

Strength Indicators Of Cement Systems With Additives Of Surface - Active Substances

Teshaboeva Nodira Djuraevna

Senior Lecturer, Department Of Buildings And Structures Of Construction, Ferghana Polytechnic Institute, Uzbekistan

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

ABSTRACT

In the article, the study was to establish the effect of surfactant additives on the strength characteristics of cement systems. The determinations were carried out on cements of various mineralogical composition, freshly ground and stale, on cement-sand mortars and concretes. For control samples and with additives, the same plasticity was chosen, and the water-cement ratio than for various additives fluctuated within certain limits.

KEYWORDS

Additive, plasticity, solution, cement-sand, strength, water-cement ratio.

INTRODUCTION

The aim of the research was to establish the effect of surfactant additives on the strength characteristics of cement systems. Determinations were carried out on cements of various mineralogical composition, freshly ground and stale, and on cement-sand mortars

and concretes. For control samples and with additives, the same plasticity was selected, while the water-cement ratio than for various additives fluctuated within certain limits. Ultimate strength in compression, bending and elastic modulus were determined for mortar samples on beams 4x4x16 cm and cubes 7.07x 7.07x 7, 07 cm, and for concretes on cubes 10x10x10cm and 20x20x20cm. [3.8.2].

It is known that, in a number of cases, when using mylonft, there is some lack of strength at the initial stage. A decrease in the strength of products on hydrophobic cements was observed only on freshly ground cements when molding samples with a high watercement ratio. Therefore, a large number of comparative tests of the strength of samples on hydrophobically plasticized and control cements were carried out. The tables below show the results of these tests.Table 1 summarizes the test results of ordinary cement (I-B and I D and cement with a high content of C3C (3-C and 5-I).

As follows from the data in the table, cement mortars with OP with a decrease in the watercement ratio (at different plasticity) are characterized by increased compressive and flexural strengths in comparison with the control values in all test periods up to a year. In this case, the optimal dosage of OP is in the range of 0.15-0.30%, the strength of the samples on such cement samples increases by 10-12% in comparison with the control ones. Mortars with OP additives, made with the same water-cement ratio as the control ones, are characterized by a shortage of strength (about 5%) in the initial hardening period (3 days) and equalization of the strength values to 28-day hardening (cement ID). [1.6.5].

The addition of mylonft, in spite of the decrease in the water-cement ratio, in some cases yields a 5-8% shortfall in strength compared to the control ones, even after 360 days of hardening. The greatest increase in strength is achieved when using a synthetic fatty acid of the C7-C9 fraction. The introduction of this additive increases the strength of samples at 3 days of age by 50%, at 28 days of age by 35% and 360 days of age - by 25%.

Table 1. the results of tests of lborotorny salted cements and mortars based on these cements are given. The addition of oxidized petrolatum in all cases causes an increase in the strength of the cement and when tested at 3,7 and 28 days of age, despite the increase in the normal density of the cement paste, the increase in strength is explained in this case. First of all, an increase in the specific surface area of cements when grinding them with OP additives. The introduction of oxidized petrolatum in an amount of 0.25% increased the plasticity of the solutions (increasing the value of the slump of the cone), did not reduce the strength indicators even with water-cement ratios the same as those adopted for the control compositions[7.4.3].

Table 1

Results of testing cement and mortars with oxidized petrolatum additives (composition 1: 3)

Type of cement serves,x Financess of grinding residues on sieves,x Nor grinding residues on sieves,x Nor mal naya goose tota dough Uniformity of volume thange Grasping time Crasping time Testing of cement age Corresting time Testing of cement age 900 otv 4900 otv 4900 otv ina in in in in on pah on pah on pah end on time on time end on			•			r								
$ \begin{array}{ c c c c c c } & & residues on sieves, % \\ \hline timation line since vector line sieves, % \\ \hline \begin{timation line since vector line vector l$														
$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$	cement					volu	me ch	ange	ange time					
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										3'	1108-201	6		
$ \begin{array}{ c c c c c c } & \hline \\ \hline$				es,%	-					· ·				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										end				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			900	4900		de	-	ng				•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	-	-		pan	chen	FOOK		streng		cm- at	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					uougn			ie				age		
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$											3	7	28	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \hline \end{tabular}$	No ad	lditive				В	В			-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0,365	7,485	22	В	В	В	2 ²⁰	4'0	218	297		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	With a	dditive	0,176	2.1	25	В	в	В	2 ⁵⁵	4 ⁵⁵	242	349		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-		2.1		в	в	в	2 ⁵⁵	-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c } \hline 0,15 & 1,45 & 25 & B & B & B & B & 2^{43} & 5^{25} & 303 & 400 \\ \hline 0,15 & 1,45 & 2,0 & 25 & B & B & B & 3^2 & 5^{40} & 287 & 411 \\ \hline With additive & 0,15 & 2,0 & 25 & B & B & B & 3^2 & 5^{40} & 287 & 411 \\ \hline OP-0,10 and & & & & & & & & & & & & & & & & & & &$			0.45	4.45			_		- 43	- 25	2.02	400		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	vvitii a	duitive								-		-		
With additive 0,15 2,0 25 B B B B 3^2 5^{40} 287 411 OP- 0,10 and - <t< td=""><td>0</td><td>P</td><td>0,15</td><td>1,40</td><td>25</td><td>В</td><td>В</td><td>В</td><td>2</td><td>5</td><td>202</td><td>400</td><td></td></t<>	0	P	0,15	1,40	25	В	В	В	2	5	202	400		
OP- 0,10 and CHB-0,015 Cone ATC Volumetric Volumetric <td< td=""><td>- 0</td><td>,25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	- 0	,25												
CHB-0,015 Cone draft aged ATC draft in cm Volumetric weight of the solution kg /m ³ Compressive strength kg / cm ² 3 7 28 Value	With a	dditive	0,15	2,0	25	В	в	В	3 ²	5 ⁴⁰	287	411		
CHB-0,015 Cone draft aged ATC draft in cm Volumetric weight of the solution kg /m ³ Compressive strength kg / cm ² 3 7 28 Value	OP- 0	10 and												
Ultimate bending resistance kg / cm ² aged Cone draft in cm ATC draft in cm Volumetric weight of the solution kg / m ³ Compressive strength kg / cm ² 3 7 28 X <t< td=""><td>01-0,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	01-0,													
resistance kg / cm ² aged draft in cm weight of the solution kg / m ³ 3 7 28 Samples of normal storage Water storage samples 3 7 28 3 72 28 7 28 15,7 17,7 4,5 0,54 2,13 76 84 165 102 197 15,7 17,7 4,0 0,58 2,23 49 130 171 130 191 14,8 19,2 5,5 0,545 2,10 53 76 168 98 145 18,5 22,5 5,56 0,545 2,09 72 86 1447 102 187	CHB-	0,015												
aged in cm in cm the solution kg / m³ Samples of normal storage Water storage samples 3 7 28			-		ATC				Compre	Compressive strength kg / cm ²				
3 7 28 Solution kg / m³ Samples of normal storage Water storage samples 3 7 28 - - - 3 72 28 7 28 15,7 17,7 4,5 0,54 2,13 76 84 165 102 197 15,7 17,7 4,0 0,58 2,23 49 130 171 130 191 14,8 19,2 5,5 0,545 2,10 53 76 168 98 145 14,8 19,2 5,5 0,545 2,10 53 76 168 98 145 18,5 22,5 5,56 0,545 2,09 72 86 1447 102 187	resis	-	g/cm²			-								
3 7 28 /m³ storage samples 3 7 28 - - - 3 72 28 7 28 15,7 17,7 4,5 0,54 2,13 76 84 165 102 197 15,7 17,7 4,0 0,58 2,23 49 130 171 130 191 14,8 19,2 5,5 0,545 2,10 53 76 168 98 145 14,8 19,2 5,5 0,533 2,16 68 104 162 112 192 18,5 22,5 5,56 0,545 2,09 72 86 1447 102 187		aged		in cm				Samp	les of n	ormal	Wa	ter stor	age	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-	-			-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						/ 11	12		0			•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	7	28											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								3	72	28	7	28		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,7	17,7		4,5	0,54	2,1	3			165		197		
14,8 19,2 5,5 0,545 2,10 53 76 168 98 145 14,8 19,2 5,5 0,53 2,16 68 104 162 112 192 18,5 22,5 5,56 0,545 2,09 72 86 1447 102 187									-					
14,819,25,50,532,166810416211219218,522,55,560,5452,0972861447102187									76	168	98			
	14,8					2,1	6		104	162	112			
18,5 22,5 0,53 2,15 75 121 170 104 193				5,56	0,545	2,0	9	72	86		102	187		
	18,5	22,5			0,53	2,1	5	75	121	170	104	193		
18,2 1,7 6 0,53 2,15 61 96 151 103 185 Table 2	18,2	1,7		6	0,53	2,1	5	61	96	151	103	_		

Table 2

OCLC - 1121105553

Strength indicators of cements (in plastic mortars 1: 3)

Designa tion	Additi	ve	IN C		Ultimat	te strenş	modulus of elasticity E = 104 kg / cm2					
cement tov	v nova sie					ion	Bending			3 дня	28 дня	36одней
		ing ,%		3 дня	28 дней	360 дней	3 дни	28 дней	360 дней			
I-V	No addi	itive	0,45	163	285	345	32,4	55,0	58,0	22,3	35,0	38,0
I-V	OP		0,44	172	303	386	37,1	57,0	58,0	23,1	35,2	33,8
I-V	OP		0,43	182	330	375	44,0	60,0	63,0	26,0	36,6	36,8
I-V	OP		0,43	180	310	360	42,6	60,0	61,0	25,8	36,2	36,0
I-V	OP	I	0,46	164	224	222	32,5	60,8	51,5	26,8	33,0	33,5
			0,46	159	248	245	32,0	52,8	57,0	25,8	33,4	34,7
I-V	OP		0,46	148	210	220	35,0	51,7	57,0	26,8	35,6	34,0
I-V	OP		0,46	154	184	200	36,9	50,3	64,0	27,7	35,8	33,0
3-C	No add	itive	0,42	203	368	-	48,2	60,0	-			-
3-C	OP		0,39	220	391	-	51,2	68,0	-			-
3-C	МН		0,39	183	340	-	57,0	68,0	-	29,5	37,1	-
5- II	No add	itive	0,45	102	194	305	31,0	49,0	45,5	22,0	30,4	30,6

The USA Journals Volume 03 Issue 05-2021

The American Journal of Applied sciences
(ISSN – 2689-0992)
Published: May 31, 2021 Pages: 203-209
Doi: https://doi.org/10.37547/tajas/Volume03Issue05-32

0,44

147

243

hydrophobic additives. Good results are achieved when oxidized petrolatum or distillation residues are added to cement systems in a mixture with machine oil, spindle oil or similar oil in an additive: oil ratio = 163.

Influence of surface active additives on the basic physical and mechanical properties of concretes

Supplement type	Dosage,%	V/C	Cone draft, cm	Conveniently Styles	Volume weight,	-	ressive s in kg / cr	-
			-	availability	kg / dm3			
						3 day	28	180
							day	day
No additive	-	0,425	0,4	28	2,40	240	365	365

5- II	C ₇ -C ₉	0,43	151	260	380	35,5	50,5	59,0	23,0	32,8	34,0
5- II	C ₁₀ -C ₁₆	0,45	126	185	310	31,5	46,5	52,0	22,0	32,0	33,2
5- II		0,43	98	191	279	30,4	50,8	56,0	25,0	43,0	33,7

330

38,7

58,4

59,5

Based on the technical and economic analysis

of the results of experimental work and

production volumes of various surface-active

additives, at present, the following additives

can be recommended for implementation in the practice of hydraulic engineering: oxidized petrolatum in an amount of 0.20-0.22% and vat residues of the synthesis of fatty acids in the amount of 0.22-0.25% by weight of the cement. In some cases, it is advisable to use a combined additive of these surfactants in a mixture with sulfite-alcohol stillage (0.07-0.12%) or other

OP

5- II

MPACT FACTOR 2021: 5.634

34,0

OCLC - 1121105553

38,17

24,7

Table 3

The American Journal of Applied sciences (ISSN – 2689-0992) Published: May 31, 2021 | Pages: 203-209 Doi: https://doi.org/10.37547/tajas/Volume03Issue05-32

IMPACT FACTOR 2021: 5. 634

OCLC - 1121105553

OP	0,22	0,395	1,0	24	2,39	245	395	400
OP plus	0,22	0,383	1,0	22	2,40	218	420	420
556	0,10							
PRS								
VAT	0.20	0.400	0,80	28	2.40	215	380	300
residues	0,20	0,400	0,00	20	2,40	215	200	390

CONCLUSION

The results of testing solutions on slag Portland cements and clinker cements are given in table. 1 and 2. Consumption of cement in solutions with oxidized petrolatum decreased slightly in comparison with the control. Samples were subjected to normal air and water storage. As follows from the data, in most cases, the addition of oxidized petrolatum increased the strength of the solutions in comparison with the control. The combined addition of oxidized petrolatum and SNB somewhat lowers the strength of the solutions during all test periods. Particularly interesting results were obtained when testing samples of air storage.

REFERENCES

- Bazhenov Yu.M. Concrete technology. M, High School. 2002 pp. 20, 40, 3. Letrmit R. Problems of concrete technology. M. Gosstroyizdat. 1999.
- Djurayevna T. N. et al. Building Materials Determined In The Architectural Monuments Of Central Asia // The American Journal of Applied Sciences. - 2020. - T. 2. -No. 12. - S. 77-80.
- 3. Mamajonov AU, Teshaboeva N.D THE USE OF MINERAL FILLERS AND CHEMICAL

ADDITIVES ACF, POLYFUNCTIONAL PURPOSE SURFACES IN THE PRODUCTION OF CEMENT, MONOLITHIC AND ASSEMBLED REINFORCED Soyuz ROOCETON. - 2020. - No. 3-2

- 4. Teshaboeva N.D. Influence of the drying up of the Aral Sea and dry hot climate of Central Asia on load-bearing and enclosing structures and buildings and structures. Young scientist. No. 20. (258). May 2019.
- Djurayevna T. N. et al. Building Materials Determined In The Architectural Monuments Of Central Asia //The American Journal of Applied sciences. 2020. T. 2. №. 12. C. 77-80.
- 6. Teshaboeva N.D. .Influence Of Surface Additives On Strength Indicators Of Cement Systems. The American Journal of Applied Sciences. IMPACT FACTOR 2020: 5. 276.
- 7. Teshaboeva N.D. .Building materials, standards, laboratory conditions, narural and climacts conditions. Thi American journal of applied sciences.2020. 5,276
- Abobakirova Z. A. Regulation Of The Resistance Of Cement Concrete With Polymer Additive And Activated Liquid Medium //The American Journal of Applied sciences. – 2021. – T. 3. – №. 04. – C. 172-177.

IMPACT FACTOR 2021: 5. 634 OCLC - 1121105553

- 9. Teshaboeva N. D. Organic substance in receiving agloporite from raw materials importance //INTERNATIONAL JOURNAL OF DISCOURSE ON INNOVATION, INTEGRATION AND EDUCATION. 2021. T. 2. № 2. C. 63-66.
- 10. Teshaboeva N. D. The ability to determine the capillary permeability of concrete in the conditions of dry harsh climate // EURASIAN UNION UCHENYX (ESU). 2019. S. 70.
- Djurayevna T. N. et al. Influence Of Surface Additives On Strength Indicators Of Cement Systems //The American Journal of Applied sciences. – 2020. T. 2. №. 12. C. 81-85.
- Djuraevna T. N. Surface identification methods used in land management and land cadastre //ACADEMICIA: An International Multidisciplinary Research Journal. 2020. T. 10. – №. 8. – C. 98-103.
- Teshaboeva N. D. The ability to determine the capillary permeability of concrete in the conditions of dry harsh climate // EURASIAN UNION UCHENYX (ESU). - 2019. - C. 70.
- 14. Maxkamov Y. M., Mirzababaeva S. M. Temperaturnye progiby jelezobetonnyx balok v usloviyax vozdeystviya tehnologicheskix temperatura // Problems of modern science and education. - 2019. -№. 11-1 (144).