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ABSTRACT

In this paper, we have studied one theorem on 2x2 Jordan blocks matrix. There are 4 important
statements which is used for proving other theorems such as in the differensial equations. In proving
these statements, we have used mathematic induction, norm of matrix, Taylor series of f(x) = e*.

KEYWORDS

Matrix, vector, mathematic induction method, equality, inequality, norm, expansion of series,
estimation.

INTRODUCTION

First of all, we present the Theorem that is the
main result of our article, then we prove
statements one after another in the Theorem.

Theorem. If

a1 o _
Ai_[o —7\1]’ A>0 i=12.. te[0;T]

then the following statements are true:
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Ajt — LAt 1t -
1) efit=e [0 1] , i=1,2,..
2) eAi(t+h) — eAit . eAih’ heR.

3) ||eAit|| <1+4T

4) eM —Epflst  Ep=[l 9]

0 1F
where T is sufficiently large fixed number, ||A|| = max y-|Ax].

Proof. We would prefer to present proofs in order which is shown above, respectively.
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1. Here, the following Taylor expansion of f(x) = e* function is important to prove 1) equality,

so we use this

x? x3 x1

_1+X+§+§+ + +...= F

If we mean x = A;t, then we get a result that:

eMt =F, + Ajt +

(AD?2  (AD? (A" o (A"
ol 3 +...+—n! +...=Z

We establish one by one A} (n = 2,3,...) in (2) equality for convenience:

N2 =2
A=y —x] —x] [ ]
Ad = A2 =2 _[—xi 1 ]= -3 32
! 0 }\12 0 _}\i 0 —}\13

A4 -3 32 _[—xi 1 ]= Nt -8
! 0 —}\13 0 _)\i 0 )\i4

As aresult of continue doing this process, we obtain:

n [(—1)%“ (-t
Ai =

0 D" A" ] @
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Now, we indicate that (3) equality which we mentioned for A;" by inductive method is correct for

any n € N by using mathematic induction method so we prove that

n+1

Ap+1:[c<0““xi (—1Y“(n+1J-M“]
' 0

(_1)n+1 . }\in+1
ATt =AT-A =

LEE (G

(D™ (D (+ 1) ')\in]
0 (_1)n+1 . )\in+1

This indicates that (3) equality is correct for any n € N.

Therefore,

At _ (Ai-t)n_ A’i‘-tn_
e = n! B nl

n=0 n=0

(-AD" (AD™T

OO[ ! ! t] 1 t
Z|[ \ (n(—_xit))'n |=e_)\i'[0 1

= 0 n! J

1. Next, we indicate that 2) equality is right.

If we mean x = A;(t+ h) and close to the growth of (1) we can write the left hand of 2) equality,

we get a result

. [Ai(t+ )] [Ai(t+W)]?
At = By + Aj(t+h) +— TR 1 3
Ai(t+h)]" t? h?
+..+¥+...+=EZ+Ai(t+h)+A%<E+t'h+§>+...
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tn tn—l h th- -k hk
o FAY = — . — 4 —
1[n! n—1 1! (n—k)' k! ]
(E2+At+(A‘t) TR L )(E2+Ah+(Ah) +...+ G0 +)
n! n!
=eAit_eAih

Proof is completed.
2. Next, we prove 3) inequality

In fact, we get a result from 1) that

e =le-[o 3l =1l 4l

According to the original estimate [|A|| = max 41 |Ax| above:

=l ol =mexly 3l =

X1+ t:Xx
max|[™ 7,
[x|=1 X2

X1 2 2
wherex = x| =/x7 + x5 =1.
X2

We mean a, b, c vectors by

o=l v=[5) o= )

[x1+t Xz] [ ]+[t'OX2]+[8]=a+b+c

||le®|| < maxla+b + |
|x|=1

We know that |a+ b + c| < |a] + |b| + |c| inequality is correct for any a,b, c vectors. By using

this,
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|le®|| < maxla+b +c| < |a] + |b| + |c| =
1x]=1

:\/X12+X22+\/t2'X22:
=1+t-{x2<1+4t

because of t € [0; T], we get a result
et <1+T

3. Eventually, we move to prove 4) inequality in the Theorem:

|efit—E,| <t

where E, = [(1) 2]

We have the following expressions by using 1) equality and e it < 1

inequality:
et —all = e[ 3 =[o 3/l
<Ifo 2-[ 3=15 ol =
=max[ly ol foll =max|[ 7l

X1
where x = [Xz] x| =/x3 + x5 =1.

Close to the proof of the third property we mean a, b, c vectors by

== e[}

And according to |[a+ b + ¢| < |a] + |b| + |c| inequality

The USA Journals Volume 03 Issue 06-2021 32



The American Journal of Applied sciences MPACT FACTOR
(ISSN -2689-0992)

2021:5.634
June 30, 2021 | 28-33
https://doi.org/10.37547/tajas/Volumeo3lssue06-05 - 1121105553
||eAit - E2|| < |mla>1(|a +b+c| <[la] + |b] + [clljxj=1 =
X|=
JE2-x,2 =t-4/x,2 <t
This Theorem is proved completely.
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