keeps the source database fully 

operational while ensuring that every write is mirrored 

into Aurora without interruption. 

In Figure 3, a typical DMS-based migration architecture 

is illustrated: an on-premises MySQL instance connects 

to AWS over a secure channel (Direct Connect or VPN), 

where DMS—running serverlessly in a private subnet—

reads the source database logs and applies each change 

to an Amazon Aurora cluster. This serverless migration 

pattern enables background replication with minimal 

impact on application availability. 

 

Figure 3. Database migration architecture using AWS DMS: an on-premise MySQL instance is linked over a 

secure channel (Direct Connect/VPN) to AWS. AWS DMS reads changes from the source database and replicates 

them to a target Amazon Aurora cluster (MySQL-compatible) [15]. 

Use of DMS provides several advantages. Firstly, 

migration becomes safer – DMS maintains a progress log 

and, in the event of failure, can resume from the point 

of interruption without retransmitting already migrated 

data. Secondly, DMS includes optimizations for rapid 

initial loading (for example, parallel table exports and 

the use of mydumper/myloader for MySQL) [15], and it 

automatically configures the target database by creating 

tables and indexes. Thirdly, DMS is serverless and scales 

to match workload demands, relieving the team of 

managing intermediate replication instances. As noted 

in Samsung’s migration of 1.1 billion account records, 

AWS DMS replicated a heterogeneous 2–4 TB dataset in 

3–4 days per region while keeping the source database 

available to users [3]. Upon completion of the initial 

load, DMS facilitated a smooth traffic cutover to Aurora 

by intercepting requests to the legacy database and 

routing them to the new cluster [3]. Consequently, such 

a large-scale migration proceeded with minimal user 

impact—a testament in part to the robustness of AWS 

tooling. 

If the migration is heterogeneous (i.e., the source and 

target engines differ, such as Oracle or SQL Server → 

Aurora PostgreSQL), schema and code conversion 

(stored procedures, triggers) become paramount. The 

AWS Schema Conversion Tool (SCT) automates much of 

this work: it analyzes the source schema, generates an 

equivalent schema for Aurora, and flags 

incompatibilities. According to AWS, SCT automatically 

converts roughly 80 % of database code; the remaining 
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cases require manual intervention, but the tool provides 

detailed reports and even code-fix examples. In this way, 

SCT significantly reduces the effort required by DBAs and 

developers when migrating to Aurora. Moreover, SCT 

can migrate data warehouses—e.g., Oracle or Teradata 

to Amazon Redshift—which, although beyond our 

immediate scope, demonstrates the tool’s versatility. 

It is worth mentioning AWS’s Database Freedom 

initiative (formerly “Project Aurora”), designed to help 

customers move from commercial engines to managed 

services like Aurora. This program offers not only the 

necessary tools (DMS, SCT) but also methodology and 

expertise. AWS identifies three pillars of success: 

innovative migration technologies (DMS, SCT) to 

automate manual tasks; expert partners for 

architectural guidance and training; and risk-mitigation 

programs (workshops, proofs of concept). In our 

context, adhering to these recommendations means 

treating an Aurora migration not as a one-off 

administrative task but as a full project encompassing 

planning, testing, developer involvement, and maximal 

automation. 

Beyond data transfer, automating the provisioning and 

configuration of the Aurora environment and its 

associated services is essential. Infrastructure-as-Code 

tools—AWS CloudFormation, Terraform, and AWS 

CDK—allow teams to describe the desired Aurora cluster 

(engine type, Serverless mode, autoscaling parameters, 

subnet/VPC settings, user accounts, etc.) in declarative 

templates. These templates can then be deployed 

consistently and repeatably across environments (Dev, 

Staging, Prod), eliminating human error in database 

setup and simplifying environment recovery in case of 

failure. 

In a CI/CD context, it makes sense to integrate Aurora 

schema updates into application delivery pipelines. 

Because Aurora is compatible with popular engines, 

teams can use schema-migration tools such as Liquibase 

or Flyway, or native AWS mechanisms (for example, 

managing schema changes via CodePipeline and the 

AWS CLI). This ensures controlled schema evolution, 

which is critical in a microservice architecture where 

each service update may require corresponding 

database alterations. 

Large migrations often involve orchestrating multiple 

steps—backing up the source database, provisioning the 

Aurora cluster, launching DMS tasks, monitoring their 

completion, switching application endpoints, running 

live tests, and performing post-migration cleanup. To 

automate such workflows, AWS offers Step Functions, 

and third-party tools like Jenkins pipelines or Airflow 

may also be used. For example, one might configure a 

Step Function that: (1) deploys the Aurora cluster via 

CloudFormation; (2) triggers the DMS task; (3) monitors 

DMS replication-lag metrics in CloudWatch; (4) when lag 

reaches zero, invokes a Lambda function to update 

application environment variables to point to the new 

database; (5) executes integration tests; and (6) shuts 

down the legacy database. This seamless orchestration 

minimizes manual intervention and documents the 

entire process clearly. 

Automation, however, cannot succeed without 

continuous monitoring. AWS provides metrics for 

Aurora (ACU utilization, connection counts, replication 

lag), for DMS (copy progress, CDC lag, errors), and 

comprehensive logging. By configuring CloudWatch 

Alarms on critical thresholds—such as migration 

throughput drops or data-conflict errors—the team can 

respond rapidly to issues. It is also important to profile 

Aurora performance at early stages (for example, during 

a test migration run), since tuning parameters 

(transaction-log size, Serverless v1 auto-pause settings, 

etc.) may be required to achieve optimal results. 

Conclusion 

Migrating to the serverless Amazon Aurora database is a 

complex, multifaceted process requiring both robust 

technology and a carefully considered data 

management strategy. This study has examined the key 

aspects of the challenge. First, in terms of architectural 

approaches: moving from a monolithic architecture to 

microservices with isolated databases enables 

independent scalability and enhanced system resilience. 

Aurora Serverless integrates seamlessly into such an 

architecture, providing a cloud-native database capable 

of adapting to dynamic workloads while supporting ACID 

transactions at the service level. Second, regarding data 

consistency and integrity: Aurora preserves traditional 

integrity guarantees (ACID), while distributed-system 

patterns (such as sagas and event sourcing) deliver 

eventual consistency where needed. We have discussed 

CAP theorem trade-offs and demonstrated that within a 

single region Aurora prioritizes consistency and partition 

tolerance, ensuring data coherence even under failure 

conditions. Third, in terms of migration automation: 

AWS tools (DMS, SCT, etc.) markedly reduce both risk 

and duration of migration by enabling data transfer with 
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minimal downtime and operational overhead. Practical 

examples—including migrations of over one billion 

records—show that, when leveraged effectively, these 

tools allow large-scale enterprise systems to migrate to 

Aurora while improving performance and reducing 

costs. 

Particular attention should be paid to assessing which 

strategies apply: there is no universal formula, so each 

organization must consider its own requirements—

consistency guarantees, acceptable downtime, 

application compatibility with a new DBMS, and team 

expertise. However, general recommendations can be 

formulated as follows: 

 
(1) Plan and design the data architecture in advance by 
defining domain services and selecting optimal storage 
models (Aurora for transactional workloads, Data 
Lake/Warehouse for analytics, etc.), ensuring scalability 
for the future. 

 
(2) Ensure integrity at every step by enforcing ACID 
properties where required and carefully managing zones 
of eventual consistency; verify that constraints, triggers, 
and business-logic rules are migrated intact. 

 
(3) Automate the process to the greatest extent possible 
by using DMS/SCT for data migration, IaC for 
environment provisioning, and orchestration tools to 
execute steps error-free; this accelerates migration and 
reduces team workload. 

 
(4) Test and monitor by running trial migrations, 
measuring Aurora’s performance under load, and 
configuring monitoring and alerts during and after 
migration to detect bottlenecks swiftly. 

Migration to Aurora Serverless often becomes a catalyst 

for further improvements—refactoring legacy code, 

optimizing queries, and adopting modern DevOps 

practices. Experts note that organizations gain not only 

cost savings (no licensing fees, pay-as-you-go pricing) 

but also accelerated innovation: developers can deliver 

new features faster without managing database scaling 

manually. Thus, migrating to serverless Aurora 

represents a step toward a more agile and resilient data 

architecture capable of meeting the demands of high-

throughput systems in the cloud era. 
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