Doi: https://doi.org/10.37547/tajas/Volumeo3Issueo6-05

OCLC - 1121105553

Journal Website: http://theamericanjour

nals.com/index.php/taj

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

About One Theorem Of 2x2 Jordan Blocks Matrix

Hojiyev Dilmurodjon Bahodirovich

Math Teacher Of The Lyceum Of Andijan State University, Uzbekistan

Muhammadjonov Akbarshoh Akramjon Og`Li

The Third-Year Student Of Andijan State University, Uzbekistan

Muzaffarova Dilshoda Botirjon Qizi

The First-Year Student Of Andijan State University, Uzbekistan

Ibrohimjonov Islombek Ilhomjon O'G'Li

The First-Year Student Of Andijan State University, Uzbekistan

Ahmadjonova Musharrafxon Dilmurod Qizi

The First-Year Student Of Andijan State University, Uzbekistan

ABSTRACT

In this paper, we have studied one theorem on 2x2 Jordan blocks matrix. There are 4 important statements which is used for proving other theorems such as in the differensial equations. In proving these statements, we have used mathematic induction, norm of matrix, Taylor series of $f(x) = e^{x}$.

KEYWORDS

Matrix, vector, mathematic induction method, equality, inequality, norm, expansion of series, estimation.

INTRODUCTION

First of all, we present the Theorem that is the main result of our article, then we prove statements one after another in the Theorem.

Theorem. If

$$A_i = \begin{bmatrix} -\lambda_i & 1 \\ 0 & -\lambda_i \end{bmatrix}, \qquad \lambda_i \geq 0 \quad i = 1, 2, ... \quad t \in [0; T]$$

then the following statements are true:

Published: June 30, 2021 | Pages: 28-33 Doi: https://doi.org/10.37547/tajas/Volumeo3Issueo6-05

1)
$$e^{A_i t} = e^{-\lambda_i t} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$
, $i = 1, 2, ...$

- 2) $e^{A_i(t+h)} = e^{A_it} \cdot e^{A_ih}$, heR.
- 3) $\|e^{A_i t}\| \le 1 + T$

4)
$$\|e^{A_i t} - E_2\| \le t$$
, $E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

where T is sufficiently large fixed number, $||A|| = \max_{|x|=1} |Ax|$.

Proof. We would prefer to present proofs in order which is shown above, respectively.

1. Here, the following Taylor expansion of $f(x) = e^x$ function is important to prove 1) equality, so we use this

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 (1)

If we mean $x = A_i t$, then we get a result that:

$$e^{A_i t} = E_2 + A_i t + \frac{(A_i t)^2}{2!} + \frac{(A_i t)^3}{3!} + \dots + \frac{(A_i t)^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{(A_i t)^n}{n!}$$
 (2)

We establish one by one A_i^n (n = 2,3,...) in (2) equality for convenience:

$$A_{i}^{2} = \begin{bmatrix} -\lambda_{i} & 1\\ 0 & -\lambda_{i} \end{bmatrix} \cdot \begin{bmatrix} -\lambda_{i} & 1\\ 0 & -\lambda_{i} \end{bmatrix} = \begin{bmatrix} \lambda_{i}^{2} & -2\lambda_{i}\\ 0 & \lambda_{i}^{2} \end{bmatrix}$$

$$A_{i}^{3} = \begin{bmatrix} \lambda_{i}^{2} & -2\lambda_{i} \\ 0 & \lambda_{i}^{2} \end{bmatrix} \cdot \begin{bmatrix} -\lambda_{i} & 1 \\ 0 & -\lambda_{i} \end{bmatrix} = \begin{bmatrix} -\lambda_{i}^{3} & 3\lambda_{i}^{2} \\ 0 & -\lambda_{i}^{3} \end{bmatrix}$$

$$A_i^4 = \begin{bmatrix} -\lambda_i^3 & 3\lambda_i^2 \\ 0 & -\lambda_i^3 \end{bmatrix} \cdot \begin{bmatrix} -\lambda_i & 1 \\ 0 & -\lambda_i \end{bmatrix} = \begin{bmatrix} \lambda_i^4 & -4\lambda_i^3 \\ 0 & {\lambda_i}^4 \end{bmatrix}$$

As a result of continue doing this process, we obtain:

$$A_{i}^{n} = \begin{bmatrix} (-1)^{n} \lambda_{i}^{n} & (-1)^{n-1} \cdot n \cdot \lambda_{i}^{n-1} \\ 0 & (-1)^{n} \cdot \lambda_{i}^{n} \end{bmatrix}$$
(3)

Doi: https://doi.org/10.37547/tajas/Volumeo3Issueo6-05

Published: June 30, 2021 | Pages: 28-33

Now, we indicate that (3) equality which we mentioned for A_i^n by inductive method is correct for any $n \in N$ by using mathematic induction method so we prove that

$$\begin{split} A_i^{\ n+1} &= \begin{bmatrix} (-1)^{n+1} \lambda_i^{\ n+1} & (-1)^n \cdot (n+1) \cdot \lambda_i^{\ n} \\ 0 & (-1)^{n+1} \cdot \lambda_i^{\ n+1} \end{bmatrix} \\ A_i^{n+1} &= A_i^n \cdot A_i = \\ &= \begin{bmatrix} (-\lambda_i)^n & n \cdot (-\lambda_i)^{n-1} \\ 0 & (-\lambda_i)^n \end{bmatrix} \cdot \begin{bmatrix} -\lambda_i & 1 \\ 0 & -\lambda_i \end{bmatrix} = \\ &= \begin{bmatrix} (-1)^{n+1} \lambda_i^{\ n+1} & (-1)^n \cdot (n+1) \cdot \lambda_i^{\ n} \\ 0 & (-1)^{n+1} \cdot \lambda_i^{\ n+1} \end{bmatrix} \end{split}$$

This indicates that (3) equality is correct for any $n \in N$.

Therefore,

$$\begin{split} e^{A_it} &= \sum_{n=0}^{\infty} \frac{(A_i \cdot t)^n}{n!} = \sum_{n=0}^{\infty} \frac{A_i^n \cdot t^n}{n!} = \\ &\sum_{n=0}^{\infty} \begin{bmatrix} \frac{(-\lambda_i t)^n}{n!} & \frac{(-\lambda_i t)^{n-1}}{(n-1)!} \cdot t \\ 0 & \frac{(-\lambda_i t)^n}{n!} \end{bmatrix} = e^{-\lambda_i} \cdot \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \end{split}$$

1. Next, we indicate that 2) equality is right.

If we mean $x = A_i(t + h)$ and close to the growth of (1) we can write the left hand of 2) equality, we get a result

$$\begin{split} e^{A_i(t+h)} &= E_3 + A_i(t+h) + \frac{[A_i(t+h)]^2}{2!} + \frac{[A_i(t+h)]^3}{3!} + \dots \\ &+ \dots + \frac{[A_i(t+h)]^n}{n!} + \dots + = E_2 + A_i(t+h) + A_i^2 \left(\frac{t^2}{2!} + t \cdot h + \frac{h^2}{2!}\right) + \dots \end{split}$$

Published: June 30, 2021 | Pages: 28-33
Doi: https://doi.org/10.37547/tajas/Volume03Issue06-05

OCLC - 1121105553

$$+\ldots +A_i^n \left[\frac{t^n}{n!} + \frac{t^{n-1}}{n-1} \cdot \frac{h}{1!} + \ldots + \frac{t^{n-k}}{(n-k)!} \cdot \frac{h^k}{k!} + \ldots + \frac{h^n}{n!}\right] + \ldots =$$

$$= \left(E_2 + A_i t + \frac{(A_i t)^2}{2!} + \ldots + \frac{(A_i t)^n}{n!} + \ldots\right) \left(E_2 + A_i h + \frac{(A_i h)^2}{2!} + \ldots + \frac{(A_i h)^n}{n!} + \ldots\right)$$

 $= e^{A_i t} \cdot e^{A_i h}$

Proof is completed.

2. Next, we prove 3) inequality

In fact, we get a result from 1) that

$$\left\|e^{A_it}\right\| = \left\|e^{-\lambda_i}\cdot\begin{bmatrix}1 & t\\0 & 1\end{bmatrix}\right\| \leq \left\|\begin{bmatrix}1 & t\\0 & 1\end{bmatrix}\right\|$$

According to the original estimate $||A|| = \max_{|x|=1} |Ax|$ above:

$$\begin{split} \left\| \mathbf{e}^{\mathbf{A}_{\mathbf{i}} \mathbf{t}} \right\| & \leq \left\| \begin{bmatrix} 1 & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \right\| = \max_{|\mathbf{x}| = 1} \left| \begin{bmatrix} 1 & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \right| = \\ \max_{|\mathbf{x}| = 1} \left| \begin{bmatrix} \mathbf{x}_1 + \mathbf{t} \cdot \mathbf{x}_2 \\ \mathbf{x}_2 \end{bmatrix} \right| \end{split}$$

where
$$x = {X_1 \brack X_2}$$
 , $|x| = \sqrt{x_1^2 + x_2^2} = 1$.

We mean a, b, c vectors by

$$a = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, b = \begin{bmatrix} t \cdot x_2 \\ 0 \end{bmatrix}, c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 + t \cdot x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} t \cdot x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = a + b + c$$
$$\|e^{A_i t}\| \le \max_{|x|=1} |a + b + c|$$

We know that $|a+b+c| \le |a|+|b|+|c|$ inequality is correct for any a, b, c vectors. By using this,

Published: June 30, 2021 | Pages: 28-33

Doi: https://doi.org/10.37547/tajas/Volumeo3Issueo6-05

OCLC - 1121105553

$$\begin{aligned} \left\| e^{A_1 t} \right\| &\leq \max_{|x|=1} |a+b+c| \leq |a| + |b| + |c| = \\ &= \sqrt{x_1^2 + x_2^2} + \sqrt{t^2 \cdot x_2^2} = \\ &= 1 + t \cdot \sqrt{x_2^2} \leq 1 + t \end{aligned}$$

because of $t \in [0; T]$, we get a result

$$\left\|e^{A_it}\right\| \leq 1 + T$$

3. Eventually, we move to prove 4) inequality in the **Theorem**:

$$\left\|e^{A_it}-E_2\right\|\leq t$$

where
$$E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

We have the following expressions by using 1) equality and $e^{-\lambda_i t} \le 1$

inequality:

$$\begin{split} \left\| \mathbf{e}^{\mathbf{A}_{\mathbf{i}}\mathsf{t}} - \mathbf{E}_{2} \right\| &= \left\| \mathbf{e}^{-\lambda_{\mathbf{i}}\mathsf{t}} \begin{bmatrix} 1 & \mathbf{t} \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\| \leq \\ &\leq \left\| \begin{bmatrix} 1 & \mathbf{t} \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\| = \left\| \begin{matrix} 0 & \mathbf{t} \\ 0 & 0 \end{matrix} \right\| = \\ &= \max_{|\mathbf{x}|=1} \left| \begin{bmatrix} 0 & \mathbf{t} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} \right| = \max_{|\mathbf{x}|=1} \left| \begin{bmatrix} \mathbf{t} \cdot \mathbf{x}_{2} \\ 0 \end{bmatrix} \right| \end{split}$$

where
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $|x| = \sqrt{x_1^2 + x_2^2} = 1$.

Close to the proof of the third property we mean a, b, c vectors by

$$a = \begin{bmatrix} t \cdot x_2 \\ 0 \end{bmatrix}$$
, $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And according to $|a + b + c| \le |a| + |b| + |c|$ inequality

Doi: https://doi.org/10.37547/tajas/Volumeo3Issueo6-o5

Published: June 30, 2021 | Pages: 28-33

IMPACT FACTOR 2021: 5. 634

OCLC - 1121105553

$$\|e^{A_i t} - E_2\| \le \max_{|x|=1} |a+b+c| \le [|a|+|b|+|c|]_{|x|=1} =$$

$$\sqrt{t^2 \cdot x_2^2} = t \cdot \sqrt{x_2^2} \le t.$$

This **Theorem** is proved completely.

REFERENCES

- V.G. Miladjanov, R.V. Mullajonov, K.X. Turg'unova, SH.N. Abdug'apporova, J.V. Mullajonova, "Matritsalar nazariyasining tanlangan boblari", Toshkent 2014.
- 2. Р.В.Белман ведение теории матриц.-М., Наука, 1976.
- 3. Д. П. Гроссман, Р. Фрезер, В. Дункан и А. Коллар, "Теория матриц и её приложения к дифференциальным уравнениям и динамике", УМН, 1952, том 7, выпуск 3(49), 190–192
- 4. Bhatia, R. (1997). Matrix Analysis. Graduate Texts in Mathematics. 169. Springer. ISBN 978-0-387-94846-1.
- 5. Householder, Alston S. (2006). The Theory of Matrices in Numerical Analysis. Dover Books on Mathematics. ISBN 978-0-486-44972-2.
- 6. Van Kortryk, T. S. (2016). "Matrix exponentials, SU(N) group elements, and real polynomial roots". Journal of Mathematical Physics. 57 (2): 021701. arXiv:1508.05859.