
The American Journal of Applied Sciences

13 https://www.theamericanjournals.com/index.php/tajas

TYPE Original Research

PAGE NO. 13-19

DOI 10.37547/tajas/Volume07Issue03-03

OPEN ACCESS

SUBMITED 16 January 2025

ACCEPTED 12 February 2025

PUBLISHED 12 March 2025

VOLUME Vol.07 Issue03 2025

CITATION

Kish Aleksei. (2025). Swift Proto Parser: A Framework for Native Tools

for Protocol Buffers. The American Journal of Applied Sciences, 13–19.

https://doi.org/10.37547/tajas/Volume07Issue03-03

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Swift Proto Parser: A

Framework for Native

Tools for Protocol Buffers

Kish Aleksei

Senior Software Engineer / Technical Owner at Semrush Spain, Barcelona

Abstract: This article presents the development of a
native Swift library that parses .proto files—commonly
used in Protocol Buffers (Protobuf)—without relying on
the external protoc tool. It addresses a critical gap in
Swift’s ecosystem by enabling direct, run-time access to
Protobuf schemas. Drawing on the theoretical
foundations of lexical analysis, the paper outlines how
the library’s lexer and parser transform raw .proto input
into descriptor structures amenable to dynamic
serialization and integration with SwiftProtoReflect. The
proposed approach substantially reduces dependency
on external code generation and simplifies tasks such as
documentation generation, code formatting, linting,
and IDE-based tooling. Experimental evidence and test
results show that the library can reliably handle core
Protobuf features, including nested messages, enums,
services, and custom options, thereby laying the
groundwork for a fully Swift-based workflow in gRPC
and Protocol Buffers development.

Keywords: Swift, Protocol Buffers, lexical analysis,
parsing, dynamic serialization, gRPC, reflection, .proto
files.

Introduction: Modern distributed systems and
microservice architectures increasingly adopt the gRPC
protocol based on Protocol Buffers (Protobuf) for high-
performance data serialization [2]. However, until
recently, the Swift language lacked fully native tools for
flexible and dynamic interaction with Protobuf
messages. Developers had to rely on protoc and
associated utilities, complicating project compilation
and deployment [5]. This issue is particularly critical in
environments with frequent service specification
updates, where each .proto file modification
necessitates code generation and application
recompilation [3].

The problem becomes even more pronounced when

https://doi.org/10.37547/tajas/Volume07Issue03-03
https://doi.org/10.37547/tajas/Volume07Issue03-03
https://doi.org/10.37547/tajas/Volume07Issue03-03

The American Journal of Applied Sciences

14 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

dynamic serialization and deserialization are required
without statically generated classes—such as in cases
where the set of Protobuf messages may change
dynamically. The SwiftProtoReflect project addresses
some of the challenges related to dynamic access to
Protobuf metadata, but achieving full functionality
requires a native lexer and parser for .proto files in
Swift [4]. The absence of such tooling generates both
scientific and practical interest in the lexical [6] and
syntactic analysis of .proto files within the Swift
ecosystem.

Existing research confirms gRPC's potential for low-
latency interservice communication and efficient data
serialization [7]. However, these studies typically do
not focus on Swift-specific challenges, where dynamic
message reflection remains limited [2]. In our previous
works [3, 4], we introduced the SwiftProtoReflect
library to enable dynamic serialization in Swift, thereby
demonstrating the potential for runtime interaction
with Protobuf data. These contributions provided a
solid foundation and inspired further innovations.
Building on that groundwork, the tool presented in this
paper extends our earlier efforts by incorporating
lexical and syntactic parsing of .proto files, thereby
broadening the scope of Protobuf handling in Swift.

From a theoretical perspective, significant
contributions to lexical analysis and parser
construction have been summarized in the work by Pai
T.V. and Aithal P.S. [6], emphasizing the importance of
correctly segmenting input data into tokens and the
lexer's role as the initial stage of a compiler or similar
tool. However, specific data formats such as .proto
require extensions to classical approaches, considering
comments, escaped strings, nested structures, and
field compatibility rules.

While existing research and tools—particularly those
designed for C++, Java, and Python—already provide
Protocol Buffers parsers, a gap remained in Swift: no
fully native solution could parse .proto files natively
without invoking external protoc [4].

The scientific and practical gap lies in the absence of a
systematic implementation of lexicon-syntactic
analysis for .proto descriptions specifically tailored for
Swift. Such an implementation should enable:

● Eliminating the need for code generation via
protoc and external scripts.

● Dynamic interaction with message and service
structures (e.g., in IDE plugins, formatting tools,
linters).

● Retaining metadata (comments, options) for
documentation generation and analysis.

The objective of this study is to develop and
demonstrate Swift Proto Parser, a native Swift library
providing a complete pipeline for the lexical and
syntactic analysis of .proto files. Based on the resulting
abstract syntax tree (AST) or descriptors, dynamic
interaction with messages and services can be achieved
using SwiftProtoReflect or other tools.

The hypothesis states that implementing a Protocol
Buffers parser—including both lexer and syntax
analyzer—natively in Swift will eliminate reliance on
protoc, thereby increasing the flexibility of gRPC service
development in Swift projects, accelerating integration
of changes, and simplifying tooling (at the level of IDEs,
linters, and refactoring utilities).

1. Theoretical aspects of lexical analysis and working
with Protobuf in Swift

Lexical analysis, also known as tokenization, is the first
stage in transforming the source text of any formal
specification or program code into a machine-readable
representation [1]. It involves breaking a stream of
characters into lexemes, each classified and converted
into a token of a specific type, such as an identifier,
keyword, operator, or literal. The resulting set of tokens
is later interpreted by a syntax parser, which relies on a
context-free grammar. In classical compilers and
interpreters, this approach effectively separates the
task of "recognizing basic language constructs" from
"building a syntax tree" [1].

However, lexical analysis is not only essential in
compilers for widely recognized programming
languages (such as C or Java) but also in numerous
applied data formats, including Protocol Buffers
(Protobuf) files that define message and service
structures. The challenge lies in the fact that each
format has unique characteristics, such as string
escaping methods, nested block structures, and support
for specific comments or directives, all of which must be
accounted for when building a lexer [6]. Failing to
address these nuances would make it impossible to
construct a correct syntax tree and subsequently
operate on the data structure (e.g., for documentation
generation or dynamic serialization).

Protobuf files include descriptions of messages
(message), services (service), file-level directives
(syntax, import, option), and other constructs. Each
construct contains distinct lexemes, such as curly and
round brackets, colons, semicolons, and keywords like
message, service, enum, and rpc [8]. String literals,
which may contain escape sequences (\n, \t, \\), as well
as single-line and multi-line comments, are also

The American Journal of Applied Sciences

15 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

significant—not only for readability but also for future
documentation generation [3].

Table 1 provides a generalized classification of key

token categories in .proto files, covering common

cases that the lexer must handle.

Table 1. Main Token Categories in Protobuf (.proto Files)

Category Examples of Lexemes Comments

Keywords message, service, enum, rpc Reserved words defining the structure of

.proto files.

Brackets and

Delimiters

{, }, (,), ;, =, . Used to define block boundaries,

enumerations, and expressions.

Identifiers UserProfile, test_field, APIv2 Names of messages, fields, and services;

must conform to formal language rules.

Literals "hello", 123, false String and numeric constants, boolean

values; may contain escape sequences.

Comments // ..., /* ... */ Can be preserved by the lexer for

documentation generation or other

purposes (linters, explanations, etc.).

From a theoretical standpoint [6], a lexer for .proto files
is built on the same principles as any other: rules
(regular expressions or finite-state automata) define
valid token forms, and a procedure iterates through the
input string to generate corresponding objects. The
most critical aspects for Protobuf include:

● Correct handling of escaped strings (e.g.,
\"Hello\").

● Support for nested declarations, where one
message construct can be contained within another.

● Retaining comments (at least by associating
them with the nearest tokens) to allow their use in
documentation generation, auto-suggestions, etc. [4].

These features add complexity compared to more
straightforward languages. However, the core logic of
lexical analysis remains unchanged: converting a
stream of characters into a stream of tokens, which will
subsequently be parsed by the syntax analyzer.

The Protocol Buffers (Protobuf) protocol is a
mechanism for serializing structured data, introduced
by Google [8]. In a .proto file, a developer can define
messages with their fields and assigned numbers, as
well as services with RPC methods. The compilation
process of a .proto file using standard protoc tools
generates language-specific classes or structures that
enable serialization and deserialization of data into
either the binary Protobuf format or its text-based

(JSON) equivalent [5].

However, previous studies [3, 4] have highlighted the
absence of a built-in mechanism in Swift for dynamic
interaction with .proto descriptions without code
generation. Such functionality requires two key
components: first, the elimination of a static approach,
where every schema change necessitates re-running
protoc and rebuilding the application, and second, a
runtime mechanism capable of constructing message
structures and handling serialization/deserialization
dynamically based on .proto data (or via gRPC
Reflection).

The study in [3] introduced SwiftProtoReflect, a library
that enables dynamic access to Protobuf descriptors. It
allows querying the structure of a message and
assigning field values at runtime, without generating
static code. This significantly reduces friction when
modifying a service. However, SwiftProtoReflect still
relies on obtaining descriptors externally—a complete
set of metadata about messages, fields, and services.
Typically, these metadata are retrieved either from a
server (via the gRPC Reflection API) or from pre-
generated .proto files (via protoc).

This leads to a paradox: if a .proto file is physically
present in the project but protoc is not used, there is
still no built-in mechanism to extract descriptors for
SwiftProtoReflect. Until recently, Swift lacked a native

The American Journal of Applied Sciences

16 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

lexical analysis tool for parsing .proto files [4]. This is a
fundamental limitation of Swift: the language does not
provide a built-in tool for flexible runtime parsing of
formal specifications, unlike other languages with more
advanced reflection capabilities [2].

Consequently, a native Swift library capable of parsing
.proto files and constructing descriptors directly—
without invoking external utilities—becomes essential.
As outlined in the introduction, such a library would
eliminate the need for external code generation,
enable dynamic interaction with message and service
structures, and retain extended metadata for
documentation, linting, formatting, and related tasks.
Additionally, it would seamlessly integrate with tools
for dynamic serialization (e.g., SwiftProtoReflect) and
visualization (e.g., potential plugins for Xcode, VSCode,
or other IDEs).

Considering general lexical analysis theory [1, 6] and
practical experience with Protobuf [8], it can be
concluded that .proto grammar is parseable using
classical methods, but only if specific nuances are
accounted for—such as escaped strings, nested
declarations, comments, and other structural
elements. Previous work [4] has already emphasized
the importance of retaining such "secondary" elements
like comments, which can significantly enhance the
Protobuf toolchain.

Thus, Swift Proto Parser aligns with this broader
concept: it handles lexical and syntactic analysis,
producing descriptors (or equivalent AST structures).
These descriptors can then be immediately used for
dynamic serialization(e.g., SwiftProtoReflect),
migration tools, linters, formatters, and automated
documentation generation. In other words, this
approach establishes a self-sufficient ecosystem for
working with Protobuf in Swift, eliminating the need for
external C++/Java-based tools or intermediate files that
compromise the clean architecture of a Swift project.

Demonstrating the practical significance of this
solution, it is important to note that Swift development,
especially on Apple platforms, often faces challenges
when integrating third-party binary tools like protoc.
These challenges arise due to architectural differences
(e.g., ARM64 vs x86_64), code-signing requirements,
and other platform-specific constraints. A fully native
Swift parser eliminates these issues, ensuring a
consistent and streamlined approach to building and
deploying Swift-based applications [3, 4].

2. Practical implementation and application of Swift
Proto Parser

The internal structure of Swift Proto Parser can be
logically divided into three main modules:

1. Lexer – responsible for tokenizing the input
.proto file, identifying keywords, identifiers, operators,
brackets, string literals, and comments.

2. Parser – constructs an intermediate
representation (AST) or file descriptor based on the
token stream, incorporating information about
declared messages, fields, enums, services, options,
etc.

 3. Validation - after parser is done, we have to
ensure all proto elements are correct, not syntactically
(it’s parser’s responsibility) but grammatically, if
everything complies with protobuf.

3. Data structures – a set of Swift types (e.g.,
FileNode, MessageNode, EnumNode, ServiceNode,
etc.) that store the final model of the .proto file.

The Lexer is implemented as a class, with the core
method nextToken() sequentially reads characters and
generates tokens. It handles:

● Recognition of keywords (message, service,
rpc, etc.) with case sensitivity (if unmatched, the token
is classified as an identifier).

● Support for string literals with escaped
characters (\n, \t, \\, etc.).

● Recognition of numeric literals (including
integers, floating-point numbers, and exponential
notation).

● Processing of comments (// and /* ... */), which
are stored in additional token fields for potential
restoration or analysis [4].

In the LexerTests.swift file [9], the unit test
testSingleCharacterTokensWithoutSpaces verifies
whether the lexer correctly interprets a sequence of
characters such as {}, [], <>, and others without
separating spaces:

func
testSingleCharacterTokensWithoutSpaces()
throws {
 let input = "{}[]<>(),;=."
 let tokens = try getAllTokens(from: input)
 // Expecting 12 operators + EOF
 XCTAssertEqual(tokens.count, 13)
 XCTAssertEqual(tokens[0].type, .leftBrace)
 // ...
 XCTAssertEqual(tokens[11].type, .period)
 XCTAssertEqual(tokens[12].type, .eof)

}

The American Journal of Applied Sciences

17 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

This test ensures that the lexer correctly "slices" tokens
regardless of the presence of spaces [4].

After converting the input text into a stream of tokens,
the Parser begins its work. It follows rules similar to the
context-free grammar of the .proto format [8]. Each call
to parseFile() creates a FileNode structure containing:

● syntax – the syntax version (default: "proto3"),

● package – the package name,

● imports – a list of imported files,

● options – global options,

● messages, enums, services – declarations of
messages, enums, and services.

In ParserTests.swift, the test
testBasicMessageDefinition illustrates how an input
text of the following form:

message Test {
 string name = 1;
 int32 id = 2;
 bool active = 3;

}

is parsed into the corresponding tree node:

func testBasicMessageDefinition() throws {
 let input = """
 message Test {
 string name = 1;
 int32 id = 2;
 bool active = 3;
 }
 """
 let file = try parse(input)
 XCTAssertEqual(file.messages.count, 1)
 let message = file.messages[0]
 XCTAssertEqual(message.name, "Test")
 XCTAssertEqual(message.fields.count, 3)

}

This test verifies the message name (Test) and the
number of fields. If errors are encountered, such as
duplicate field numbers, the library generates the
appropriate exception
ParserError.duplicateFieldNumber, which is also
covered by tests [4].

The parser's output consists of Swift objects
(structures) that reflect the semantics of a .proto file.
For example, a MessageNode stores:

● name (the message name),

● fields (a list of fields, each described by type,
number, and options),

● nested messages and enums.

Similar structures exist for EnumNode, ServiceNode,
and FileNode. This representation makes the data
easily usable for further operations, such as
documentation generation or dynamic serialization [3].

Error handling and comment processing are integral
aspects of the system: if the input does not comply with
syntactic rules (such as incorrect syntax, invalid field
number, duplicate field, or incorrect keyword), the
lexer throws a LexerError while the parser raises a
ParserError, both of which include the exact line and
column where the issue occurred; moreover, instead of
simply ignoring comments, the lexer preserves them in
additional fields—namely, leadingComments and (in a
planned extension) trailingComment —thereby
enabling their restoration for auto-documentation or
visualization tools [9].

The project contains the main directory
Sources/SwiftProtoParser, which includes the
implementations of Lexer.swift, Parser.swift, and the
associated data structure modules. Tests are located in
Tests/SwiftProtoParserTests. Files like LexerTests.swift
and ParserTests.swift contain test cases covering a wide
range of constructs—from syntax and package
declarations to nested messages and edge cases (e.g.,
duplicate numbers, invalid characters, unmatched
brackets). This approach ensures high reliability and
reproducibility [4].

After performing lexical and syntactic analysis, Swift
Proto Parser generates a structured representation
that fully reflects the contents of the input .proto file.
The following example illustrates a core test case,
confirming correct parsing of the syntax declaration.

In most .proto files, the first line is syntax = "proto3";.
The test case testValidSyntaxDeclaration [9] verifies
that the parser correctly reads this directive and stores
it inFileNode.syntax:

func testValidSyntaxDeclaration() throws {
 let input = """
 syntax = "proto3";
 """
 let file = try parse(input)
 XCTAssertEqual(file.syntax, "proto3")

}

If the syntax version is invalid (e.g., "proto2" or a non-
string value), an invalidSyntaxVersion error is thrown

The American Journal of Applied Sciences

18 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

[8].

Next, .proto files often declare package some.package;
or include imports such as import "other.proto";. The
parser supports these constructs, including import
public and import weak, storing them in file.imports
(see testValidImports in ParserTests.swift).

Support for message, enum, service, and rpc

● Message: The parser verifies field name
correctness, ensures unique field numbers, and checks
field types (scalar, map, nested message).

● Enum: Options such as option allow_alias =
true; are supported. If allow_alias is disabled, duplicate
numbers are not allowed.

● Service: The parser processes rpc ... (Request)
returns (Response); methods and options within RPC
bodies. Stream syntax is supported.

The following is a simplified example (from
testBasicService in ParserTests.swift), where the parser
extracts a service and its methods:

func testBasicService() throws {
 let input = """
 service Greeter {
 rpc SayHello (HelloRequest) returns
(HelloResponse);
 }
 """
 let file = try parse(input)
 let service = file.services[0]
 XCTAssertEqual(service.rpcs.count, 1)
 XCTAssertEqual(service.rpcs[0].name,
"SayHello")

}

However, Swift Proto Parser itself does not perform
serialization or deserialization. Instead, it constructs a
structure (AST/descriptors) that can be passed to
SwiftProtoReflect [3]. The latter can dynamically
marshal and unmarshal messages if provided with a
field descriptor (type, number, options, nesting, etc.).
When a .proto file is present in a project, the following
steps are performed:

1. Parse the .proto file using
SwiftProtoParser.parseFile(...).

2. Obtain a structured model (a list of messages,
services, etc.).

3. Pass the model to SwiftProtoReflect, which
allows dynamic message object creation, field
assignments, and serialization into the Protobuf binary

format—without calling protoc.

This approach ensures a "pure Swift stack", eliminating
dependencies on external utilities [4].

Practical applications of Swift Proto Parser beyond
direct .proto file parsing

1. Custom documentation generators

● Extraction of comments, message/service
declarations for automated description generation
(Markdown, HTML, PDF).

● Visualization of relationships (e.g., identifying
which RPC calls which service, and how messages are
nested within each other).

2. Formatters and linters for .proto files

● Automatic formatting: adjusting indentation,
spacing, and sorting fields by number.

● Linters: enforcing corporate style guidelines,
detecting restricted constructs.

● Refactoring: bulk renaming of fields and
services. When combined with SwiftProtoReflect, even
associated Swift code can be updated automatically to
reflect schema changes.

3. Visual editors and IDE integration

● Plugins for Xcode, Visual Studio Code, JetBrains
IDEs, etc., enabling live syntax highlighting, keyword
suggestions, and file structure validation.

● API Prototyping: developers can modify or add
services and fields dynamically, seeing real-time results.

4. Migration tools

● Bulk updates for legacy .proto files (e.g.,
renaming deprecated fields or transitioning from
proto2 to proto3).

● Automated version conflict resolution, useful
when multiple development branches introduce
different changes to .proto files.

● Validation of "evolving" fields to prevent
backward compatibility issues.

5. Impact analysis

● When a field is removed or renamed,
identifying all occurrences across .proto files or even in
Swift code if the parser is linked to the codebase.

● Compatibility warnings for previously released
clients.

All these use cases rely on a single key feature—
retrieving the syntactic structure of a .proto file in a
native Swift format. Previously, similar tasks required
manual protoc execution or complex workarounds,
slowing development and complicating build processes

The American Journal of Applied Sciences

19 https://www.theamericanjournals.com/index.php/tajas

The American Journal of Applied Sciences

[2, 4]. The presence of Swift Proto Parser simplifies the
creation of a comprehensive set of tools and enhances
flexibility in managing Protobuf schemas.

CONCLUSION

The study demonstrates how a native parser for .proto
files, written entirely in Swift, can eliminate the
complexities associated with external tools like protoc
and markedly expand the potential for Protobuf-based
solutions within Swift projects. By combining
theoretical insights into lexical analysis with a practical
and test-driven implementation, the library achieves
full support for Protobuf language features while
retaining comments and other metadata vital for
advanced tooling. Integrated with SwiftProtoReflect, it
offers a coherent environment for dynamic serialization
and real-time adaptation of schema definitions. This
synergy addresses a longstanding limitation in the Swift
ecosystem, transforming what was once a compilation-
stage dependency into a flexible, run-time amenity that
significantly enhances both developer productivity and
project maintainability.

REFERENCES:

Aho A. V. et al. Lexical analysis //Compilers: Principles,
Techniques, and Tools. 2nd ed. Pearson Education: Inc.
– 2006. – С. 109-90.

Barik R. et al. Optimization of Swift Protocols
//Proceedings of the ACM on Programming Languages.
– 2019. – Т. 3. – №. OOPSLA. – С. 1-27.

Kish A. Proto Reflection Implementation For Dynamic
Interaction With gRPC Services In High-load Systems
//The American Journal Of Engineering And
Technology. – 2024. – vol. 6. – №. 12 – pp. 84-91.

Kish A. The Future of Api Development: How Proto
Reflection Transforms GRPC Interactions
//International Journal of Scientific Research and
Engineering Development. – 2025. – vol. 8. – №. 1 – pp.
406-411.

Nimpattanavong C. et al. Improving Data Transfer
Efficiency for AIs in the DareFightingICE using gRPC
//2023 8th International Conference on Business and
Industrial Research (ICBIR). – IEEE, 2023. – pp. 286-290.

Pai T V., Aithal P. S. A systematic literature review of
lexical analyzer implementation techniques in compiler
design //International Journal of Applied Engineering
and Management Letters (IJAEML). – 2020. – Т. 4. – №.
2. – С. 285-301.

Sangwai A. et al. Barricading System-System

Communication using gRPC and Protocol Buffers
//2023 5th Biennial International Conference on
Nascent Technologies in Engineering (ICNTE). – IEEE,
2023. – С. 1-5.

Google. (2020). Protocol Buffers Documentation.
Retrieved from
https://developers.google.com/protocol-buffers

Swift-protoparser. Retrieved from
https://github.com/truewebber/swift-protoparser

