ABSTRACT

The article discusses the issues of increasing the effectiveness of teaching with the help of innovative pedagogical technologies. Currently, the issue of using software-pedagogical and telecommunication means in the educational process of the school and, in particular, in teaching physics is urgent. In recent years, more attention has been paid to person-centered educational technology in terms of the type of pedagogical technology approach to the learner and its organizational form.

KEYWORDS

Education, pedagogy, efficiency, process, modern pedagogical technologies, student activation, teaching material.

INTRODUCTION

Introduction of modern pedagogical technologies at all stages of continuing education: general secondary school, secondary special education and higher education is a requirement of the time. Therefore, the main directions, criteria, types, organizational forms of pedagogical technologies, traditional and non-traditional forms of their implementation are described in detail. The factors of application of
pedagogical technologies in the educational process are sufficiently described in.

In recent years, more attention has been paid to person-centered educational technology in terms of the type of pedagogical technology approach to the learner and its organizational form. The reason is that education in this technology is aimed at the formation and activation of the mechanisms of self-development of the individual.

In our view, the term person-centered learning (PE) technology is less well-chosen. The reason is, first; all educational technologies are person-centered; secondly, the Russian translation of the phrase "personal-oriented training" can be translated as "personal." However, since the first phrase is common in the literature, we also use the same phrase.

MATERIALS AND METHODS

Person-centered education (PE) is a person-student subject of the educational process, and its development is the goal of the pedagogical process.

Person-centered education (PE) is a person-student as a subject of the educational process, and its development is the goal of the pedagogical process. At the heart of the personal paradigm of education lies a person-centered and goal-oriented perspective. N.A. Alekseev describes PE as follows: “it is an education that is based on the student's identity, subjectivity and value. SHYT is not only an education that takes into account the subjective factors of the student's teaching, but also a method of organizing the involvement of his personal functions in the educational process ".

Many scholars argue that PE should be technological and therefore it is appropriate to call it the pedagogical technology of PE. Since any pedagogical technology is a project of didactic systems, PE technology is no exception. I. A. According to Alekseev's description, the pedagogue should take into account the psychological development and level of the student, as well as their capabilities in the design and practical organization of educational activities.

A.A. Pligin identified the following criteria for considering educational technology as PE technology:

1) Take into account the individual - active participation of students in the development of lesson plans;
2) Free choice of the form of education;
3) Free choice of the type of complexity of the subject;
4) Evaluate not only the results but also the process of activity;
5) Formation of cognitive structures that carry out mental development;
6) The use of inductive and deductive methods in the preparation of didactic materials;
7) Study and formation of creative activity;
8) Application of heuristic methods of teaching.

V.V. According to Serikov, PE is interpreted as a learning situation or a person-centered learning situation [87]. Situation is, in his interpretation, a separate pedagogical mechanism that puts the student in new conditions, transfers him to a state of self-awareness, re-understanding, reflection. Thus, V.V. According to Serikov, any pedagogical technology can be person-centered, if it
creates an environment of interdisciplinary thinking, understanding.

1. PE including Yakinmanskaya P.S., Friedman L.M. and in the research of other scholars. It is worth noting the following main conclusions of their PE technology:
 - Different levels;
 - Differentiated;
 - Individualized;
 - Subjective personal.

2. The key concepts and links of PE are: individual, person, own opinion, subject, subjective experience, knowledge strategy, personality development trajectory, student learning style (MEN - concept), student learning style (pedagogical support).

3. The main rules and conditions of teaching and education of students of SHYTЯ:
 - Self-activity;
 - Individuality
 - Subjectivity;
 - Choice, opportunity and freedom of choice;
 - Creativity and success.

4. Technological weapons of PE are its methods and techniques, which are:
 - Be dialogic;
 - Creative activity;
 - Focus on the application of individual development of the student;
 - To create the necessary freedoms for the student to make independent thoughts and decisions, to choose the content and form of reading.

5. Pedagogical technologies based on PE:
 - Person-centered education;
 - Self-developing educational technology;
 - Pedagogical cooperation (interconnected technologies);
 - Adaptive school technology;
 - Personal suspicious technology (Amonashvili Sh.A.);
 - Game technology;
 - Developing educational technology;
 - Problem-based education;
 - Technology of level differentiation;
 - Individual learning technology (individual approach, individual learning, project method);
 - Collective method of education.

RESULTS AND DISCUSSIONS

Given the above, we see the concept of physics PE.

As with any science, the teaching of physics must rely on subjective experience. It therefore depends on the psychology and physiology of the student in the teaching of physics. In our opinion, the teaching of physics in PE should be organized and taught in the following basic terms:

- Use of natural mechanisms and correct strategic use of accumulated experience;
- Surrounding the student with the "environment" of physical processes and events, as well as the existence and encounter of laws in everyday life;
- Sensory systems of learning perception: organization on the basis of "seeing" - "hearing" - "feeling";
- Create a spiritual, problematic situation around each topic or parameter (for a model, law or event);
- Provide and apply a dynamic transition from small didactic units and concepts to large didactic units and vice versa;
Organization of education on the basis of free and compulsory "replacement" of the "focus" of thought (creation of the learning process);
- Attach great importance to qualitative and real (vital) issues;
- Use of various forms of person-centered reflection (thinking, imagination);
- Constantly motivate and stimulate students in various new learning activities;
- Creation of individual perspectives of students in education;
- The organization of classes that develop and integrate the knowledge of students (such as KVN, conferences, intelligence, step-by-step quizzes);
- Creating opportunities and conditions for the positive development of the student "I-conference" and the achievement of personal perfection.

It is also important to create and organize a lesson on the basis of PE (lesson model, plan, experience and demonstration, differentiated homework, etc.). At the same time, it is expedient to emphasize the theoretical, practical, vital importance of the lesson, to emphasize that the knowledge gained on the subject of physics can be applied later.

CONCLUSION

The quality and level of lessons based on person-centered technology: teacher's preparation for lessons, quality of lesson organization, lesson content, pedagogical technologies used, student-student communication, assessment and rewarding, individualized and selective cooperation with students, student depends on pedagogical skills and culture as well as professionalism.

The above are the general principles of the SCO. Every educator will have to approach SHYT according to the stage, department and level of physics education. However, in practice, the following difficulties and problems have been identified in the implementation of the SCO:

- Non-"single value" of person-centered educational technology;
- Lack of methodological manuals for teachers;
- Lack of didactic materials and equipment for educational institutions for teaching on the basis of SHYT;
- Unpreparedness of students for PE;
- Lack of sufficient professional and retraining of teachers;

These problems, in particular the application of PE technology in the teaching of physics, are being partially solved. Since physics is both a theoretical and experimental science, it also solves a number of methodological problems.

The first is that posters have been created and produced from physics on its phenomena, laws, and regularities;

Second, a set of differentiated test tasks, problems using computer technology was created;

Third, virtual laboratory work was created;

Fourth, laboratory work and their methodological guidelines were created.

These created educational-methodical systems used the principles of adaptive system, ie level-differentiated materials, gradual complication of materials and development of creative abilities of students.
REFERENCES

2. Толипов Ю.К., Усмонбоева М. Педагогик технологияларнинг тадбиқийасослари. – Тошкент: Фан, 2006. – 262 б.

22. Narzullaev M.H., Teshay O. Representation of the natural science picture of the world in the process of teaching students at academic lyceums and professional colleges. International scientific and praktikal conference WORLD Science/ Rost Publishing Dubai 2015.

23. Narzullaev M. ВСПОЛЬЗОВАНИЕ АСТРОНОМИЧЕСКИХ ЗНАНИЙ В ФОРМИРОВАНИИ ЭКОЛОГИЧЕСКОЙ КУЛЬТУРЫ СТУДЕНТОВ. Международный академический вестник УДК 00(082) № 1 (45) ISSN 2312-5519 ББК 65.26 2020 [12+].

27. Safarova Rakhima Sattor kizi, PREPARING STUDENTS FOR USE OF SCHOOL PHYSICAL EXPERIMENT IN THE PROCESS OF TEACHING PHYSICS, European Journal of Research and Reflection in Educational Sciences Vol. 8 No. 9, 2020 ISSN 2056-5852.