
The American Journal of Applied Sciences

20 https://www.theamericanjournals.com/index.php/tajas

TYPE Original Research

PAGE NO. 20-29

DOI 10.37547/tajas/Volume07Issue07-03

OPEN ACCESS

SUBMITED 14 May 2025

ACCEPTED 29 June 2025

PUBLISHED 09 July 2025

VOLUME Vol.07 Issue 07 2025

CITATION

Srikanth Reddy Gudi. (2025). A Comparative Analysis of Pivotal Cloud

Foundry and OpenShift Cloud Platforms. The American Journal of

Applied Sciences, 7(07), 20–29.

https://doi.org/10.37547/tajas/Volume07Issue07-03.

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

A Comparative Analysis of
Pivotal Cloud Foundry and
OpenShift Cloud Platforms

 Srikanth Reddy Gudi

IEEE Member: 101425246, USA

Abstract: The paper presents a comprehensive

comparative analysis of two leading enterprise-grade

Platform as a Service (PaaS) solution: Pivotal Cloud

Foundry (PCF) and Red Hat OpenShift. It examines their

architectures, deployment models, operational

characteristics, developer experiences, security

features, performance attributes, and ecosystem

support. The research highlights key differences

between PCF's custom architecture with Warden

containers and OpenShift's Kubernetes-native

approach. The analysis covers installation procedures,

management tools, application deployment workflows,

and migration strategies between platforms. Through

case studies and literature review, the paper provides

organizations with guidance for making informed

decisions about which platform best suits their specific

requirements and constraints.

Keywords: Platform as a Service (PaaS), Cloud Foundry,

OpenShift, Kubernetes, containerization, microservices,

cloud computing, container orchestration, developer

experience, cloud migration.

1. Introduction:

The way businesses deploy, scale, and manage

applications has been completely transformed by cloud

computing. According to Zhang et al. (2010), cloud

computing "eliminates the requirement for users to plan

ahead for provisioning and allows enterprises to start

from the small and increase resources only when there

is a rise in service demand." It has "emerged as a new

paradigm for hosting and delivering services over the

Internet." [1]. Platform as a Service (PaaS) offering have

become increasingly potent as cloud technologies have

https://doi.org/10.37547/tajas/Volume07Issue07-03
https://doi.org/10.37547/tajas/Volume07Issue07-03
https://orcid.org/0009-0003-4803-3012

The American Journal of Applied Sciences

21 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

advanced, abstracting infrastructure complexities and

freeing developers to concentrate on application

development rather than operational issues.

Red Hat OpenShift and Pivotal Cloud Foundry (PCF) are

two of the top enterprise-grade platforms among the

many PaaS options currently on the market. According

to Lomov (2014), "OpenShift and Cloud Foundry have

gathered the strongest development communities of

any open-source projects in the category known as

Platform-as-a-Service. They are regarded by many as the

top open-source PaaS. [2]. Organizations making

strategic decisions regarding their cloud infrastructure

must comprehend the distinctions between these

platforms.

This comparative analysis is significant for several

reasons. First, according to IDC, the PaaS market is

expected to expand dramatically, reaching $14 billion by

2017. [2]. Second, the choice of orchestration platform

becomes crucial for developer productivity and

operational efficiency as more organizations embrace

microservices architectures and containerization

technologies. Third, while PCF has gradually moved

toward Kubernetes compatibility, OpenShift is

Kubernetes-native, and both platforms represent

distinct methods for addressing related issues.

This development is highlighted by Gelley (2022), who

observes that businesses are moving "from Pivotal Cloud

Foundry to Kubernetes" more frequently because of

"high licensing costs" and to "increase the deployment

flexibility." [3]. This change emphasizes how crucial it is

to comprehend the operational and technical

distinctions between these platforms.

Research Aim

This research paper's main goal is to present a thorough

comparison of Pivotal Cloud Foundry and OpenShift by

looking at their features, architectures, deployment

strategies, and operational traits. Organizations will be

better able to choose the platform that best fits their

unique needs and limitations thanks to this analysis.

Main Contributions

Several new insights into cloud platforms are provided

by this paper:

1. It offers a thorough architectural comparison of

PCF and OpenShift, emphasizing the main

parallels and divergences between their

implementation strategies and design

philosophies.

2. It examines both platforms' operational

features, such as management tools, monitoring

capabilities, and installation processes.

3. It looks at the developer experience on both

platforms, emphasizing application lifecycle

management, service integration, and

deployment workflows.

4. It assesses both platforms' pricing factors,

licensing schemes, and community support

networks.

5. Using best practices and case studies from the

real world, it talks about migration tactics

between the platforms.

2. Literature Review

Definitions of Key Concepts

Platform as a Service (PaaS): "A development platform

and environment providing services and tools such as

programming language execution environment,

database, web server, etc." is what Zhang et al. (2010)

claim PaaS offers. [1]. Instead of managing servers,

networking, or storage, PaaS abstracts the underlying

infrastructure, freeing developers to concentrate on

creating applications.

Containerization: A lightweight type of virtualization

known as containerization condenses an application and

all of its dependencies into a single, transportable unit

known as a container. Containerization is described as

"a process that encapsulates an application and its

dependencies into a single, lightweight unit, or

container" by Daram et al. (2021) [4]. Containers are

more effective and quicker to start than traditional

virtualization because they share the host operating

system's kernel.

Orchestration: The automated placement,

synchronization, and administration of containers is

referred to as orchestration. Orchestration platforms

"offer a comprehensive suite of tools for orchestrating

containers, managing workloads, and automating

deployment processes," according to Daram et al.

(2021) [4]. For containerized applications, orchestration

tools manage operations like networking, scaling,

deployment, and service discovery.

Kubernetes: Google was the original developer of the

open-source container orchestration platform known as

Kubernetes. Gelley (2022) defines it as "a container

runtime that provides developers with a robust

distributed framework that automatically scales clusters

and applications and handles failovers" and "is used to

The American Journal of Applied Sciences

22 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

manage the lifecycle of applications across

environments." [3]

Microservices: An application is organized using the

microservices architectural style as a group of loosely

coupled, independently deployable services.

"Independently deployable by fully automated

deployment machinery" is how Simioni (2017)

characterizes microservices [5]. highlighting how

microservices-based application deployment and

management require automation.

Evolution of Cloud Computing and PaaS

Cloud computing paradigms have clearly evolved from

Infrastructure as a Service (IaaS) to Platform as a Service

(PaaS) and beyond, according to the literature.

According to Zhang et al. (2010), John McCarthy's vision

of "computing facilities will be provided to the general

public like a utility" dates back to the 1960 [1]. But cloud

computing didn't really take off until the 2000s, when

commercial cloud services started to appear.

The need to streamline application deployment and

management in cloud environments has fueled the

growth of PaaS offerings. Chris Richardson's Cloud Tools

project, which was "a set of tools for deploying Java

applications to Amazon EC2" in 2007, is where Cloud

Foundry's history started, according to Lomov (2014) [2].

Similar to this, Red Hat's PaaS offering, OpenShift,

debuted in 2011 and focuses on offering an application

deployment platform that is easy for developers to use.

Containerization and Orchestration

The transition from traditional virtualization to

containerization is a prominent theme in the literature.

"Virtual machines (VMs), while revolutionary at the time

of their inception, come with significant overheads," as

noted by Daram et al. (2021) [4], However, containers

provide a lighter and more effective method for

packaging and deploying applications.

Advanced orchestration platforms have emerged as a

result of containerization. According to Daram et al.

(2021), "the need for effective management and

orchestration of these containers becomes evident as

organizations increasingly adopt containerization." [4].

Because of this, platforms like Kubernetes, which serve

as the basis for OpenShift, have developed.

Architectural Approaches

Various architectural approaches to creating PaaS

platforms are revealed in the literature. In a thorough

analysis of Cloud Foundry and OpenShift's architectures,

Lomov (2014) points out that both systems have

"components with similar functionality" like messaging

buses, working nodes, routers, and managers [2].

Simioni (2017) highlights the value of microservices

architecture in contemporary cloud platforms, pointing

out that this strategy offers advantages in terms of team

organization, scalability, and resilience [5]. Despite their

differing implementations, PCF and OpenShift both

clearly embrace the microservices architecture.

Developer Experience and Workflow

The significance of developer experience and workflow

in PaaS platforms is a recurrent theme in the literature.

In his comparison of Cloud Foundry and Kubernetes,

Gelley (2022) points out that "Kubernetes, on the other

hand, offers developers a resilient distributed

framework that automatically scales clusters and

applications and takes care of failovers," while "Cloud

Foundry offers a higher-level abstraction for deploying

applications so that developers can mainly concentrate

on application development and deployment." [3].

The trend toward greater control and flexibility, even at

the expense of greater complexity, is also highlighted in

the literature. Gelley (2022) notes that "developers have

more responsibility because they have to write and

maintain the configuration needed for deployment and

scalability due to Kubernetes' increased flexibility" [3].

Migration Between Platforms

The transition from Cloud Foundry to Kubernetes-based

platforms is a recurring theme in recent literature. "To

increase the deployment flexibility and to decrease

licensing costs" were the main reasons for moving an

application from PCF to Kubernetes, according to Gelley

(2022) [3]. This is in line with a larger trend in the

industry that Kubernetes is the most popular container

orchestration platform.

The literature also highlights migration challenges, such

as the fact that "no one in the development team had

any previous technical expertise related to the

Kubernetes environment," according to Gelley (2022).

Therefore, during the migration, a significant learning

path was required [3]. This emphasizes how crucial it is

to take into account the training requirements and

learning curve when switching between platforms.

3. Architectural Comparison

3.1 Core Architectural Components

3.1.1 Cloud Foundry Architecture

The American Journal of Applied Sciences

23 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

Cloud Foundry uses a modular architecture in which a

few essential parts cooperate. Lomov (2014) states that

the main elements consist of as shown in Figure 1:

• Router: Manages user traffic and directs it to

the relevant instance of the application.

• Cloud Controller: Co-ordinates the deployment

process, keeps up with the database of

application metadata, and oversees applications

and services.

• DEA (Droplet Execution Agent): Uses Warden

containers to run applications.

• NATS (Message Bus): Offers a simple messaging

system for component-to-component

communication.

• Build packs and Services: Offer applications

resources and services [2].

Figure 1: Pivotal Cloud Foundry — detailed look [9]

3.1.2 OpenShift Architecture

The architecture of OpenShift, which is based on

Kubernetes, differs slightly. The following essential

elements are identified by Lomov (2014):

• Router/HAProxy Gears: Control user traffic by

directing it to the relevant service.

• Brokers: Serve as the liaison for all traffic and

application management-related activities.

• Gears: Applications running in lightweight

containers have independent access to shared

resources.

• ActiveMQ: Acts as the component

communication messaging bus.

• Cartridges: Provide the features required to run

applications, such as database access and

support for programming languages [2].

The American Journal of Applied Sciences

24 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

Figure 2: Components of Kubernetes cluster [8]

3.2 Virtualization and Containerization Approaches

3.2.1 Cloud Foundry's Warden Containers

Warden containers, which offer process isolation via

Linux namespaces and control groups (cgroups), were

initially used by Cloud Foundry. As stated by Lomov

(2014), "Cloud Foundry uses Warden containers" [2],

which, prior to Docker's widespread use, were created

especially for Cloud Foundry.

3.2.2 OpenShift's Docker and Kubernetes Foundation

Kubernetes orchestrates the use of Docker containers by

OpenShift. Lomov (2014) asserts that as shown in Figure

2 "OpenShift uses Docker containers" [2]. Since

OpenShift has adopted the industry-standard container

runtime and orchestration platform, this signifies a

fundamental architectural difference.

"Docker, a leading platform in this domain, has become

synonymous with containerization, offering developers

and IT operations teams a powerful tool to streamline

the development, testing, and deployment of

applications," according to Daram et al. (2021) [4].

OpenShift makes use of widely accepted industry

standards by expanding upon Docker and Kubernetes.

3.3 Networking Architecture

3.3.1 Cloud Foundry Networking

A software-defined networking technique that offers

application isolation is used by Cloud Foundry. The NATS

messaging system facilitates internal communication,

while the router component manages external traffic.

3.3.2 OpenShift Networking

Kubernetes networking features, such as services,

ingress, and network policies, are utilized by OpenShift.

"OpenShift supports deploying applications through a

Git repository, hot deploys, and auto scaling," according

to Lomov (2014) [2], which depends on its networking

system.

3.4 Storage Architecture

3.4.1 Cloud Foundry Storage

Applications run on Cloud Foundry's ephemeral storage

by default, with service bindings enabling persistent

storage. With state externalized to supporting services,

this methodology promotes stateless application design.

3.4.2 OpenShift Storage

A more adaptable storage architecture with support for

multiple storage classes and persistent volumes is

provided by OpenShift via Kubernetes. This makes it

possible for the platform to support both stateful and

stateless applications.

3.5 Scalability and High Availability

The American Journal of Applied Sciences

25 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

Although they take different approaches, both

platforms offer mechanisms for scaling and

guaranteeing high availability.

3.5.1 Cloud Foundry Scalability

By increasing the number of instances of components

and application containers, Cloud Foundry can scale

horizontally. The ability of cloud platforms to

"automatically scale up and down according to the

service-level agreements" is explained by Zhang et al.

(2010) [1], an ability that Cloud Foundry has put into

practice.

3.5.2 OpenShift Scalability

OpenShift makes use of the native scaling features of

Kubernetes, such as cluster and horizontal pod

autoscaling. Kubernetes offers "dynamic orchestration,"

which is beneficial for "improving the responsiveness

and the operational agility of the system," according to

Simioni (2017) [5].

4. Installation and Operations

4.1 Installation Procedures

4.1.1 Cloud Foundry Installation

Cloud Foundry installation can be challenging. "There

are many ways to install Cloud Foundry," according to

Lomov (2014), but it takes "a lot of RAM" and may

require several steps [2], AWS, Google Cloud Platform,

and vSphere are just a few of the infrastructure

platforms on which Cloud Foundry can be installed.

4.1.2 OpenShift Installation

The installation of OpenShift is also complicated. The

documentation for the OpenShift Container Platform

[6]. Covers prerequisites, setup, and post-installation

activities in its comprehensive installation and

configuration instructions. Like Cloud Foundry,

OpenShift is compatible with several infrastructure

platforms.

4.2 Operational Tools and Interfaces

4.2.1 Cloud Foundry Operational Tools

Cloud Foundry offers a number of operational tools,

such as:

• CF CLI: Command-line interface for Cloud

Foundry interaction.

• Apps Manager: Web-based UI for managing

applications and services.

• BOSH: Tool for deployment and lifecycle

management of distributed systems.

4.2.2 OpenShift Operational Tools

OpenShift offers a different set of operational tools:

• OC CLI: Command-line interface for OpenShift.

• Web Console: Web-based UI for managing

OpenShift clusters and applications.

• Ansible: Used for automated installation and

configuration.

4.3 Monitoring and Logging

4.3.1 Cloud Foundry Monitoring

Through the Log aggregator component, which gathers

and streams logs and metrics from applications and

platform components, Cloud Foundry offers integrated

monitoring capabilities.

4.3.2 OpenShift Monitoring

Operators can keep an eye on cluster health, resource

utilization, and application performance with

OpenShift's monitoring features via Prometheus and

Grafana. Features for "monitoring and managing

resources" are described in the OpenShift Container

Platform documentation [6].

4.4 Upgrades and Maintenance

4.4.1 Cloud Foundry Upgrades

BOSH offers rolling updates with little downtime,

making it possible to upgrade Cloud Foundry. But,

particularly for large deployments, the procedure can be

complicated.

4.4.2 OpenShift Upgrades

Mechanisms for rolling cluster and application updates

are provided by OpenShift. According to Gelley (2022),

"the Kubernetes rolling update strategy makes it simple

to migrate the application without downtime." [3].

5. Developer Experience and Workflow

5.1 Application Deployment Models

5.1.1 Cloud Foundry Deployment Model

The American Journal of Applied Sciences

26 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

Cloud Foundry deploys using a straightforward push-

based methodology. As "Cloud Foundry automatically

identifies all the necessary runtime tools needed for the

application and packages the application uses to build

packs," Gelley (2022) explains that "in PCF, developers

do not need to provide any descriptor about the

dependencies required for the application to run in the

cloud environment." [3].

5.1.2 OpenShift Deployment Model

OpenShift employs a Kubernetes-based deployment

model that is more configuration-driven. According to

Gelley (2022), "deployment manifests were needed to

deploy to the Kubernetes environment" during the

Kubernetes migration [3]. Because of this, developers

must explicitly define several aspects of the deployment

of their applications.

5.2 Build and Deployment Automation

5.2.1 Cloud Foundry Build Automation

Build packs are used by Cloud Foundry to automate the

build procedure. "Buildpacks provide the actual

functionality necessary to run a user application" is how

Lomov (2014) puts it. [2].

5.2.2 OpenShift Build Automation

OpenShift automates builds using Docker builds and

Source-to-Image (S2I). The statement "Docker provides

a solid foundation for creating and managing

containers" is made by Daram et al. (2021). [4].

5.3 Service Integration

5.3.1 Cloud Foundry Service Integration

A service broker API offered by Cloud Foundry makes it

simple to integrate with outside services. By binding to

services, applications can introduce login credentials

and connection details into the application

environment.

5.3.2 OpenShift Service Integration

OpenShift offers a more Kubernetes-native approach to

service management by integrating services using

Kubernetes service catalogs and operators.

5.4 Application Scaling and Management

5.4.1 Cloud Foundry Scaling

Cloud Foundry makes it simple to scale apps using the

Apps Manager or CF CLI. The quantity of memory

allotted to each instance, as well as the number of

instances, can be changed by developers.

5.4.2 OpenShift Scaling

Through Kubernetes features like horizontal pod

autoscaling, which can scale apps according to CPU

usage or custom metrics, OpenShift offers more

sophisticated scaling capabilities.

6. Security Features and Compliance

6.1 Authentication and Authorization

6.1.1 Cloud Foundry Authentication

Cloud Foundry supports multiple authentication

providers, such as LDAP, SAML, and OAuth, and

manages identities using UAA (User Account and

Authentication).

6.1.2 OpenShift Authentication

OpenShift can integrate with multiple identity providers

and uses OAuth. Features for "authentication and

authorization" are described in the OpenShift Container

Platform documentation. [6].

6.2 Network Security

6.2.1 Cloud Foundry Network Security

In addition to offering network isolation between apps,

Cloud Foundry can be set up with extra security features

like router-side TLS termination.

6.2.2 OpenShift Network Security

For more precise control over network traffic between

pods, OpenShift makes use of Kubernetes network

policies. For extra network security features, SDN

(Software-Defined Networking) is also supported.

6.3 Container Security

6.3.1 Cloud Foundry Container Security

Applications are isolated from the host system and from

one another using Cloud Foundry's Warden containers,

which have multiple security features.

6.3.2 OpenShift Container Security

Additional features like security contexts, pod security

policies, and SELinux integration are some of the ways

The American Journal of Applied Sciences

27 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

that OpenShift improves Docker container security.

"OpenShift uses Docker containers, which have a

different kind of abstraction" in contrast to Cloud

Foundry's Warden containers, according to Lomov

(2014) [2].

7. Performance and Scalability

7.1 Resource Efficiency

7.1.1 Cloud Foundry Resource Efficiency

The use of the Garden container runtime and Warden

containers in Cloud Foundry contributes to its resource

efficiency.

7.1.2 OpenShift Resource Efficiency

Kubernetes' sophisticated scheduling and resource

management features enhance OpenShift's resource

efficiency. "Kubernetes offers 'dynamic orchestration,'

which is beneficial for 'improving the responsiveness

and the operational agility of the system,'" according to

Simioni (2017) [5].

7.2 Scalability Limits

7.2.1 Cloud Foundry Scalability Limits

Although Cloud Foundry's architecture allows it to scale

to thousands of application instances, very large

deployments may present difficulties.

7.2.2 OpenShift Scalability Limits

Large-scale deployments are the focus of OpenShift,

which is based on Kubernetes and can grow to tens of

thousands of pods and thousands of nodes. In order to

overcome "the limitation of centralized Kubernetes

architectures," researchers have begun studying

"distributed Kubernetes architectures" after observing

that even Kubernetes has difficulties with very large

clusters. [7].

7.3 Performance Benchmarks

Although direct comparisons are challenging because of

the disparities in architecture and deployment

scenarios, several performance benchmarks have been

carried out for both platforms.

8. Ecosystem and Community

8.1 Community Support and Development

8.1.1 Cloud Foundry Community

The Cloud Foundry Foundation serves as the focal point

of the Cloud Foundry community. According to Lomov

(2014), "in 2013, 732 contributors contributed more

than 15,000 commits to Cloud Foundry." [2].

8.1.2 OpenShift Community

Red Hat is the main commercial sponsor of OpenShift,

and the OpenShift community is closely related to the

larger Kubernetes community.

8.2 Third-Party Integrations

Both platforms support a wide range of third-party

integrations, though their approaches differ.

8.2.1 Cloud Foundry Integrations

Cloud Foundry integrations are primarily through service

brokers and build packs.

8.2.2 OpenShift Integrations

OpenShift integrations leverage Kubernetes operators

and the service catalog.

8.3 Commercial Support Options

8.3.1 Cloud Foundry Commercial Support

Commercial support for Cloud Foundry is available from

VMware (formerly Pivotal) and other vendors.

8.3.2 OpenShift Commercial Support

Red Hat provides commercial support for OpenShift,

with various subscription options available.

9. Case Studies

9.1 Cloud Foundry Adoption Cases

With proven advantages in terms of developer

productivity and operational efficiency, Cloud Foundry

has been used by numerous organizations for their PaaS

requirements.

9.2 OpenShift Adoption Cases

Comparably, a lot of businesses have embraced

OpenShift, especially those looking for a Kubernetes-

native platform or those who have already made

investments in the Red Hat ecosystem.

9.3 Migration Case Studies

Numerous companies have provided documentation of

their transition from Cloud Foundry to OpenShift and

The American Journal of Applied Sciences

28 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

other Kubernetes-based platforms. A thorough case

study of moving an insurance-related application from

PCF to Kubernetes is given by Gelley (2022), who notes

that the migration was successful and offered

advantages like increased deployment flexibility and

lower licensing costs [3].

10. Conclusion and Recommendations

10.1 Summary of Key Differences

The key differences between PCF and OpenShift include:

1. Architectural Foundation: OpenShift is based

on Kubernetes and Docker, whereas PCF uses a

unique architecture with Warden containers.

2. Developer Experience: In contrast to OpenShift,

which offers greater flexibility and control at the

expense of greater complexity, PCF offers a

more abstracted, developer-friendly

experience.

3. Installation and Operations: Although the

installation processes for both platforms are

intricate, their operational tools and

methodologies differ.

4. Ecosystem and Integration: OpenShift

integrates with the Red Hat ecosystem, whereas

PCF works well with VMware products.

5. Cost Model: Due to the higher licensing costs

associated with PCF, some organizations have

shifted to alternatives based on Kubernetes.

10.2 Recommendations for Different Use Cases

Depending on their unique needs and limitations,

various organizations may find one platform more

appropriate than the other. A few things to think about

are:

1. Existing Investments: Adopting PCF or

OpenShift may be simpler for companies that

have already made investments in the Red Hat

or VMware ecosystems, respectively.

2. Developer Skills: While PCF may be preferred by

organizations seeking maximum abstraction,

OpenShift may be more approachable for those

with developers who are familiar with

Kubernetes.

3. Scaling Requirements: Organizations with very

large-scale deployments might benefit from

OpenShift's Kubernetes foundation.

4. Budget Constraints: Organizations with tight

budget constraints might find OpenShift's

licensing model more attractive.

10.3 Future Trends and Developments

The PaaS landscape continues to evolve, with several

notable trends:

1. Kubernetes Dominance: Both PCF and

OpenShift have been impacted by Kubernetes'

rise to prominence as the leading container

orchestration platform.

2. Serverless Computing: To accommodate

serverless computing paradigms, both

platforms are growing.

3. Edge Computing: Research on "distributed

Kubernetes architectures" indicates that there is

growing interest in bringing cloud platforms to

edge environments. [7].

4. AI and Machine Learning Integration: Both

platforms are investigating "MLOps Tools for

Kubernetes" to better support AI and ML

workloads. [7].

To sum up, PCF and OpenShift are both established,

enterprise-class PaaS platforms, each with unique

advantages and disadvantages. When deciding between

them or thinking about switching from one to the other,

organizations should carefully consider their unique

needs and limitations.

REFERENCES

[1] Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud

computing: state-of-the-art and research

challenges. Journal of Internet Services and

Applications, 1(1), 7-18.

[2] Lomov, Alexander. "OpenShift and Cloud Foundry

PaaS: High-level Overview of Features and

Architectures." Altoros, 2014.

[3] Gelley, S. (2022). Migrate Cloud Foundry Application

to Kubernetes. Master's Thesis. Metropolia University

of Applied Sciences, Master of Engineering, Information

Technology.

The American Journal of Applied Sciences

29 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

[4] Daram, S., Jain, A., & Goel, O.

(2021). Containerization and Orchestration:

Implementing OpenShift and Docker. Innovative

Research Thoughts, 7(4), 255-

263. DOI: https://doi.org/10.36676/irt.v7.i4.1457

[5] Simioni, Alberto. "Implementation and evaluation of

a container-based software architecture." Master's

thesis, Università degli Studi di Padova, Dipartimento di

Matematica "Tullio Levi-Civita", July 2017. Supervisor:

Prof. Tullio Vardanega.

[6] 13 Red Hat, Inc. (2018). OpenShift Container

Platform 3.6 Installation and Configuration. Red Hat

Documentation.

[7] Patel, Indravadan. "D-K8S: Container Orchestration

Through Nodes Empowerment and Participation."

International Journal of Computer Trends and

Technology, vol. 73, no. 2, Feb. 2025, pp. 23-

30. https://doi.org/10.14445/22312803/IJCTT-

V73I2P104

[8] https://darshanadinushal.medium.com/openshift-

architecture-63c9e2974abe

 [9] https://www.slideshare.net/Pivotal/t3-pivotal-

cloud-foundry-a-technical-overview

https://doi.org/10.36676/irt.v7.i4.1457
https://doi.org/10.14445/22312803/IJCTT-V73I2P104
https://doi.org/10.14445/22312803/IJCTT-V73I2P104
https://darshanadinushal.medium.com/openshift-architecture-63c9e2974abe
https://darshanadinushal.medium.com/openshift-architecture-63c9e2974abe
https://www.slideshare.net/Pivotal/t3-pivotal-cloud-foundry-a-technical-overview
https://www.slideshare.net/Pivotal/t3-pivotal-cloud-foundry-a-technical-overview

