
The American Journal of Applied Sciences

39 https://www.theamericanjournals.com/index.php/tajas

TYPE Original Research

PAGE NO. 39-47

DOI 10.37547/tajas/Volume07Issue07-05

OPEN ACCESS

SUBMITED 14 May 2025

ACCEPTED 29 June 2025

PUBLISHED 11 July 2025

VOLUME Vol.07 Issue 07 2025

CITATION

Purva Desai, & Sahil Fruitwala. (2025). Swagger/OpenAPI Specification

as a Governance Tool for Internal Data Products: Enabling

Standardization, Transparency, and Control. The American Journal of

Applied Sciences, 7(07), 39–47.

https://doi.org/10.37547/tajas/Volume07Issue07-05

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Swagger/OpenAPI
Specification as a
Governance Tool for
Internal Data Products:
Enabling Standardization,
Transparency, and Control

Purva Desai
Data Analyst, USA

Sahil Fruitwala
Software Engineer, USA

Abstract: Modern businesses increasingly rely on

internal data products, such as curated datasets or

analytical services, to drive innovation and informed

decisions. Despite substantial investments in data

technologies, including a global Artificial Intelligence

market valued at $230 to $280 billion in 2024, large

organizations struggle with inconsistent API interfaces.

This inconsistency hinders efficient data exchange and

robust governance. This paper tackles this challenge by

proposing a framework for mandatory OpenAPI

Specification (OAS) adoption and automated

enforcement for all internal data products. Our

approach defines clear organizational standards and

implements a twostep compliance checking mechanism.

This involves Static Type Analysis (STA) for foundational

rule enforcement and an AI agent for nuanced,

contextual validation. Integrated within CI/CD pipelines,

this automated system ensures continuous adherence

to design standards, enhancing data product

discoverability, interoperability, and overall data

governance. This work provides a practical methodology

for establishing standardized control over internal data

product APIs, streamlining development, and fostering

a resilient data ecosystem.

Keywords: OpenAPI Specification, Swagger, API Gover-

nance, Data Products, Standardization

https://doi.org/10.37547/tajas/Volume07Issue07-05
https://doi.org/10.37547/tajas/Volume07Issue07-05

The American Journal of Applied Sciences

40 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

I. Introduction:

The unimaginable adoption of data-driven strategies has

created an exponential growth in data products creation

and consumption across all modern enterprises. Data

collected from users, from market research, from sales

or from even external sources are foundation for

innovation and strategic data-driven decision making.

The increasing investment in AI and related data

technologies such as data ware-houses highlights its

importance, with the global Artificial Intelligence market

alone valued at approximately $230-$280 billion in 2024,

exhibiting significant growth from previous years [1].

However, this rapid advancement has introduced a

critical challenge: large organizations struggle to

establish cohesive, secure, and centrally governed

solutions for sharing and consuming internal data

products for effectively communicating and consuming

these internal data products [2], [3]. While data

collection and processing are vital, the efficacy of

internal data exchange between teams is equally crucial

for benefiting the value of these investments.

Modern systems are interconnected with each other in

many way but, most common way how these systems

communicate is through Application Programming

Interfaces (APIs) or specifically Representational State

Transfer (REST) APIs. Since RESTful APIs were introduced,

it has seen sky rocketing growth and became a dominant

paradigm for web APIs due to its simplicity, scalability,

and alignment with HTTP protocols. Despite the

widespread adoption and being the backbone of

software architectures REST APIs face persistent

challenges. Many organizations struggle with the

standardization of RESTful APIs, particularly when they

encapsulate data products [4], [5]. This lack of

standardization frequently results into inconsistency in

data representation, significant integration bottlenecks

due to disparate interfaces, and heightened security and

compliance risks across teams and systems [2], [6].

While REST APIs leverage standard protocols like

Hypertext Transfer Protocol (HTTP) for communication,

they do not mandate any specific guidelines or

governance regulations for how an API should be

designed. In other terms, REST APIs are not

opinionated. They do not have any specific data

structure, error handling, or naming conventions

defined nor how to distribute them. This absence of a

standardized rules is particularly problematic for data

products, where clear and predictable interfaces are

essential for efficient consumption and trustworthy

exchange. Existing methods like SODA (Service Oriented

Detection for Antipatterns) aim to identify antipatterns

in Service-Based Systems but suffer from significant

gaps, such as reliance on manual rule definitions, limited

scalability, and a focus on post-deployment detection

rather than real-time validation. Our proposed

framework fills these gaps by leveraging automated

tools and seamless integration into developer

workflows, ensuring consistent adherence to OpenAPI

specifications and addressing the critical need for

standardized, secure, and centrally governed internal

data products [15].

Many data products in organizations improve decision-

making but raises challenges in finding, integrating, and

managing them due to inconsistent and APIs [3], [4].

This paper proposes a comprehensive framework to

address this critical issue through the mandatory

adoption and automated enforcement of OpenAPI

specifications for all data products. Similar existing

approach such as Semantic Analysis of RESTful APIs

(SARA) lacks the speed and fast response time as it could

only be done post-deployment. SARA misses structural

and type safety validation as well as validation for

security and standard compliance [14]. Our solution

begins with defining clear organizational OpenAPI

standards, which promise substantial benefits including

improved data product interoperability, simplified

consumption, and strengthened data governance [7].

We laid out two primary methods for achieving

automated compliance. First Static Type Analysis for

precise structural validation, and second developing

an AI agent capable of enforcing more nuanced,

contextual organizational guidelines. Both approaches

are designed for seamless integration into existing

developer’s workflow such as precommit hooks and

other in CI/CD pipelines, enabling continuous and

automated validation of data product APIs within each

repository. This automated enforcement ensures

consistent adherence to defined specifications, reducing

integration overhead, and fortifying the organization’s

data ecosystem.

Proposed framework addresses challenges by

advocating for the mandatory adoption and automated

The American Journal of Applied Sciences

41 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

enforcement of Open API Specification (OAS) for all

internal data products. Paper will demonstrate how

leveraging automated tools and integration of these

tools in developer’s workflow can achieve robust

validation and reduce miscommunication between data

producers and consumers. The core contribution of this

work lies in outlining a practical methodology to

establish standardized control over internal data

product APIs, thereby significantly enhancing

standardization, transparency, interoperability, and

overall data governance within large organizations.

II. BACKGROUND AND RELATED WORK

The OpenAPI Specification (OAS), formerly known as

Swagger, is a widely adopted industry standard for

defining and documenting RESTful APIs [8]. It uses a

machine-readable format, typically JSON or YAML, to

precisely describe an API’s operations, parameters,

responses, and data models. This machine-readable

nature is crucial as it enables not only human

understanding of API design but also for automated

tools to perform tasks such as generating client software

development kits (SDKs), creating server stubs, and

facilitating automated testing.

When it comes to internal data products, which are

curated data into services for a company to use, OAS

helps solve big problems with complex APIs. Companies

often face issues like messy API designs, scattered

documentation, and weak control over who can access

what or follow rules. These problems make it hard to

grow and slow down developers. For example, not

having standard formats can lead to teams creating the

same data models multiple times, and not knowing how

APIs are used can increase the risk of security issues or

breaking rules. OAS fixes this by providing a clear way to

create consistent API designs, make detailed

documentation, and work with tools like API gateways

(such as AWS API Gateway or Apigee) to enforce rules

and track usage. This organized approach helps turn

scattered data into data products that are easy to find,

use, and manage.

III. PROPOSED FRAMEWORK / METHODOLOGY

Every organization possesses unique operational needs

and approaches to standardization. However, to

effectively leverage the OpenAPI Specification (OAS) for

its internal data products, a precise set of organizational

standards must first be collaboratively devised. These

standards must be formulated in a manner that

ensures clarity, developer understanding, and broad

consensus across teams. While individual teams within

an organization may utilize varied technology stacks

Fig. 1. Process of Defining Standard Policies and Compliance

The American Journal of Applied Sciences

42 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

and frameworks for developing RESTful APIs, the

foundational API design for data products must remain

consistent. Therefore, the initial step in defining these

OpenAPI standards necessitates robust cross-functional

collaboration, typically involving leaders and subject

matter experts from various internal data product and

engineering teams. This collaborative process is crucial

for establishing a definitive scope of API specification

requirements, outlining both mandatory inclusions and

prohibited elements.

Once a commitment to standardization for all internal

data products is established, the subsequent phase

focuses on formalizing these comprehensive OpenAPI

standards (as shown in Figure 1). This requires

meticulously addressing several key considerations to

ensure consistency, promote collaboration, and achieve

alignment across the entire enterprise. The resulting

OpenAPI specifications must be meticulously tailored to

the overall needs of the organization, rather than being

confined to the specific needs of individual teams or

projects.

A. Standardization of API Design Rules

- Schema Consistency: Agree on reusable schemas
for common data models (e.g., customer, order,

product) to prevent redundant or conflicting definitions

across teams. Define naming conventions (e.g.,

camelCase, snake case) and data types (e.g., ISO 8601

for dates).

- Endpoint Structure: Establish uniform patterns for
endpoints (e.g., /resources/{id} for RESTful APIs) and
HTTP methods (e.g., GET, POST, PUT, DELETE) to ensure
predictable API designs.

- Versioning Strategy: Decide how to handle API

versioning within OpenAPI specs (e.g., using URL paths

like /v1/resource or headers) to maintain compatibility

as APIs evolve.

Style Guides: Create an organization-wide OpenAPI style

guide, specifying standards for parameters, error

responses (e.g., consistent HTTP status codes like 400,

404), and documentation tags.

B. Checking API Rules: Two Ways

Our framework uses two main steps to check if an API
follows the rules: Static Type Analysis (STA) and an AI

Agent. Both are designed to make sure OpenAPI

specifications meet our company’s standards. Each

method has its own strengths. A big plus of this two-step

process is that STA can be run right on a developer’s

computer. This means they don’t have to wait for the

main CI/CD pipeline for some basic checks.

1) Step 1 - Static Type Analysis: The first step, Static

Type Analysis (STA) (as shown in Figure 2), validates

OpenAPI specifications clearly using a programmatic

approach. This involves creating a special tool just for

checking OpenAPI compliance.

• What it does: The STA tool carefully looks at the

OpenAPI specification file (usually a YAML or JSON

file) without actually running the API. Its main job is to

strictly enforce the clear, defined rules that come

straight from the company’s OpenAPI standards.

• How it works: This tool is designed to find problems

related to:

– Syntax and Structure: It makes sure that OpenAPI

document itself is correctly written or generated ac-

cording to the OpenAPI Specification. For example, it

checks if all required fields are there and if data types

are correct.

– Naming: It verifies that names for paths, operations,

parameters, and data properties follow the com-

pany’s rules. Such as using camelCase for fields or

snake case for paths.

– Mandatory Elements: It checks for specific required

parts of the API, consistent ways to show errors, and

correct security settings.

– Style: It ensures the API follows the defined Ope- nAPI

style guide for documentation, tags, and overall

presentation [11].

• Why it’s good: STA gives quick, clear, and easy-to-

understand results. This makes it perfect for finding

common and obvious errors early in the development

process.

2) Step 2 - AI Agent: The second step, the AI Agent

(also in Figure 2), handles more complex, context-based,

or somewhat subjective parts of API compliance that a

simple rule-based checker might miss. This process

starts by” Training the AI Agent with Organizational API

Standards.”

• What it does: The AI Agent learns to understand

complex patterns and unwritten best practices found

in the com- pany’s API standard documents and from

past examples of good and bad APIs. Its goal is to give

smart feedback on areas where an API might not meet

desired quality or consistency, even if it passes the

basic STA checks.
• How it works:
Training: The AI Agent learns from different types of

data. This includes official company API design guides

and policy documents. It also uses examples of OpenAPI

specifications that people have reviewed

The American Journal of Applied Sciences

43 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

Fig. 2. Process of Achieving Standardization

The American Journal of Applied Sciences

44 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

and clearly marked as compliant or not, along with

specific reasons for issues. Feedback from developers on

previous checks helps it learn and reduce mistakes over

time.

– Automated Review (Happens in CI/CD): Once trained,

the AI Agent reviews new or updated OpenAPI

specifications. It can find:

∗ Hidden Issues: Problems that a regular STA tool might
miss, like a field named customer id that isn’t a
universally unique identifier (UUID), even if company
policy says all IDs should be UUIDs.

∗ Style and Readability: Deviations from learned ”best
practices” or how easy it is to read the API description.

∗ Security Risks: Possible vulnerabilities or data exposure
risks based on patterns it has learned [12]. Agent can
also compare OpenAPI Specification against OWASP
API Security for issues like broken auth or excessive
data exposure.

• Why it’s good: The AI Agent is flexible, can adapt as

standards change, and can handle complex,

judgement- based rules. Such as when GET api is

called on /products API and parameter is named as

customer id AI agent can detect is easily.

Fig. 3. Standardization Process in Developer’s Workflow

• Working Together: While you can use either method

alone, combining them is very powerful. STA acts as a

quick first check for basic errors. Then, the AI Agent

does a deeper, smarter review, often pointing out

warnings or areas for people to look at, rather than

completely stopping the process.

3) How They Fit In: How well these checking

methods work depends on where they are used in the

development process. Integrating them turns occasional

checks into a continuous, automatic enforcement

system.

a) Why Integration Matters: Using Static Type

Analysis as a pre-commit hook (before code is

committed) and the AI agent in the CI/CD pipeline acts

like a gatekeeper (as shown in Figure 3). This ensures

that every proposed change to a data product’s API is

automatically checked against company standards

before it can be committed, deployed, or added to the

main branch code.

b) How Static Type Analysis Works:

• When it runs: Whenever a developer tries to commit

new changes, a pre-commit hook automatically starts.

This check includes the Static Type Analysis of the API.

• What it does: During the pre-commit check, a specific

program or outside service is called, and the OpenAPI

specification is sent to it for analysis.

• Feedback and Action: The OpenAPI specifications are

carefully checked against all the company’s defined

and standardized rules. If everything passes, the new

changes are committed. If any new API specification

doesn’t meet the standards, the pre-commit check

will show an error message explaining the problem,

stopping the developer from committing non-

compliant changes.

c) How the AI Agent Works in CI/CD:

• When it runs: Whenever a developer pushes new

changes and creates a pull-request for a data product,

the CI/CD pipeline automatically starts.

• What it does: Inside the CI/CD pipeline, the AI Agent

is activated. It receives the OpenAPI specification file

and performs its validation checks.

• Feedback and Action: If the OpenAPI specification passes

all defined checks, the pipeline continues, allowing the

The American Journal of Applied Sciences

45 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

changes to be integrated and deployed. If it fails, the

pipeline is set up to stop the build or prevent the pull

request from being combined with the main code. This

automated enforcement gives immediate, useful

feedback to the developer, stopping non-compliant APIs

from going into production. Developers get clear reports

showing any issues, helping them quickly find and fix

problems.

c. What You Get: Consistent APIs

Using this method consistently and automatically

leads to the desired result:” All Data Products Adhere to

OpenAPI Specification” (this is the final goal shown in

Figure 3). By building these compliance checks directly

into the development process, organizations can

achieve several key benefits:

• Consistent Design: All data product APIs will follow a

single set of standards.

• Less Old Code Debt: Problems are found and fixed

early, reducing expensive re work later on.

• Faster Development: Clear APIs and automated

checks make the process smoother for everyone

creating and using data.

• Stronger Governance: A solid and traceable system is

in place to ensure APIs always meet company and

legal rules for data sharing.

IV. UNDERSTANDING OUR APPROACH

This section explores what it takes to put our proposed

system into action. This system automatically checks

OpenAPI specifications for data products. We’ll look

closely at the strengths of Static Type Analysis (STA) and

the AI Agent, understanding how they work best alone

and together. We’ll also cover the big hurdles companies

face when adopting and maintaining such a strong

system.

A. How We Check Rules: STA versus AI Agent

Choosing the right ways to check compliance is key to

our framework’s success. Our system uses a two-step

approach: Static Type Analysis (STA) and an AI Agent.

Each has its own pros and cons, which decide when and

how they are best used.

a) Static Type Analysis (STA): STA tools check

OpenAPI compliance using fixed rules. They are great at

making sure the API’s structure, data types, and specific

formats are correct according to the company’s OpenAPI

rules. For example, STA is perfect for checking that all

required fields are present (like a description for every

action), that data types match what’s expected (like ISO

8601 for dates), and that naming rules are strictly

followed (like using snake case for paths). Its strong

points are being precise, fast, and easy to understand.

When a check fails, it clearly shows exactly which rule

was broken and where. This makes STA very useful for

finding basic errors early on, and developers can even

run it on their own computers for quick feedback [11].

b) AI Agent: On the other hand, the AI Agent handles

more flexible or context- b a s e d rules that are

hard to put into strict STA rules. An AI Agent learns

from company guidelines and examples of good and

bad API specifications. It can then figure out best

practices and spot small problems. For instance, it

might check if an API’s overall design is user

friendly, if its documentation is easy to grasp, or if its

data models accidentally share sensitive information

based on broader company policies that are tough to

write as specific rules. Its strengths are its flexibility

and its ability to learn from changing rules and

complex patterns, giving deeper insights beyond just

correct structure [12].

c) Using Both Together: Instead of choosing

between STA and the AI Agent, the most powerful

approach is to combine them. STA can be the first, quick

check for basic errors. It efficiently catches all syntax

mistakes, structural problems, and clear rule breaking. If

an API specification passes these first, definite checks,

it can then go to the AI Agent for a deeper, more

context aware review. This layered method makes the

compliance process better. STA gives immediate, clear

feedback on fundamental issues, while the AI Agent

offers smart insights for higher level compliance. It might

flag warnings or suggest areas for people to review

instead of outright stopping the process. This balance

prevents unnecessary headaches for developers while

keeping standards high.

V. CHALLENGES AND WHAT TO CONSIDER

Putting a strong, automated OpenAPI checking system

into place comes with several real world and

organizational challenges that need careful thought.

The American Journal of Applied Sciences

46 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

A. Effort for Tools and Training

The initial time and money spent on creating tools and

training can be significant. For Static Type Analysis (STA),

this means either heavily customizing existing tools (like

Spectral) with many companies specific rules, or building

entirely new tools from scratch [11]. For an AI Agent, the

effort is even greater. It involves gathering and

preparing high quality training data (including both

compliant and non-compliant API specifications with

expert notes), picking and fine tuning the right AI

models, and continuously updating the training to stay

accurate. This initial cost can be a major barrier for

companies with limited resources or expertise in AI and

machine learning.

B. 5.2 Keeping Up with Evolving Standards

Company OpenAPI standards aren’t set in stone. They

must change as technology advances, business needs

shift, and we learn from real world use. Managing these

changes and making sure the checking tools stay current

is an ongoing challenge. Every change to the standards

means updating the STA rules or retraining the AI Agent.

Without a clear plan for maintaining these checkers and

keeping them in sync with standard changes, the system

could become outdated, give unhelpful feedback, or

miss new types of non compliance, making it less

effective.

C. 5.3 Getting People to Adopt It

A big obstacle is getting everyone in the organization to

adopt the system and changing how they work [13].

Developers, who are used to more freedom in API

design, might see automated checks as an extra burden

or something that slows them down. For the system

to be widely accepted, there needs to be clear

communication about its benefits, thorough training,

easy to use tools, and a supportive culture that truly

values consistent API rules. Making the checkers fit

smoothly into existing developer routines (like adding

them to programming environments or providing clear

feedback in CI/CD) and showing how automated checks

actually make their work simpler can greatly help this

change.

D. 5.4 Scaling Across Many Teams and Products

Making our proposed system work for a growing

number of different data products and spread-out

teams is a complex challenge. It’s crucial to ensure that

the checking tools can efficiently process many

specifications without causing big delays in the CI/CD

pipeline. Also, setting up consistent ways to deploy and

manage these checkers across possibly different team

specific tools and infrastructure needs solid planning

and automation. This prevents the system from

becoming a roadblock instead of a help.

VI. CONCLUSIONS

The huge growth of data products in modern

companies is vital for innovation driven by data.

However, it has also brought big challenges with finding,

using, and managing these products because their API

interfaces aren’t consistent. This paper has tackled this

key issue by suggesting a full framework. This framework

focuses on making it mandatory to use and

automatically enforce the OpenAPI Specification (OAS)

for all internal data products.

Our framework starts with the crucial step of defining

clear organizational OpenAPI standards. These

standards are specifically designed to meet the needs of

those using data products, especially for later

applications and data processing. This standardization

offers great benefits. It helps people find data products

more easily, makes them work better together,

simplifies their use for developers, and ultimately

strengthens data governance and compliance.

To make sure these standards are followed widely and

consistently, we’ve shown two different, yet potentially

com- plementary, automated ways to check compliance:

Static Type Analysis (STA) and an AI Agent. STA provides

quick and definite checks of structure and syntax, giving

immediate feedback. The AI Agent, on the other hand,

can enforce more subtle, context based, and changing

company guidelines through what it learns. Both

methods are made to fit seam- lessly into CI/CD

pipelines. This allows for continuous and automatic

checks of data product APIs at every development stage.

This automatic gate-keeping ensures that only compliant

data product interfaces are put into use, encouraging a

culture of designing data with an ”API first” mindset.

In short, putting this OpenAPI focused framework into

action for data products is more than just about

documentation. It’s a fundamental change toward

treating data as a well defined, usable product. By using

The American Journal of Applied Sciences

47 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

automated enforcement, companies can become more

efficient, reduce integration prob- lems, improve data

quality, and build a strong foundation for their

developing data ecosystems.

REFERENCES

[1] “Artificial Intelligence [AI] Market Size, Growth

& Trends by 2032.” Accessed: Jul.

 01, 2025. [Online]. Available:

https://www.fortunebusinessinsights.com/industry-

reports/artificial- intelligence-market-100114

[2] “OWASP API Security Project — OWASP

Foundation.” Accessed: Jul. 01, 2025. [Online].

Available: https://owasp.org/www-project-api-

security/

[3] “4 data product challenges and solutions.” Accessed:

Jul. 01, 2025. [On- line]. Available:

https://www.starburst.io/blog/data-product-

challenges/

[4] “REST API Standards and Guidelines -

AppSentinels.” Accessed: Jul. 01, 2025. [Online].

Available: https://appsentinels.ai/blog/rest-api-

standards-and-guidelines/

[5] L. Singh, “Ultimate Guide to Resolving REST API

Performance Issues,” Medium. Accessed: Jul. 01,

2025. [Online]. Available:

https://medium.com/@lakhwinder.chdit/ultimate-

guide-to-resolving- rest-api-performance-issues-

331a47c38ab7

[6] A. Mehta, “API Governance: The key to Digital

harmony,” Medium. Accessed: Jul. 01, 2025.

 [Online]. Available:

https://medium.com/@m.anurag08/api-governance-

the-key-to-digital- harmony-5428ecfe09df

[7] “Theneo Blog - Understanding Open API

 Specifica- tions.” Accessed: Jul. 01, 2025.

 [Online]. Available:

https://www.theneo.io/blog/understanding-the-

benefits-of-open-api- specifications

[8] “OpenAPI Specification - Version 3.1.0 — Swagger.”

Accessed: Jul. 01, 2025. [Online]. Available:

https://swagger.io/specification/

[9] C. Brinson, “7 Key Principles of API Design for

2025,” Jitterbit. Accessed: Jul. 01, 2025. [Online].

Available: https://www.jitterbit.com/blog/api-

design-principles/

[10] “Gateway-enforced API Authorization,” Gateway-

enforced API Authorization. Accessed: Jul. 01, 2025.

[Online]. Available:

https://www.aserto.com/blog/gateway-enforced-

api-authorization

[11] T. Sevenich, “API Linting with Spectral [From Basic

Rules to Enterprise-Wide Standards],” Axway Blog.

Accessed: Jul. 01, 2025. [Online]. Available:

https://blog.axway.com/learning-center/apis/api-

design/api-linting-with-spectral

[12] “How AI Can Help Automate API Governance

and Compli- ance - Treblle.” Accessed: Jul. 01, 2025.

[Online]. Available: https://treblle.com/blog/ai-api-

governance-compliance

[13] “Why AI Adoption Fails Without Cultural

Alignment and Governance Support.” Accessed:

Jul. 01, 2025. [Online]. Available:

https://www.allganize.ai/en/blog/resistance-to-ai-

governance-and- cultural-challenges

[14] F. Palma, J. Gonzalez-Huerta, M. Founi, N. Moha, G.

Tremblay, and Y.-

G. Gue´he´neuc, “Semantic Analysis of RESTful APIs

for the Detection of Linguistic Patterns and

Antipatterns,” Int. J. Coop. Info. Syst., vol. 26, no.

02, p. 1742001, Jun. 2017, doi:

https://doi.org/10.1142/ S0218843017420011.

[15] N. Moha et al., ”Specification and Detection of SOA

Antipatterns,” in Service-Oriented Computing, P. P.

Maglio, M. Weske, J. Yang, and M. Fantinato, Eds.,

Lecture Notes in Computer Science, vol. 6470, Berlin,

Heidelberg: Springer, 2012, pp. 1–16. doi:

https://doi.org/10. 1007/978-3-642-34321-6 1

http://www.fortunebusinessinsights.com/industry-reports/artificial-
http://www.fortunebusinessinsights.com/industry-reports/artificial-
http://www.starburst.io/blog/data-product-challenges/
http://www.starburst.io/blog/data-product-challenges/
https://medium.com/%40lakhwinder.chdit/ultimate-guide-to-resolving-
https://medium.com/%40lakhwinder.chdit/ultimate-guide-to-resolving-
https://medium.com/%40m.anurag08/api-governance-the-key-to-digital-
https://medium.com/%40m.anurag08/api-governance-the-key-to-digital-
http://www.theneo.io/blog/understanding-the-benefits-of-open-api-
http://www.theneo.io/blog/understanding-the-benefits-of-open-api-
http://www.jitterbit.com/blog/api-design-principles/
http://www.jitterbit.com/blog/api-design-principles/
http://www.aserto.com/blog/gateway-enforced-api-authorization
http://www.aserto.com/blog/gateway-enforced-api-authorization
http://www.allganize.ai/en/blog/resistance-to-ai-governance-and-
http://www.allganize.ai/en/blog/resistance-to-ai-governance-and-
https://doi.org/10.1142/S0218843017420011
https://doi.org/10.1142/S0218843017420011
https://doi.org/10.1007/978-3-642-34321-6_1
https://doi.org/10.1007/978-3-642-34321-6_1

