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Abstract: The use of cloud-based Graphics Processing 

Units (GPUs) to train and deploy Deep Learning models 

has grown rapidly in importance, with the demand to 

learn more about their thermal and acoustic behavior 

under real-world workloads. A normal cloud cannot 

make direct telemetry like temperature, fan speed, or 

acoustic emissions. To overcome such shortcomings, this 

study quantifies GPU workloads' thermal and acoustic 

output with a proxy-based model derived from available 

metrics such as GPU utilization, memory provisioning, 

power consumption, and empirical Thermal Design 

Power (TDP) values. They compare the two typical AI 

tasks, BERT on natural language processing and YOLOv5 

on real-time object detection, on Colab-based NVIDIA 

GPUs (T4, V100, P100). The nvidia-smi was used to gather 

runtime logs, and the specifications of the GPUs have 

been obtained in the form of public Kaggle datasets. 

Proxy statistics, including TDP-per-MHz and thermal 

load (Power * Duration), were calculated to model heat 

loss due to workload. To measure the degree of acoustic 

impact, a threshold of TDP was applied to approximate 

the level of fan-driven acoustics. The visual analytics, 

such as boxplot, scatterplot, and bubble plot, 

demonstrated certain considerable distinctions in the 

stress patterns of GPUs: the BERT jobs demanded 

extremely high cumulative thermal load and medium 

acoustic effect, whereas the YOLOv5 demonstrated 

bursty power footprint and substantial acoustic imprint 

on high-TDP GPUs. The findings reveal that proxy 
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estimation is reproducible, interpretable, and a 

lightweight substitute for determining the GPU thermal 

and acoustic behavior of a machine used in the cloud 

setting. Such a solution facilitates making thermal-aware 

schedules, optimizing the infrastructure, and deploying 

AI models with reduced energy consumption in multi-

tenant GPU environments. 

Keywords:  Cloud GPUs; Thermal Load Estimation; 

Acoustic Classification; Proxy Metrics; AI Workloads; 

Energy-Aware Computing. 

1. INTRODUCTION  

Artificial intelligence (AI) is evolving as quickly as it has; 

therefore, the mounting computational pressure, 

particularly demanding the training and deployment of 

deep learning- based artificial intelligence models, is 

exponentially increasing the demand [1]. High- 

performance computing is fundamental to high-

performance applications, such as natural language 

processing (NLP) and computer vision [2], where 

Graphics Processing Units (GPUs) have become the 

standard computing resource of choice due to their low 

cost and scalable model training. High-end GPUs, such 

as the NVIDIA T4, P100, and V100, are available through 

services like Google Colab, Amazon Web Services (AWS), 

and Google Cloud Platform (GCP), and this is making AI 

workloads available to more researchers and developers 

around the world [3]. 

However, the thermoacoustic engineering issues are 

raised by the rising density of such workloads on shared 

GPU servers [4]. Heat generation and heat dissipation in 

data centers may adversely affect hardware life cycle 

and power efficiency, and there is a great potential to 

amplify energy consumption [5]. Analogously, a high 

acoustic output, mainly caused by breakneck fan speeds 

provoked when the GPU is running intensive tasks, can 

result in unwanted noise pollution within data centers 

and institutions in laboratories [6]. Although GPU 

supercomputers with enterprise-scale GPU memory use 

may include active thermal management solutions and 

have rack-level noise suppression abilities, a low-level 

thermal performance and audio response, when applied 

to individual users in public clouds, may not be visible 

and manageable. The mismatch between the required 

work and the system-level thermal awareness results in 

a crucial gap in the long-term and ethically responsible 

functioning of AI systems in the cloud arena [5]. 

In applied thermal engineering terms, thermal profiling 

is needed in predictive maintenance, effective design of 

the cooling system, and to make intelligent work 

schedules in thermally limited facilities [7]. However, 

empirical studies on quantifying the impact of various AI 

workloads upon GPU-related heat dissipation and 

acoustics, especially on platforms where telemetry data 

[8], temperature sensors, or the work of fans are not 

exposed to the end-user, are hard to find. This limitation 

should be addressed, mainly due to the increasing 

popularity of cloud providers running multi-tenant 

systems in which multiple jobs running in parallel 

reinforce total thermal stress [9]. Although the cost of 

high-performance AI training to the environment and 

operation chains has been recognized more frequently, 

cloud-based systems like Google Colab fail to deliver 

customers with sensitive telemetry in terms of heat or 

acoustics [10]. Namely, heating of a GPU, fan speed, and 

power consumption in real-time during a workload 

execution are not directly visible [11]. Such a lack of 

sensor-level visibility hinders the creation of thermally 

sensitive AI programs. It restricts the capacity of users to 

maximize model settings to enable the sustainable 

consumption of resources. 

This means that the researchers are ascertaining the 

thermoacoustic footprint of workloads through proxy 

metrics, like the number of active GPUs, the extent of the 

memory consumption, and published Thermal Design 

Power (TDP) as labeling. Yet, no standardized 

procedures or repeatable experiments have been 

devised to exploit the available indirect indicators to 

measure model-specific thermal and acoustic behaviors. 

This paper will fill that gap by suggesting a proxy-based 

estimation system incorporating information on publicly 

known GPU specifications and logging runtime behavior 

on actual AI workloads. 

The current research aims to develop a lightweight, 

reproducible approach to assessing the thermal and 

acoustic behavior of AI model training workloads 

deployed on cloud networks with GPUs based 

exclusively on indirect, accessible feedback indicators. 

Specifically, it is concentrating on two deep learning 

models which are popular: BERT (Bidirectional Encoder 

Representations from Transformers), an example of the 

training of large-scale NLP with persistent GPU 

utilization and a long period of execution, and YOLOv5 

(You Only Look Once, version 5), which is a symbol of a 
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real-time object detection task that causes short but 

powerful GPU utilization limitations. 

To estimate thermal behavior, the framework uses the 

product of GPU utilization, the approximate power draw 

of GPUs according to TDP, and model training duration 

as a proxy of cumulative thermal load. The estimate of 

acoustic impact is based on the published GPU noise 

benchmarks and classification, with higher TDP numbers 

having higher de facto fan noise (in decibels A-weighted, 

dBA). Each simulation is conducted on Google Colab Pro 

instances and compared to publicly available datasets 

on GPU hardware specifications on Kaggle, containing 

their properties, like memory type, clock speeds, and 

bus interfaces. 

This paper has the following four contributions: (1) the 

establishment of a proxy-based model to estimate 

thermal and acoustic behavior of cloud-based AI 

workload, (2) comparison of thermal profiles and noise 

classification of BERT and YOLOv5 on a variety of GPUs 

(T4, V100, P100), (3) unification of GPU utilization 

request logs with public GPU specifications datasets to 

facilitate transparency and reproducibility, and (4) 

recommendations on shaping effective thermal-aware 

scheduling and acoustic profiling of remote multi-tenant 

GPU workloads. 

The subsequent part of the paper is constructed in the 

following way. In section 2, the terminologies that are 

applied throughout the paper are presented. The third 

section surveys the body of literature regarding both the 

thermal behavior of GPUs and the acoustic 

representation of GPUs and the nature of gaps in 

benchmarking standards about modeling AI work. 

Section 4 explains the experimental process, such as 

selection of the workloads, the datasets used to specify 

GPUs, the proxy computation reasoning, and the 

visualisation process. Section 5 shows the outcome of our 

simulations, including charts displaying GPU utilization, 

GPU thermal load, and GPU acoustic classification by 

specific workloads and GPU variants. Section 6 

addresses implications of these findings as far as 

sustainability and system design are concerned. Section 

7 summarizes the acquired knowledge, and Section 8 

plans future research, including integration with real-

time telemetry and physical sensor-based acoustic 

validation. 

2. Nomenclature 

Table 1. Nomenclature 

ABBREVIATION DESCRIPTION 

 

TDP Thermal Design Power - the identification of the highest quantity of heat that a GPU 

should be able to dissipate with maximum possible working loads 

dBA A-weighted decibel - the unit of measurement of sound magnitude of intensity that is 

weighted to coincide with the perception of a human being 

GPU_util GPU use - proportion of time the GPU is busy carrying out work 

BERT Bidirectional Encoder Representations from Transformers, or the LARGE NLP model 

YOLO You Only Look Once - a family of object detection models in real-time 

COCO128 Subset of 128 images of the MS COCO dataset used by rapid-ini 

SQuAD                     Stanford Question Answering Dataset, an evaluation dataset of NLP models

 

3. LITERATURE REVIEW 

3.1 Thermal Behaviour in GPUs 

The way the thermals in GPUs respond to architecture, 

power consumed, memory bandwidth, and workload 

profile affects thermal behavior. Under manufacturer 

specifications, Thermal Design Power (TDP) is 

considered a conservative upper mark regarding the 

level of heat that a GPU will produce when operated 
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under ideal circumstances [12]. For example, NVIDIA T4 

uses a TDP of roughly 70 W, whereas V100 and P100 

coordinate GPUs have much bigger TDP rates of 250 W 

and 300 W, respectively. Unlike other cooling 

specifications, these are vital to designing cooling 

systems and form a helpful proxy where direct 

temperature telemetry is unavailable [13]. 

Contemporary GPUs feature dynamic power and 

thermals (Dynamic Power and Thermals include several 

time-varying mechanisms that dynamically control the 

clock rate and the fan speed, e.g., adaptive clock 

throttling) [14]. The temperature in the GPU increases as 

the number of usages grows and sparks a rise in the 

number of rotations per minute (RPM). These fan speed 

curves are generally non-linear and dependent on the 

manufacturer; controlled by internal firmware or system 

BIOS, and may be unavailable in virtualized or cloud-

based (Google Colab, AWS SageMaker) environments 

[15]. This failure to read these real-time parameters 

constrains the end-user control and observability of 

thermally significant behaviors when training an AI or 

using inference workloads [16]. 

Also, GPU power consumption is directly connected to 

the workload. Transformer models such as BERT have a 

high memory occupancy and a consistent use of 

compute, making them sustain moderate levels of heat 

production [17]. Conversely, vision-related models (e.g., 

YOLOv5) can be quite bursty in usage, causing 

temporary thermal spikes. Such changes may be more 

challenging to control thermally, perhaps in a data 

center application where thermal inertia complicates 

the overall scale of cooling response [18]. 

Real-life GPU thermal tests have not been easy to 

perform, due to a lack of temperature sensors or access 

to temperature sensors within the hardware 

benchmarking area or inside a probed gas laboratory. 

Nonetheless, there has been limited peer-reviewed 

research on the thermal behavior of restricted-access 

cloud environments under the real-life AI workloads 

[19]. This leaves a methodological vacuum that can be 

filled by applied thermal engineers interested in 

designing or optimizing energy-efficient AI 

infrastructure at scale. 

3.2 Acoustic Analysis in Cloud Data Centers 

Although directly linked to heat output, acoustic 

emissions are a significant secondary aspect that should 

be considered in the thermal management of high-

performance computing facilities [20]. Acoustic noise, 

usually quoted in dBA, is caused mainly by cooling tools, 

e.g., liquid cooler pumps or high-RPM fans [21]. In 

addition to being a comfort and safety concern to 

human operators, the acoustic footprint of a GPU-

intensive system provides a proxy measure of system 

stress and thermal load. 

Rack-based thermal management solutions such as 

redundant fans, cold aisle containment, and adaptive 

airflow control are essential in cloud data centers [22]. 

GPU work offers higher thermal dynamics, which causes 

system firmware to push up fan rpm to ensure safe 

operating temperatures are met [23]. This, in fact, 

results in increased acoustic output, usually beyond 45-

50 dBA in racks under full load [24]. Where the 

hyperscale facilities are concerned, the metrics of the 

acoustics can be part of the overall energy management 

approach. However, these metrics will usually not be 

revealed at the user level. 

Despite its applicability, little work has been done in 

integrating acoustic analysis into AI workload 

benchmarking. Most published benchmarks (e.g., 

MLPerf or TensorFlow Model Garden) only consider 

latency, throughput, and energy efficiency and leave the 

noise level aside. However, noise may play a serious role 

in hybrid edge-cloud scenarios or the academic lab 

environment with local GPU clusters in general offices. 

This under-researched aspect bears relevance to 

sustainable computing, especially where the design has 

to reduce not only thermal but also acoustic emissions. 

3.3 Benchmark Gaps 

Existing dynamic markets in benchmarking, e.g., MLPerf 

(TensorFlow/Pytorch), HuggingFace Transformers, and 

ONNX Model Zoo, focus on model accuracy, throughput, 

and computation latency. Although these are essential 

to performance assessment, they fail to acknowledge 

the thermodynamic or acoustic consequences of the 

runtime of AI models. Consequently, the issues in terms 

of infrastructure level, like cooling system stress, fan 

power consumption, and acoustic pollution, stay 

beyond the boundaries of traditional benchmarking 

methods. 

Additionally, in public cloud, most users do not get access 

to low-level telemetry like real-time GPU temperature, 

voltage, or rpm of fans [25]. This restriction prohibits 
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granular thermal profiling and hard-to-enforce 

workload-aware scheduling policies [26]. Not all 

academic research to simulate thermal behavior has 

used synthetic workloads, but they do not necessarily 

reflect the time-dependence of the accurately detailed 

deep-learning models' state-of-the-art. 

The literature also does not provide a common approach 

to estimate the acoustic impact based on available 

routine metrics. GPU reviews include dBA 

measurements under a stress load; however, these are 

not normalized between models or loads. Without a 

proxy-based estimation framework, users cannot 

predict an AI model's thermal or acoustic energy 

expenditure [27], especially when working in shared or 

energy-restricted settings. 

The proposed research will fill these gaps by proposing 

and proving an AI proxy-based, lightweight, and 

reproducible profiling of thermal and acoustic 

performance of AI workloads in cloud GPUs. 

4. METHODOLOGY 

4.1.  Environment and Workloads 

The paper was run on the Google Colab Pro+ GPU 

machine learning cloud environment, where you can 

gain temporary access to powerful GPUs, including the 

NVIDIA Tesla T4, P100, and V100. The GPUs are popular 

AI compute used in academic and business workloads, 

representing realistic thermal conditions in a cloud 

computing data center environment. Google Colab was 

chosen because of its availability, consistent time limit, 

and serial distribution of workload by repeat and scale 

deployments without dedicated hardware. 

The evaluation of thermal and acoustic characteristics 

was served by two benchmark loads, including BERT and 

YOLOv5. The model (Bidirectional Encoder 

Representations from Transformers), BERT, was 

improved on the SQuAD v2 benchmark, a commonly 

used NLP benchmark covering more than 150,000 pairs 

of questions and answers. BERT workloads were selected 

based on long-lasting GPU usage and memory usage 

without taking over the space of the machine, e.g., 

because of a long training process with not-so-dynamic 

hardware load distribution. By contrast, YOLOv5 (You 

Only Look Once, version 5) was unleashed to detect 

objects in real-time through the 128-image subset 

(COCO128) of the COCO database, which was very small. 

YOLOv5 has a bursty computation pattern, where the 

processing time within a short time is high, and GPU 

utilization is random. These two types of workloads will 

be used to compare computational and inference-

intensive model behavior in similar run-time situations. 

4.2 Logging and Data Collection 

Google Colab lacks direct telemetry of GPU temperature 

and GPU fan speed, so, using such programmable 

attributes, the study had to base its ideas on too indirect 

measures according to the results gathered with the 

help of a command-line tool that interacts with the 

NVIDIA Management Library (NVML) called nvidia-smi. 

The logging process was facilitated to take 

measurements of 10 seconds when the model was 

running. In particular, the script captured the percentage 

of GPUs utilized (gpu_util), the amount of memory in 

MB, and the immediate power consumption (in watts) 

used as the starting point of proxy-based thermal 

analysis. These logs were saved and time-stamped so 

that they could be synchronized with training/inference 

steps. 

In addition to GPU metrics, logs were gathered about the 

system-level use of the CPU and the RAM. They do not 

cause any changes to GPU thermal profiles, but can offer 

some background context to resource consumption, and 

may affect model scheduling or performance variation. 

The plot material used in implementation addresses the 

usage of GPU variably, over time, on both BERT and 

YOLOv5 workloads. Such plots of time series indicated 

that during the fine- tuning process, BERT had a constant 

load on the GPU between 70-85% the entire time, 

whereas YOLOv5 had highs above 90% and a subsequent 

dramatic low, as can be expected of an inference-

oriented program. 

4.3 Dataset Integration 

To strengthen the strength of proxy estimations, 

publicly accessible Kaggle datasets were included in the 

analysis. The primary dataset was tpu_gpus.csv; it had 

the specifics on more than 150 GPU models. Main 

specifications were TDP values, GPU and memory clock 

frequencies, memory type (GDDR, HBM, etc), and bus 

interface (e.g., PCIe 3.0, 4.0). This dataset has enabled 

the advent of this study to align a GPU used in every 

Colab session with identified hardware characteristics to 

derive proxy thermal and acoustic scores. 
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Simultaneously, we compared some data related to 

thermal trends in CPUs based on the tpu_cpus.csv file, 

and cross-validated it. Even though this study is GPU-

based, CPU thermal characteristics provided a basis for 

building clock-speed-to-TDP relationships to formulate 

derived values such as TDP-per-MHz. In addition, CPU 

datasets described the overall historical trend in 

processor design and heat production, and all these were 

presented in relative plots. These data sets enabled a 

predictable and augmenting framework that did not 

need genuine sensor statistics. 

4.4 Proxy Formulas 

The necessary direct thermal and acoustic telemetry 

were not there, and several proxy formulas have been 

established to determine the respective performance 

parameters. The TDP-per-MHz calculation revealed that 

the GPU, which was equipped with a Thermal Design 

Power, was divided by its minimum clock speed in MHz. 

This is a normalized measure of thermal efficiency in that 

higher numbers reflect thermally inefficient hardware. 

An example would be a GPU with a TDP of 250 W and 

with a clock frequency of 1250 MHz; the TDP-per-MHz 

would be 0.2 W/MHz. 

The measure of acoustic impact was approximated to a 

binary proxy classification. Limits of TDP > 150 W were 

based on industry data and manufacturer reports used 

to determine that such conditions correspond to the 

notion of high acoustic load when the sound pressure of 

fans became higher than 45 dB A. Any GPU with TDP < 

or = 150 W was considered to be in a moderate 

acoustical range. This is a very simple way, but it matches 

published acoustic profiles on GPUs at the server-class 

under load and serves as a fairly reasonable proxy of the 

system- level fan response. 

Finally, total Thermal Load was set as a product of power 

draw (in watts) and execution time (in minutes). This 

estimation is the accumulated energy consumed in heat 

to execute the model. For example, a YOLOv5 model 

powered by 150 W for 20 min will have a total thermal 

load of 3000 Wmin. This measure was used in both 

workloads to compare the thermal footprints with the 

varied run-time attributes. 

4.5 Data Preprocessing 

The GPU and CPU datasets were preprocessed before 

being analyzed to clean and transform essential 

attributes. GPU_clock and Memory_clock were cleaned 

of adjectival suffixes (MHz) and directed into numerical 

conversion of the GPU data set. Unavailable values, such 

as in- memory details, were given a NaN value and not 

included in the ratio type of calculations. A regular 

expression pattern was used to extract the type of GPU 

memory used to sort the most common technology type 

(e.g., GDDR5, HBM2) and to filter out all the possible 

values so that the research could test the same 

parameter and check whether the memory setup may 

affect the acoustic or the thermal performance. 

The TDP value was sifted out in the CPU dataset to 

eliminate the incomplete or incorrect values. Other 

models used ranges (e.g., 2.4-3.8 GHz), which were 

content parsed to retrieve the minimum and maximum 

values to be used in normalization. This allowed the 

derivation of TDP-per-MHz of CPUs as a benchmark 

reference point compared to GPUs. Some plot 

references produced in the preprocessing stage were a 

histogram of CPU TDP distribution, a bell-shaped curve 

with a peak around 80120 W, and a scatterplot of TDP 

and clock speed combined by socket type. Such 

visualizations confirmed the usefulness of normalized 

thermal measures in per-processor architecture. 

The distribution of the GPU types of memory was also 

visualized on a countplot that demonstrated the number 

of memory standards prevailing. Different versions of 

GDDR prevailed in the dataset, and HBM and DDR 

variants were presented in smaller proportions. Such 

distribution played a vital role in externalizing thermal 

variations, where various types of memories have 

varying power and heat dissipation behavior, especially 

in a high throughput mode, e.g. typical of BERT and 

YOLOv5. 
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Figure 1. System Architecture 

Figure 1 represents a proxy-based system architecture 

to test the GPU performance under thermal and 

acoustic conditions in clouds. It starts with AI workload 

execution (BERT, YOLOv5) on Google Colab that makes a 

log of the run-time metrics through nvidia-smi. These 

logs are combined with Kaggle GPU spec files (e.g., TDP, 

clock speed, memory type). The self-predicting 

infrastructure system formulates combined data that is 

input into a preprocessing path where proxy measures, 

TDP-per-MHz, Thermal Load, and Acoustic Level are 

calculated. Visualization modules/Analytical models 

then produce outputs such as the bar chart, bubble plot 

which would lead to thermal classification, acoustic 

estimation, and scheduling information of the energy-

efficient deployment of GPU workload. 

5. RESULTS 

5.1. Model Behaviour on GPUs 

The observed patterns of GPU use between BERT and 

YOLOv5 workloads showed a core behavior difference in 

ways compatible with the respective network 

architectures. As graphically pointed out in Figure 2: 

GPU Utilization Patterns for BERT and YOLOv5, the BERT 

fine-tuning task of a 90-minute duration activity had 

maintained a high average GPU usage (~85%) with a 

small degree of variation. This constant g men 

(continuously using transformer-based models that 

necessitate constant matrix operations and attention-

weighting) is a pointer towards the constant thermal 

output and memory consumption (~6000 MB). 
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Figure 2. GPU Utilisation Patterns for BERT and YOLOv5 

 

In contrast, the YOLOv5 workload, which was trained on 

the COCO128 subset, displayed a bursty utilization 

behavior. There was a high GPU usage that would often 

reach above 95 percent during training epochs but would 

stall drastically during intermediate evaluation, batch 

loading, or checkpoints. The RTT amounted to ~20 min, 

and the average memory load was~4000 MB. The steep 

curves of the GPU load imply temporary high-power 

consumption and fan turbo-ups, which result in local 

thermal spikes without overall shortened span. 

This contrast between the continuous workload 

experienced within BERT and the burst- informed 

inference manner of operation in YOLOv5 formed the 

basis for interpreting downstream thermal and 

acoustical attributes. 

5.2 Thermal Proxy Comparisons 

Each GPU model was computed with the normalized 

value TDP-per-MHz to measure thermal efficiency using 

available Kaggle specifications. This ratio with a base 

GPU clock was observed by converting it graphically into 

a boxplot, as shown in Figure 3: Normalized Thermal 

Output (TDP/MHz). The distribution showed that most 

modern GPUs have performance clustering below 0.05 

W/MHz. However, some high-performing cards, such as 

P100 and V100, had values beyond 0.25 W/MHz, which 

indicates increased heat generation per frequency. 
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Figure 3. Normalized Thermal Output (TDP/MHz)

 

Figure 4. Thermal Load Estimate: BERT vs YOLOv5 

 
Figure 4, BERT vs YOLOv5 directly compares the 

cumulative thermal footprint (Power x Duration). The 

total approximate load in terms of Watt-minute 

generated by BERT was estimated to be 6300 W min (70 

W vertical multiplied by 90 min), as compared to the 

approximated ~3000 W·min generated by YOLOv5 with a 

shorter but power-intensive session (150 W vertical 

multiplied by 20 min). Although the peak draw of 

YOLOv5 is greater, the cumulative heat dissipation was 

more than twice as long due to the long time BERT takes. 

Hence, BERT workloads impose moderate but consistent 

thermal pressure that can be addressed with 

temperature-predictable cooling methods, whereas 
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YOLOv5 creates sudden and brief spikes in thermal loads 

that may push data centers to the limit and go back in 

quick succession. 

5.3 Acoustic Classification 

An acoustic prediction procedure was carried out based 

on the two-category characterization: GPUs with TDP 

greater than 150 W received the label HN (>45 dBA), and 

those that were less than or equal to 150 W became M 

(<45 dBA). Figure 5: Estimated Acoustic Level Based on 

TDP reveals that most of the GPUs landed in the 

moderate group, but above that, a significant number, 

roughly equal to V100, P100, etc., registered more than 

a high noise level. 

 

 

Figure 5. Estimated Acoustic Levels Based on TDP 

This is vital in deploying workloads. The fact is that BERT 

was largely implemented on the NVIDIA T4 (TDP 70 W), 

so it was always linked to a minimal acoustic footprint. 

YOLOv5, however, using large-TDP GPUs, measured in 

the high-noise category, demonstrated that inference 

runs may cause rather unreasonably high acoustic stress 

with the ratio. Such results indicate that high-draw and 

bursty workloads such as YOLOv5 must be directed to 

racks with better acoustic isolation or redundancy 

cooling. 

5.4 Cross-Hardware Performance Patterns 

The various scatter and box plots investigated the overall 

architectural characteristics of GPUs. Figure 6: GPU Clock 

Speed vs Memory Size uses the graph to illustrate the 

poor relationship between the two variables, GPU 

frequency and onboard memory, using raw data from 

Kaggle. Outliers, long-clock speed-low-memory-

footprint GPUs were also present, which signaled 

specialised or outdated designs. Most new AI GPUs 

operated at a range of 1200 1800 MHz with memory 

capacity varying between 16 and 32 GB. 
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Figure 6. GPU Clock Speed vs Memory Size 

 

Figure 7. GPU Clock vs Memory Clock by Bus Type 

Figure 7 indicates the bus interface's significance in 

memory performance. PCIe 4.0 and NVLink-based cards 

went further with memory clocks centered even higher 

than 1500 MHz, while older buses (AGP, PCI) plateaued 

at much lower frequencies. As the memory bandwidth 

not only influences the throughput but also results in 

thermal accumulation, this further supports the idea 

that the current generation of GPUs is simply better 

prepared to handle the thermal spikes of huge AI 

models.
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Figure 8. CPU TDP Distribution by Release Year 

 

There has been a generational change to thermal design 

philosophy, as illustrated in Figure 8. The TDP figures 

scarcely ranged above 100 W between 1998 and 2010. 

Since 2015, there has been a sharp rise in the median 

TDP, with several 2020-2023 GPUs going above 250 W. 

This indicates the development of architecture and the 

increased need for AI-optimized silicon. 

6. DISCUSSION 

6.1 Workload-Specific Thermal Dynamics 

Thermal patterns in BERT and YOLOv5 workloads exhibit 

opposite trends, which suggests significant details of 

workload-specific stresses on GPUs. BERT is a 

transformer-based NLP model with a long, stable 

pattern of use with large memory occupation and a 

steady pattern of GPU usage [28]. Previous studies 

showed that transformer-based NLP models have 

enduring energy demands during fine-tuning operations, 

particularly on big datasets such as the SQuAD v2 [17]. In 

our experiments, this resulted in a very high cumulative 

thermal load given a relatively moderate power draw, 

translating into the bar plot array comparing Thermal 

Load. 

Conversely, a convolutional object detection model 

(YOLOv5) tuned to real-time usage had a hostile usage 

pattern with large power surges and occasional idle 

periods on the GPU [29]. These spikes in the behavior of 

our GPU utilization logs confirm previous findings that 

computer vision models are characterized by short 

electro-thermal spikes of immense demand, which 

overtax their steady-state cooling capabilities unless 

handled appropriately. 

These behavioral differences are essential to 

infrastructure management regarding their thermal 

implications. BERT's thermal footprint is predictable, 

encouraging it to fit into a consistent cooling range, 

whereas a burst pattern common to YOLOv5 could cause 

spikes of overheating or fan speed if the burst has not 

been scheduled with such thermal padding. Such 

dynamics call for mitigating the significance of matching 

workload types with suitable equipment and cooling 

approaches, especially in mixed-use settings. 

6.2 Acoustic Engineering Insights 

The acoustic classification through proxy performed in 

this study gives the initial information about the trends 

of GPU-dependent noise in cloud and institutional data 

centers. We could classify workload based on indirect 

power-based heuristics by defining a conservative value 

of TDP of 150 W as a boundary between moderate and 

high levels of acoustics. The findings indicated that the 

BERT, usually performed on T4 GPUs, with 
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comparatively low TDP (70 W), was clearly inside the 

zone labeled Moderate Acoustic Load. YOLOv5 sessions, 

in turn, often use V100 or P100 GPUs with a TDP of 

250~300 W, which fall in the “High Noise” category. 

These measurements are confirmed by system-level 

measurements in which the authors point to high-

performance workloads on GPUs greater than 200 W 

TDP persistently causing fan speeds in excess of 5000 

RPM and resulting in acoustic emissions reaching more 

than 45 dBA [29]. Although it was impossible to measure 

absolute values of dBA because of the Colab limitation 

in this study, our classification gives a convenient rough 

estimate of the acoustic disturbances caused by fans. 

As a practical implication, YOLOv5 and all other short-

duration but high-performance scalers are best suited to 

be slotted on thermally decoupled GPU servers or racks 

with better noise suppression. In some university labs 

and cloud-native server clusters, inference-heavy GPU 

workloads are already co-located in acoustically shielded 

areas. Our proxy analysis affirms this design philosophy, 

which means that the inherent need to map the 

behavior of AI models to physical infrastructure 

attributes should be reinforced. 

6.3 Sustainability in Shared Environments 

Sustainability-wise, such trade-offs open prospects for 

deploying long-duration batch jobs (e.g., BERT) and 

bursty inference jobs (e.g., YOLOv5) in multi-tenant 

cloud GPU infrastructures. Long-term jobs can be 

thermally friendly because their maximum load is small. 

Still, their total energy demand is significant, well 

beyond 6000 Wmin in our experiments, which casts 

doubt on cooling expenses and total power demand. 

In contrast, bursty jobs might only take a short time to 

complete but can cause rapid swings in system 

temperature, promoting more intense fan cycling and 

immediate energy spikes [30]. This corresponds to 

previous findings, which proved that uneven workloads 

within heterogeneous systems contribute to oscillating 

power consumption and disrupt dynamic cooling control 

[18]. 

According to our study, schedulers should concentrate 

on sustainability-related constraints to account for the 

peak and total thermal loads when scheduling 

workloads to common GPUs. For example, high-burst 

jobs can be coupled to thermal buffer periods, and long 

jobs can be alternated with low-load background tasks to 

more equally share the thermal stress. In addition, the 

metrics that we use to achieve our method are 

interpretable and could be implemented into cloud 

orchestration systems to embrace green AI frameworks. 

6.4 Accuracy and Limitations of Proxy Approach 

Interpretability is one of the suggested framework's 

strengths. Compared to more complicated simulations 

or closed-loop monitoring systems, our proxy-based 

approach only uses moderately available runtime logs 

and already published GPU specifications. This makes it 

compatible with reproducibility between platforms and 

scalable where telemetry APIs are absent or constrained 

[31]. The method helps monitor the lightweight 

infrastructure with minimum required equipment by 

translating the observed utilization, power 

consumption, and TDP values into normalized thermal 

and acoustic metrics. 

However, it has some significant limitations. No direct 

measure of temperature or fan RPM values available, 

which restricts checks of proxy estimates against actual 

ground truth measurements. Although our thresholds 

and formulas were oriented on vendor documentation 

and available benchmarks, we are generalizing these 

values to all the conditions in the data center, and it is 

an approximate process. For example, selecting the rack 

airflow design, ambient room temperature, or type of 

material used in the heat sink can influence the thermal 

behavior independent of any aspect related to the 

workload. 

Moreover, the binary definition of acoustic impact (only 

TDP thresholds are considered) can be too simplistic in 

practice. The fan speed curves are not linear and are 

usually controlled by vendor-specific firmware 

algorithms, which could differ between vendors and 

across different releases of the BIOS. Therefore, future 

work can be expected to consider integrating controlled 

laboratory measurements of GPU acoustics under 

benchmark workloads to refine proxy calibration. 

6.5 Comparison with Known GPU Specs 

The final phase of our work was dedicated to analyzing 

the correspondence between noticed model behavior 

and official GPU specifications. The bar plot shows that 

BERT workloads consumed more total thermal loads 

overall despite using lower-TDP hardware, owing to the 
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longer runtime. Conversely, YOLOv5 also produced a 

greater instantaneous load on greater- TDP GPUs, but 

completed faster, leading to less dissipated energy. The 

bubble plot also confirms this finding, as in the lower-

right quadrant (low power, high duration), we have 

BERT, and in the upper-left quadrant (high power, low 

duration), we have YOLOv5. Another factor that 

supports the distinction in resource allocation patterns 

between the two models is the size of the bubbles, 

which would equate to the usage of GPU memory. 

These correlations are consistent with observed GPU 

performance tables published by NVIDIA and 

performance evaluations of Anzt et al. (2021), indicating 

that V100 and P100 GPUs are optimized to run a high-

throughput burst workload. In contrast, the T4s are 

better suited to a sustained, latency-tolerant workload. 

Such differences in design are empirically confirmed 

with our results in workload testing in the real world of 

Colab GPUs. 

Therefore, this work has effectively shown that even 

open-sourced GPU specifications can be used to forecast 

the behavior of AI models via straightforward, albeit 

effective, proxy techniques. The techniques help gain 

knowledge on the suitability of the workloads, thermal 

profiling, and acoustic prediction in restricted conditions 

where access to hardware telemetry is not available 

directly. 

7. CONCLUSION 

This paper presented and confirmed a proxy model for 

assessing GPU clouds' thermal and acoustic efficiency in 

training AI tasks. Even in platforms such as Google Colab 

Pro, where the direct telemetry of such variables as GPU 

temperature or fan speed is difficult to acquire, the 

framework proved capable of high-quality derivation 

of interpretable and actionable   insights based on GPU 

usage, power consumption, memory use, and known 

characteristics (such as TDP). 

We identified the opposite tendencies of GPU behavior 

based on similar benchmarking studies of two sample AI 

workloads, BERT (NLP) and YOLOv5 (computer vision). 

BERT showed an inferred longer duration, sustained 

feature use with a high cumulative thermal loading but 

low peak power, whereas YOLOv5 had blistering, 

multiplicative features that used the GPU with a high-

power draw but lower cumulative thermal load. The 

range of these distinctions was measured based on 

thermal loading estimation and acoustic classification 

with the help of TDP- based averages and standardized 

comparisons such as TDP-per-MHz. 

The results were backed up by visualizations using 

bubble plots, boxplots, scatterplots, and bar charts, 

providing evidence of workload-specific GPU strain and 

efficiency profiles. The acoustic proxy showed that 

workloads in YOLOv5 regularly caused GPUs to enter 

high-noise states, but with BERT, execution on low-TDP 

GPUs such as the T4 kept it in moderate sounds. Hence, 

the results highlight that a lightweight, reproducible 

thermal and acoustic evaluation in the limited cloud 

areas is viable. This allows more efficient scheduling of 

workload, energy- sensitive computation, and 

infrastructure design without the necessity of invasive 

sensors or access to proprietary telemetry. The fact that 

the framework concurred with the publicly accessible 

datasets guarantees its broad applicability in research 

programs in universities and industries relevant to 

sustainable implementations of AI systems. 

8. RECOMMENDATIONS AND FUTURE WORK 

The findings of the current work present a few significant 

suggestions to system designers, data scientists, and 

infrastructure engineers involved in the AI 

implementation: 

Thermal-Aware Scheduling: Workloads must also be 

scheduled based on the profile of thermal load rather 

than the GPU availability. The steady heat-producing 

BERT-like models are better applied in conditions of 

constant cooling capacity. Burst compatible models, 

such as YOLOv5 and others, can benefit thermally 

insulated nodes by avoiding overheating or fan surge. 

Acoustic Zoning in Data Centers: Depending on the 

correlation between TDP and noise levels identified, 

high-TDP GPUs must be assigned to acoustically isolated 

racks, particularly in academic labs or server rooms 

located at points of consumption where background 

noise is 

essential. Stress benchmarking on acoustic output 

should be considered in future AI-capable hardware. 

Integrated Proxy Monitoring Tools: The methodology 

can be automated to be used in dashboarding schemes 

on GPU usage, which calculate and present utilization 

trends and approximate thermal/acoustic load in real 

time. It allows active policies to be actively tuned to cool 
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and gives real-time alerting without any changes to the 

hardware. 

Reproducibility via Public Datasets: This study's 

reproducibility is proven by the fact that the Kaggle 

GPU/CPU datasets and the runtime logs (acquired via 

nvidia-smi) can be integrated into the qualitative 

analysis. These proxies should be standardized in 

developing AI benchmarking tools and academic 

pipelines. 

Future research will involve identifying the limitations of 

the present-day approach. Firstly, value addition to the 

telemetry, such as Google Colab Pro+ or AWS EC2 

telemetry (in case API access is available), would allow 

correlating proxy values with real temperature/fan 

signals, resulting in higher calibration accuracy. Second, 

using physical acoustic sensors in an experiment should 

lead to a ground truth measure to optimize the dBA 

classification. Third, the framework's application can be 

generalized to multi-GPU workloads and hybrid CPU-GPU 

systems (TPUs). 

Finally, combining such thermal-acoustic profiling with a 

model of energy costs and environmental quantities 

(e.g., carbon intensity of power consumption) would aid 

in green AI efforts. This would enable developers to 

make intelligent choices regarding performance, 

accuracy, and the sustainability of their AI compute 

workflow. 
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