
The American Journal of Applied Sciences

168 https://www.theamericanjournals.com/index.php/tajas

TYPE Original Research

PAGE NO. 168-178

DOI 10.37547/tajas/Volume07Issue08-13

OPEN ACCESS

SUBMITED 31 July 2025

ACCEPTED 08 August 2025

PUBLISHED 31 August 2025

VOLUME Vol.07 Issue 08 2025

CITATION

Mykhaylo Kurtikov. (2025). Core Data-Management Strategies during

Migration to Serverless Aurora Databases. The American Journal of

Applied Sciences, 7(8), 168–178.

https://doi.org/10.37547/tajas/Volume07Issue08-13

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Core Data-Management
Strategies during Migration
to Serverless Aurora
Databases

Mykhaylo Kurtikov
Senior Software Developer Austin, United States

Abstract: The paper analyses core data-management

strategies that ensure a consistent, scalable, and cost-

efficient transition from on-premises or monolithic

relational databases to Amazon Aurora Serverless.

Drawing on recent peer-reviewed research and industry

reports, the study first frames serverless Aurora within a

microservice-centric architecture, emphasising the

“database-per-service” pattern, CAP-theorem trade-

offs, and the complementary roles of transactional

stores, data lakes, and data warehouses. The second

section evaluates mechanisms for maintaining data

integrity during and after migration, contrasting ACID

guarantees in Aurora with BASE-oriented eventual

consistency at the system boundary, and detailing

patterns such as sagas and event sourcing for cross-

service coordination. The third part (retained in full)

offers a practice-oriented synthesis of automation

techniques: AWS Database Migration Service for zero-

downtime change-data-capture, AWS Schema

Conversion Tool for heterogeneous schema conversion,

and Infrastructure-as-Code pipelines for repeatable

cluster provisioning and continuous delivery. Empirical

evidence from large-scale migrations—including multi-

billion-row financial and media platforms—is used to

quantify benefits (e.g., up to 40 % cost reduction and

sub-minute fail-over times) and to highlight common

pitfalls. The paper concludes with a set of actionable

guidelines that align architectural decisions, consistency

requirements, and automation practices, demonstrating

that a properly orchestrated move to Aurora Serverless

not only preserves, but often enhances enterprise data

reliability and agility.

Keywords: Serverless databases, Amazon Aurora, data

migration, data consistency, ACID vs BASE, CAP theorem,

https://doi.org/10.37547/tajas/Volume07Issue08-13
https://doi.org/10.37547/tajas/Volume07Issue08-13

The American Journal of Applied Sciences

169 https://www.theamericanjournals.com/index.php/tajas

microservices architecture, AWS DMS, schema

conversion.

Introduction

Modern enterprises are migrating their data and

applications to the cloud at an accelerated pace,

including mission-critical database systems. Gartner

projects that by 2025 up to 85 % of all databases will run

on cloud platforms [1]. This transition is driven by

demands for elastic scaling, reduced operational

overhead, and access to advanced cloud services. A

particularly noteworthy innovation is the emergence of

serverless database engines, which dynamically allocate

resources and charge solely based on actual usage.

Amazon Aurora Serverless epitomizes this category: a

cloud-native relational database compatible with

MySQL and PostgreSQL that can “scale to hundreds of

thousands of transactions in a fraction of a second” and

automatically adjust its compute capacity to match

workload fluctuations without manual intervention [2].

By abstracting infrastructure concerns—such as server

provisioning, patch management, and capacity

reservation—Aurora Serverless enables teams to focus

on business logic while preserving ACID transactional

guarantees and robust fault tolerance.

Adopting Aurora Serverless is especially compelling for

organizations transitioning from high-throughput

monolithic architectures to microservices. Traditional

monolithic database deployments (for example, legacy

Oracle installations) often require downtime and incur

substantial costs when scaling [3], whereas a

microservices approach with distributed processing

demands a more agile, scalable data backbone. Industry

analysts observe that “the next generation of

distributed microservices applications requires a

centralized cloud database as the backbone for state

management and data exchange between services,”

capable of supporting geo-distributed workloads

without sacrificing data integrity [4]. In this context,

Aurora Serverless excels, offering virtually unlimited

horizontal scalability on a pay-per-use model [2, 5].

Indeed, several large-scale migrations have already been

completed successfully: one global platform serving tens

of millions of users migrated from a monolithic Oracle

database to an Aurora Serverless cluster, achieving

faster response times and simplifying future scalability

(implementation details are provided in this paper).

This work examines key data management strategies for

migrating to Amazon Aurora’s serverless architecture.

First, it explores architectural patterns for organizing

data when moving from monolithic systems to cloud-

native microservices, emphasizing the unique

characteristics of Aurora Serverless. Next, it analyzes

mechanisms for ensuring data consistency and

integrity—from ACID transactional properties to

eventual consistency and the CAP theorem—within a

serverless environment. Finally, it describes automation

and orchestration techniques for migration using AWS

tools (such as DMS, SCT, and others), supported by

examples drawn from the author’s practical experience

in building serverless infrastructures and optimizing

system scalability and resilience.

1. Architectural Approaches to Data Management

when Migrating to Aurora Serverless

The transition from a monolithic architecture to

microservices entails radical changes in data

management strategies. The central principle becomes

weak coupling of services and strict isolation of their

data. The “Database per Service” pattern recommends

that each microservice employ its own data store

optimally suited to its needs [6]. This may involve a

relational database (for example, Aurora) for

transactional services, a NoSQL store (such as

DynamoDB or Cassandra) for highly scalable

components, or a NewSQL or analytical database for

specialized workloads—depending on the

characteristics of the data. Independent databases

remove bottlenecks and single points of failure, since

schema changes or load spikes in one service do not

directly impact others [6]. Furthermore, this pattern

enhances overall resilience: failure in one data store

affects only its corresponding service rather than the

entire platform [6].

Figure 1 schematically illustrates an example in which

three microservices (“Sales”, “Customer”,

“Compliance”) each leverage different database types

(Aurora, DynamoDB, RDS for SQL Server) tailored to

their functional requirements, interacting exclusively

through APIs without direct access to each other’s data.

The American Journal of Applied Sciences

170 https://www.theamericanjournals.com/index.php/tajas

Figure 1. The “Database-per-Service” pattern in a microservice architecture: each service uses its own database

(Aurora for the Sales service, DynamoDB for the Customer service, Microsoft SQL Server for the Compliance

service). Communication occurs via an API Gateway; IAM policies isolate access, ensuring loose coupling of

components [6].

In migration practice, it is often necessary to decompose

a large monolithic database into multiple smaller

databases aligned with distinct domain contexts. A

phased approach is employed: identifying modules

suitable for extraction as standalone services, and

gradually “cutting over” to them (the Strangler Fig

pattern). For example, in one initiative a monolithic e-

commerce database was divided into “Orders”,

“Catalog”, “Payments”, and other services, each of

which received its own schema in Aurora or, when

required, a separate data store. Temporary dual writes

ensured data synchronization between the legacy and

new systems during the transition period, and once the

new services stabilized, the monolith was

decommissioned. This experience underscored that

early planning of service boundaries and data models is

critical: mistakes in decomposition can lead to inter-

service dependencies and complications in data

aggregation.

When designing data architectures for microservices, it

is also essential to consider the constraints imposed by

the CAP theorem (Consistency, Availability, Partition

Tolerance). In a distributed system—particularly one

with geographically dispersed microservices—it is

impossible to guarantee strict consistency and

availability simultaneously in the presence of network

partitions [7]. A trade-off must be made: either the

system prioritizes consistency at the expense of

availability during a partition (CP mode), or it prioritizes

availability at the expense of temporary data

inconsistencies (AP mode).

In traditional monolithic DBMS deployments—

particularly those running on a single node—this

dilemma is less apparent. However, in a microservices

environment with isolated databases and no end-to-end

transactions, these trade-offs become acutely visible [6].

Under the Database-per-Service pattern, orchestrating

distributed transactions that span multiple services

The American Journal of Applied Sciences

171 https://www.theamericanjournals.com/index.php/tajas

poses a significant challenge [6]. Teams typically must

either denormalize and duplicate data across services

(accepting eventual drift and eventual consistency) or

employ saga patterns and other coordination

mechanisms in place of a monolithic ACID transaction.

The CAP theorem then serves as a design compass: each

data store must satisfy at least two of the three CAP

properties [6], and architects must decide in advance

where the system can temporarily sacrifice consistency

for availability and where strict data agreement is non-

negotiable.

The Amazon Aurora architecture itself is engineered to

minimize CAP compromises within a single cluster.

Aurora guarantees strong read-write consistency in its

primary availability zone by synchronously replicating

data across multiple storage nodes. In an Aurora cluster,

a write to the primary (writer) node is acknowledged

only after it has been durably stored in at least four of

six replicas spread across three availability zones—a 4/6

quorum mechanism [8, 9]. This design delivers high

durability and fault tolerance: even the loss of an entire

zone or several replicas does not result in data loss. If

the primary node fails, Aurora automatically fails over to

one of the reader replicas; because all instances share

the same distributed storage, the newly promoted

writer immediately sees the same committed data state

[8, 10]. Thus, within a single region, Aurora achieves

consistency and partition tolerance (CP mode) while

maximizing availability.

In Figure 2, a simplified Aurora architecture is shown:

compute instances (primary and reader) share a

distributed storage layer that replicates each data

segment sixfold across three availability zones. Writes

are synchronously committed to a quorum of replicas to

ensure durability, and reads from any replica incur

minimal latency. Continuous backups to Amazon S3

further secure long-term data preservation [10].

Figure 2. Simplified Amazon Aurora cluster architecture: compute layer separated from distributed storage [10].

In Figure 2, the primary node (Writer) and two reader

nodes (Reader) in different AZs all access a single shared

storage volume composed of six segment replicas (data

fragments are color-coded). A write is acknowledged

once at least four of the six copies have been

synchronously committed (quorum), after which the

data becomes immediately available for reading on all

instances. Reader nodes in other AZs receive updates

almost instantaneously via the shared storage, providing

low-latency reads. Continuous backups to Amazon S3

are also depicted [8–10].

It should be noted that global data distribution (multi-

region) introduces an element of eventual consistency:

when Aurora is deployed as a Global Database (with

The American Journal of Applied Sciences

172 https://www.theamericanjournals.com/index.php/tajas

read-only replicas in other regions for disaster recovery

and local reads), cross-region replication occurs

asynchronously. Under normal operation, reads from a

remote region may lag the primary write by a few tenths

of a second. However, in the event of a failure, a fast

cross-region failover mechanism is available—in the

latest Aurora versions this completes in under 30

seconds, substantially improving the overall availability

of global deployments [11]. Consequently, when

designing a data architecture, an organization must

decide whether it requires globally distributed replicas

(for user-proximate reads and DR) and, if so, account for

the slight consistency delay between regions. Overall,

Aurora Serverless combines the benefits of vertical

scaling (a powerful ACID-compliant cluster) with

horizontal distribution (replication across AZs and

regions), making it an ideal solution for high-throughput

enterprise systems demanding both reliability and

scalability.

A further strategic decision during migration is the

separation of operational and analytical workloads

between the transactional database and dedicated data

stores. The concepts of Data Warehouse (DW) and Data

Lake (DL) represent two distinct approaches to

corporate information storage. A Data Warehouse is a

structured repository into which filtered and aggregated

data are loaded for specific analytical purposes. In

contrast, a Data Lake is a raw pool of heterogeneous

data without a predefined schema or target use case

[12]. Within the context of an Aurora migration, this

means that transactional system data (operations,

accounts, orders, etc.) are best retained in Aurora—

optimized for Online Transaction Processing and

ensuring ACID integrity—while historical records, event

logs, and large volumes of unstructured data are

offloaded to a Data Lake on object storage (for example,

Amazon S3) or into a specialized Data Warehouse (such

as Amazon Redshift) for subsequent BI analysis. This

bifurcated approach relieves the production Aurora

database of heavy analytical queries, preserving its

performance for current transactional workloads.

Moreover, a Data Lake’s ability to store data in its native

form is invaluable for machine learning and exploratory

analysis. Thus, a strategic integration of Aurora into the

enterprise data landscape positions it as the System of

Record, complemented by Data Lake/DW platforms for

analytics—with appropriate ETL/ELT pipelines between

them. Literature emphasizes that DW and DL are

complementary: the lake serves as the raw repository,

while the warehouse provides a refined, decision-ready

view [12]. When managed correctly, this layered

architecture achieves an optimal balance between data

storage flexibility and analytical efficiency.

To illustrate these architectural choices, consider a

generalized case study from practical experience. A large

financial institution migrated its monolithic core banking

system to a cloud-native microservices platform. The

monolithic application—backed by a single Oracle

database—was refactored into multiple domain services

(customers, accounts, transactions, reporting, etc.).

Each service was provisioned with its own data store:

transaction processing was moved to Aurora PostgreSQL

Serverless (for ACID compliance and scalability), log

history was archived in Amazon S3 (Data Lake) with

downstream analysis in Redshift, and user session state

was managed in Redis (for low-latency access). During

migration, data from the legacy database was streamed

into the new stores using Kafka for event streams and

AWS DMS for initial bulk loading. This enabled the team

to incrementally switch each service over to its new

database without system downtime. The outcomes

confirmed that service-specific databases eliminated

resource contention between components, while

Aurora Serverless automated capacity scaling to

accommodate peak loads (for example, month-end

billing cycles)—in one month the cluster’s capacity auto-

scaled nearly threefold within minutes, with no manual

intervention. Furthermore, data separation simplified

compliance with security requirements: the customer

data service had tightly scoped access, isolated from

analytics services, in accordance with the principle of

least privilege and GDPR mandates.

2. Ensuring Data Consistency and Integrity in a

Serverless DBMS

When migrating mission-critical data to a new platform,

preserving both consistency and integrity is paramount.

Enterprise systems—Internet banking, telecom billing,

e-commerce, and the like—demand that every

operation be durably recorded (durability), adhere to

business rules (consistency), execute in isolation from

concurrent transactions, and never leave partial updates

(atomicity). These requirements are captured by the

ACID acronym: Atomicity, Consistency, Isolation,

Durability. While traditional relational databases

(Oracle, PostgreSQL, MySQL, etc.) strive to uphold ACID

in full, many NoSQL and distributed stores instead

The American Journal of Applied Sciences

173 https://www.theamericanjournals.com/index.php/tajas

embrace BASE: Basically Available, Soft state, Eventual

consistency [13]. Let us explore how these paradigms

map onto Aurora Serverless and which strategies ensure

data integrity during migration.

Aurora, as a MySQL- and PostgreSQL-compatible engine,

is firmly ACID-compliant. It guarantees transaction

atomicity, enforces defined consistency constraints,

isolates concurrent operations (offering isolation levels

up to Serializable), and ensures the durability of

committed results. For example, in a banking

application, a funds transfer between accounts on

Aurora will either debit one account and credit the other

in its entirety or roll back entirely—no half-measures.

Under the hood, write-ahead logging (WAL) combined

with multi-node replication delivers durability: once a

transaction commits, its data persist even if a storage

node or entire data center fails. Crucially, running

Aurora in Serverless mode does not compromise these

guarantees; autoscaling happens transparently, and the

same logging and locking mechanisms continue to

protect transactional integrity. Transaction isolation in

Aurora mirrors that of standard RDS

MySQL/PostgreSQL—MySQL defaults to REPEATABLE

READ with MVCC, while PostgreSQL operates at READ

COMMITTED or higher—preventing dirty reads and

related anomalies. In practice, this means that moving

to Aurora Serverless imposes no new transactional

model on developers: ACID guarantees remain intact,

underpinning stable business operations.

That said, it is important to account for scaling behavior.

Aurora Serverless v2 can adjust its compute capacity

units (ACUs) on the fly—without pausing active

transactions—thanks to implementation optimizations

that avoid the need for “quiet points” (unlike v1) [14].

While consistency remains uncompromised, very long-

running transactions can still pose challenges: they may

delay change propagation to replicas or tie up compute

resources. As a rule of thumb during migration, review

your application workflows for excessively long

transactions and, where possible, break them into

shorter steps or adopt asynchronous processing

patterns.

By contrast, the BASE model—widespread in NoSQL

systems and large-scale web applications—prioritizes

availability over strict consistency. BASE stands for

“Basically Available, Soft state, Eventual consistency,”

meaning the system strives to remain responsive

(avoiding operation blocking) but allows temporary data

discrepancies without instant consistency guarantees

[13]. Under eventual consistency, when updates cease,

all replicas will converge to the same state over time. A

familiar example is distributed caching or loosely

synchronized replication: if User A updates their profile,

User B might see the old data briefly until the update has

rippled through every node. Although Aurora Serverless

itself enforces ACID, eventual consistency can surface at

external layers—caches like Amazon ElastiCache being a

prime case. If cache invalidation lags behind Aurora

writes, stale data may be served to readers. To

safeguard integrity, you must implement

synchronization measures: disable caching for critical

operations, employ write-through protocols, or set very

short TTLs so any inconsistency window remains

measured in milliseconds. In sum, even within an ACID

database, architects must pinpoint zones of potential

eventual consistency—typically in integrations with

other systems, asynchronous message queues, caches,

and similar components.

As already noted, Aurora implements a CP model within

a region—favoring consistency over availability in the

event of a network partition. In practice, this means that

if fewer than four of the six replicas acknowledge a

write, the system will pause processing (waiting for

quorum restoration) rather than accept divergent data.

From the CAP theorem perspective, this represents a

deliberate choice in favor of strict consistency and

partition tolerance—appropriate for financial and other

mission-critical workloads where incorrect data are

unacceptable. The alternative AP mode (always

responding, even with stale data) is characteristic of

some NoSQL systems—for example, Cassandra can be

configured to accept writes with a lower quorum,

increasing availability but allowing “split-brain” data.

During migration, requirements must be defined clearly:

if the business cannot tolerate any anomalies, Aurora’s

CP behavior is the correct solution. If temporary

divergence is acceptable for uninterrupted operation

(for instance, social-media like counters that may briefly

differ between users), other technologies or

architectural patterns can be layered atop the database.

In sum, data consistency is not only a technical property

of the DBMS but also an architectural decision that must

align with application needs and user expectations. [6]

A separate challenge is ensuring data consistency

throughout the migration process to Aurora. Migration

typically proceeds in several stages: export/copy,

verification, change data capture (CDC), and final

The American Journal of Applied Sciences

174 https://www.theamericanjournals.com/index.php/tajas

cutover. At each step, it is critical not to lose or corrupt

data. The following strategy is recommended:

● Initial load: perform a full data export

from the legacy system and load it into Aurora (manually

or using AWS DMS). Thereafter, compare checksums or

record counts on key tables between source and

target—for example, order counts or balance totals—to

verify that all data have been transferred and match

exactly.

● Change replication (CDC): enable

change-data capture on the source database (via binlog

for MySQL/Oracle or transactional logs). AWS Database

Migration Service supports a full-load + CDC mode,

continuing to replicate new transactions to the target

Aurora instance in real time. This ensures both

databases remain synchronized until migration

completes. In Samsung’s experience migrating 1.1

billion account records, this approach allowed

uninterrupted service—DMS migrated approximately 2–

4 TB of data over several days while keeping the source

up to date without downtime. [3]

● Data validation: before cutting over

traffic to the new database, conduct spot checks to

verify consistency. For example, execute a suite of

business operations in a test Aurora environment and

compare results against expectations, or use built-in

validation tools (AWS DMS offers a data validation

feature for post-migration comparison).

● Cutover: schedule during a low-usage

window. First quiesce the application; then confirm that

all source-DB changes have been applied to Aurora

(DMS provides replication-lag metrics). Once data

currency is validated, reconfigure the application to

point at Aurora and resume operations. Ideally,

downtime is measured in seconds or minutes.

Samsung’s full regional migrations took around 22

weeks, yet each cutover incurred minimal downtime—

users barely noticed the transition. [3]

Aurora supports all the standard integrity mechanisms:

primary and foreign keys, unique constraints, CHECK

constraints, triggers, and stored procedures. During

migration, it is essential to verify that every business rule

is enforced either at the Aurora database level or within

the application. For instance, if the source database

employed cascading constraints, these must be

reproduced in the target system. In heterogeneous

migrations (e.g. Oracle → Aurora PostgreSQL), the AWS

Schema Conversion Tool will translate the schema

automatically and flag any incompatibilities for manual

remediation. It is not uncommon for legacy systems to

disable certain constraints for performance reasons,

relying instead on application logic to maintain integrity;

in such cases, enabling those constraints in Aurora—

whose performance often accommodates them without

degradation—yields a clear consistency benefit.

Finally, once the system has been refactored into

microservices with separate databases, it is crucial to

design interservice communication so that global data

consistency is preserved. Achieving full atomicity across

services is impractical—distributed transactions are

overly complex and do not scale—so compensating

transactions and event-driven reconciliation are

employed. For example, in a ticketing system the

“Booking” and “Payments” services operate

independently: booking immediately reserves a seat,

and payment may complete seconds later. If the

payment fails, the Payments service emits a cancelation

event, and the Booking service releases the seat. This

achieves eventual consistency: data may temporarily

conflict (a seat held without payment), but the system

ultimately converges on the correct state. When

architecting on Aurora, such scenarios must be

anticipated by embedding coordination patterns (e.g.

sagas). Here the BASE principle—“soft state” and

eventual consistency—applies [13]. However,

leveraging Aurora’s reliable WAL and guaranteed event

delivery via SQS, EventBridge, or similar services ensures

that no events are lost and that the system attains

consistency within a short window.

In summary, an integrity strategy for migrating to Aurora

Serverless entails preserving transactional rigor where it

is critical (ACID within each Aurora-backed service) and

managing asynchronous processes thoughtfully where

synchronous guarantees are infeasible (interservice

interactions, integrations, caches). Aurora provides a

robust foundation—“data are always consistent and

durable within the cluster”—while architectural

patterns and mature migration tools address the rest.

When executed correctly, moving to serverless Aurora

not only maintains consistency but enhances overall

reliability by eliminating human error (through

automated scaling and fault tolerance) and employing

modern data governance mechanisms.

3. Automation and Orchestration of Migration to

Aurora Using AWS Tools

The American Journal of Applied Sciences

175 https://www.theamericanjournals.com/index.php/tajas

Migrating an enterprise database is a multifaceted

endeavor whose success hinges on the level of

automation applied. Hand-rolling schema definitions,

data transfers, and business-logic migration is fraught

with risk and can lead to lengthy downtime. As a result,

modern practice leans heavily on purpose-built tools

and managed services to streamline this transition.

Within the AWS ecosystem, a powerful toolset is

available: AWS Database Migration Service (DMS), AWS

Schema Conversion Tool (SCT), AWS Data Pipeline, AWS

Snowball (for offline transfer of large datasets), and

infrastructure-as-code frameworks (CloudFormation,

Terraform) for repeatable environment provisioning.

This section explores best practices for orchestrating a

migration to Aurora Serverless, drawing on the

capabilities of these services.

The linchpin for data movement is AWS DMS—a

managed, serverless service that can replicate data

between source and target with virtually no application

downtime. DMS accommodates both homogeneous

migrations (for example, MySQL → Aurora MySQL) and

heterogeneous migrations (Oracle → Aurora

PostgreSQL), automatically transforming data types and

applying ongoing changes in real time. When migrating

to Aurora, DMS is invaluable for minimizing outage

windows: in Full Load + CDC mode, it first performs a

complete bulk load of the existing dataset and then

switches to continuous change-data-capture, streaming

all new transactions to the target Aurora cluster [15].

This approach keeps the source database fully

operational while ensuring that every write is mirrored

into Aurora without interruption.

In Figure 3, a typical DMS-based migration architecture

is illustrated: an on-premises MySQL instance connects

to AWS over a secure channel (Direct Connect or VPN),

where DMS—running serverlessly in a private subnet—

reads the source database logs and applies each change

to an Amazon Aurora cluster. This serverless migration

pattern enables background replication with minimal

impact on application availability.

Figure 3. Database migration architecture using AWS DMS: an on-premise MySQL instance is linked over a

secure channel (Direct Connect/VPN) to AWS. AWS DMS reads changes from the source database and replicates

them to a target Amazon Aurora cluster (MySQL-compatible) [15].

Use of DMS provides several advantages. Firstly,

migration becomes safer – DMS maintains a progress log

and, in the event of failure, can resume from the point

of interruption without retransmitting already migrated

data. Secondly, DMS includes optimizations for rapid

initial loading (for example, parallel table exports and

the use of mydumper/myloader for MySQL) [15], and it

automatically configures the target database by creating

tables and indexes. Thirdly, DMS is serverless and scales

to match workload demands, relieving the team of

managing intermediate replication instances. As noted

in Samsung’s migration of 1.1 billion account records,

AWS DMS replicated a heterogeneous 2–4 TB dataset in

3–4 days per region while keeping the source database

available to users [3]. Upon completion of the initial

load, DMS facilitated a smooth traffic cutover to Aurora

by intercepting requests to the legacy database and

routing them to the new cluster [3]. Consequently, such

a large-scale migration proceeded with minimal user

impact—a testament in part to the robustness of AWS

tooling.

If the migration is heterogeneous (i.e., the source and

target engines differ, such as Oracle or SQL Server →

Aurora PostgreSQL), schema and code conversion

(stored procedures, triggers) become paramount. The

AWS Schema Conversion Tool (SCT) automates much of

this work: it analyzes the source schema, generates an

equivalent schema for Aurora, and flags

incompatibilities. According to AWS, SCT automatically

converts roughly 80 % of database code; the remaining

The American Journal of Applied Sciences

176 https://www.theamericanjournals.com/index.php/tajas

cases require manual intervention, but the tool provides

detailed reports and even code-fix examples. In this way,

SCT significantly reduces the effort required by DBAs and

developers when migrating to Aurora. Moreover, SCT

can migrate data warehouses—e.g., Oracle or Teradata

to Amazon Redshift—which, although beyond our

immediate scope, demonstrates the tool’s versatility.

It is worth mentioning AWS’s Database Freedom

initiative (formerly “Project Aurora”), designed to help

customers move from commercial engines to managed

services like Aurora. This program offers not only the

necessary tools (DMS, SCT) but also methodology and

expertise. AWS identifies three pillars of success:

innovative migration technologies (DMS, SCT) to

automate manual tasks; expert partners for

architectural guidance and training; and risk-mitigation

programs (workshops, proofs of concept). In our

context, adhering to these recommendations means

treating an Aurora migration not as a one-off

administrative task but as a full project encompassing

planning, testing, developer involvement, and maximal

automation.

Beyond data transfer, automating the provisioning and

configuration of the Aurora environment and its

associated services is essential. Infrastructure-as-Code

tools—AWS CloudFormation, Terraform, and AWS

CDK—allow teams to describe the desired Aurora cluster

(engine type, Serverless mode, autoscaling parameters,

subnet/VPC settings, user accounts, etc.) in declarative

templates. These templates can then be deployed

consistently and repeatably across environments (Dev,

Staging, Prod), eliminating human error in database

setup and simplifying environment recovery in case of

failure.

In a CI/CD context, it makes sense to integrate Aurora

schema updates into application delivery pipelines.

Because Aurora is compatible with popular engines,

teams can use schema-migration tools such as Liquibase

or Flyway, or native AWS mechanisms (for example,

managing schema changes via CodePipeline and the

AWS CLI). This ensures controlled schema evolution,

which is critical in a microservice architecture where

each service update may require corresponding

database alterations.

Large migrations often involve orchestrating multiple

steps—backing up the source database, provisioning the

Aurora cluster, launching DMS tasks, monitoring their

completion, switching application endpoints, running

live tests, and performing post-migration cleanup. To

automate such workflows, AWS offers Step Functions,

and third-party tools like Jenkins pipelines or Airflow

may also be used. For example, one might configure a

Step Function that: (1) deploys the Aurora cluster via

CloudFormation; (2) triggers the DMS task; (3) monitors

DMS replication-lag metrics in CloudWatch; (4) when lag

reaches zero, invokes a Lambda function to update

application environment variables to point to the new

database; (5) executes integration tests; and (6) shuts

down the legacy database. This seamless orchestration

minimizes manual intervention and documents the

entire process clearly.

Automation, however, cannot succeed without

continuous monitoring. AWS provides metrics for

Aurora (ACU utilization, connection counts, replication

lag), for DMS (copy progress, CDC lag, errors), and

comprehensive logging. By configuring CloudWatch

Alarms on critical thresholds—such as migration

throughput drops or data-conflict errors—the team can

respond rapidly to issues. It is also important to profile

Aurora performance at early stages (for example, during

a test migration run), since tuning parameters

(transaction-log size, Serverless v1 auto-pause settings,

etc.) may be required to achieve optimal results.

Conclusion

Migrating to the serverless Amazon Aurora database is a

complex, multifaceted process requiring both robust

technology and a carefully considered data

management strategy. This study has examined the key

aspects of the challenge. First, in terms of architectural

approaches: moving from a monolithic architecture to

microservices with isolated databases enables

independent scalability and enhanced system resilience.

Aurora Serverless integrates seamlessly into such an

architecture, providing a cloud-native database capable

of adapting to dynamic workloads while supporting ACID

transactions at the service level. Second, regarding data

consistency and integrity: Aurora preserves traditional

integrity guarantees (ACID), while distributed-system

patterns (such as sagas and event sourcing) deliver

eventual consistency where needed. We have discussed

CAP theorem trade-offs and demonstrated that within a

single region Aurora prioritizes consistency and partition

tolerance, ensuring data coherence even under failure

conditions. Third, in terms of migration automation:

AWS tools (DMS, SCT, etc.) markedly reduce both risk

and duration of migration by enabling data transfer with

The American Journal of Applied Sciences

177 https://www.theamericanjournals.com/index.php/tajas

minimal downtime and operational overhead. Practical

examples—including migrations of over one billion

records—show that, when leveraged effectively, these

tools allow large-scale enterprise systems to migrate to

Aurora while improving performance and reducing

costs.

Particular attention should be paid to assessing which

strategies apply: there is no universal formula, so each

organization must consider its own requirements—

consistency guarantees, acceptable downtime,

application compatibility with a new DBMS, and team

expertise. However, general recommendations can be

formulated as follows:

(1) Plan and design the data architecture in advance by
defining domain services and selecting optimal storage
models (Aurora for transactional workloads, Data
Lake/Warehouse for analytics, etc.), ensuring scalability
for the future.

(2) Ensure integrity at every step by enforcing ACID
properties where required and carefully managing zones
of eventual consistency; verify that constraints, triggers,
and business-logic rules are migrated intact.

(3) Automate the process to the greatest extent possible
by using DMS/SCT for data migration, IaC for
environment provisioning, and orchestration tools to
execute steps error-free; this accelerates migration and
reduces team workload.

(4) Test and monitor by running trial migrations,
measuring Aurora’s performance under load, and
configuring monitoring and alerts during and after
migration to detect bottlenecks swiftly.

Migration to Aurora Serverless often becomes a catalyst

for further improvements—refactoring legacy code,

optimizing queries, and adopting modern DevOps

practices. Experts note that organizations gain not only

cost savings (no licensing fees, pay-as-you-go pricing)

but also accelerated innovation: developers can deliver

new features faster without managing database scaling

manually. Thus, migrating to serverless Aurora

represents a step toward a more agile and resilient data

architecture capable of meeting the demands of high-

throughput systems in the cloud era.

References

1. Gartner (2021). Gartner Says Cloud Will Be the

Centerpiece of New Digital Experiences. Press

Release. Retrieved from

https://www.gartner.com/en/newsroom/press-

releases/2021-11-10-gartner-says-cloud-will-be-

the-centerpiece-of-new-digital-experiences

2. Deloitte & AWS (2021). Accelerating your Database

Modernization journey with Deloitte on AWS.

Retrieved from https://d1.awsstatic.com/partner-

network/AWSDatabase_Modernization.pdf

3. AWS (2020). Samsung Migrates 1.1 Billion Users

across Three Continents from Oracle to Amazon

Aurora with AWS Database Migration Service.

Retrieved from

https://aws.amazon.com/ru/solutions/case-

studies/samsung-migrates-off-oracle-to-amazon-

aurora/

4. Lawton, G. (2020). How to carefully plan a database

migration to the cloud. techtarget. Retrieved from

https://www.techtarget.com/searchcloudcomputin

g/feature/How-to-carefully-plan-a-database-

migration-to-the-cloud

5. Castro, P., Ishakian, V., Muthusamy, V., & Slominski,

A. (2019). The rise of serverless computing.

Communications of the ACM, 62(12), 44-54. DOI:

10.1145/3368454

6. Amazon Web Services. Database-per-service

pattern. Retrieved from

https://docs.aws.amazon.com/prescriptive-

guidance/latest/modernization-data-

persistence/database-per-service.html

7. Amazon Web Services. CAP theorem. Retrieved

from

https://docs.aws.amazon.com/whitepapers/latest/

availability-and-beyond-improving-resilience/cap-

theorem.html

8. Amazon Web Services. Amazon Aurora storage.

Retrieved from

https://docs.aws.amazon.com/AmazonRDS/latest/

AuroraUserGuide/Aurora.Overview.StorageReliabili

ty.html

9. Barnhart, B., Brooker, M., Chinenkov, D., Hooper, T.,

Im, J., Jha, P. C., ... & Yan, J. (2024). Resource

Management in Aurora Serverless. Proceedings of

the VLDB Endowment, 17(12), 4038-4050.

10. Amazon Web Services. Amazon Aurora DB clusters.

Retrieved from

https://docs.aws.amazon.com/AmazonRDS/latest/

AuroraUserGuide/Aurora.Overview.html

11. Amazon Web Services. Amazon Aurora reduces

cross-Region Global Database Switchover time to

https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://d1.awsstatic.com/partner-network/AWSDatabase_Modernization.pdf
https://d1.awsstatic.com/partner-network/AWSDatabase_Modernization.pdf
https://aws.amazon.com/ru/solutions/case-studies/samsung-migrates-off-oracle-to-amazon-aurora/
https://aws.amazon.com/ru/solutions/case-studies/samsung-migrates-off-oracle-to-amazon-aurora/
https://aws.amazon.com/ru/solutions/case-studies/samsung-migrates-off-oracle-to-amazon-aurora/
https://www.techtarget.com/searchcloudcomputing/feature/How-to-carefully-plan-a-database-migration-to-the-cloud
https://www.techtarget.com/searchcloudcomputing/feature/How-to-carefully-plan-a-database-migration-to-the-cloud
https://www.techtarget.com/searchcloudcomputing/feature/How-to-carefully-plan-a-database-migration-to-the-cloud
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/database-per-service.html#:~:text=Loose%20coupling%20is%20the%20core,also%20improves%20the%20resiliency%20of
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/database-per-service.html#:~:text=Loose%20coupling%20is%20the%20core,also%20improves%20the%20resiliency%20of
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/database-per-service.html#:~:text=Loose%20coupling%20is%20the%20core,also%20improves%20the%20resiliency%20of
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/cap-theorem.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/cap-theorem.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/cap-theorem.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.html

The American Journal of Applied Sciences

178 https://www.theamericanjournals.com/index.php/tajas

typically under 30 seconds. Retrieved from

https://aws.amazon.com/ru/about-aws/whats-

new/2025/05/amazon-aurora-cross-region-global-

database-switchover-time-under-30-seconds/

12. Nambiar, A., & Mundra, D. (2022). An overview of

data warehouse and data lake in modern enterprise

data management. Big data and cognitive

computing, 6(4), 132.

13. Amazon Web Services. What’s the Difference

Between an ACID and a BASE Database?. Retrieved

from https://aws.amazon.com/compare/the-

difference-between-acid-and-base-

database/?nc1=h_ls

14. Amazon Web Services. Migrating to Aurora

Serverless v2. Retrieved from

https://docs.aws.amazon.com/AmazonRDS/latest/

AuroraUserGuide/aurora-serverless-

v2.upgrade.html

15. AWS Database Blog (2025). Srivastava, A. et al.

Migrate a self-managed MySQL database to Amazon

Aurora MySQL using AWS DMS homogeneous data

migrations. Retrieved from

https://aws.amazon.com/blogs/database/migrate-

a-self-managed-mysql-database-to-amazon-aurora-

mysql-using-aws-dms-homogeneous-data-

migrations/

https://aws.amazon.com/ru/about-aws/whats-new/2025/05/amazon-aurora-cross-region-global-database-switchover-time-under-30-seconds/
https://aws.amazon.com/ru/about-aws/whats-new/2025/05/amazon-aurora-cross-region-global-database-switchover-time-under-30-seconds/
https://aws.amazon.com/ru/about-aws/whats-new/2025/05/amazon-aurora-cross-region-global-database-switchover-time-under-30-seconds/
https://aws.amazon.com/compare/the-difference-between-acid-and-base-database/?nc1=h_ls
https://aws.amazon.com/compare/the-difference-between-acid-and-base-database/?nc1=h_ls
https://aws.amazon.com/compare/the-difference-between-acid-and-base-database/?nc1=h_ls
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.upgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.upgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.upgrade.html
https://aws.amazon.com/blogs/database/migrate-a-self-managed-mysql-database-to-amazon-aurora-mysql-using-aws-dms-homogeneous-data-migrations/
https://aws.amazon.com/blogs/database/migrate-a-self-managed-mysql-database-to-amazon-aurora-mysql-using-aws-dms-homogeneous-data-migrations/
https://aws.amazon.com/blogs/database/migrate-a-self-managed-mysql-database-to-amazon-aurora-mysql-using-aws-dms-homogeneous-data-migrations/
https://aws.amazon.com/blogs/database/migrate-a-self-managed-mysql-database-to-amazon-aurora-mysql-using-aws-dms-homogeneous-data-migrations/

